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Abstract

2D template matching (2DTM) can be used to detect molecules and their assem-

blies in cellular cryo-EM images with high positional and orientational accuracy.

While 2DTM successfully detects spherical targets such as large ribosomal sub-

units, challenges remain in detecting smaller and more aspherical targets in various

environments. In this work, a novel 2DTM metric, referred to as the 2DTM p-

value, is developed to extend the 2DTM framework to more complex applications.

The 2DTM p-value combines information from two previously used 2DTM metrics,

namely the 2DTM signal-to-noise ratio (SNR) and z-score, which are derived from

the cross-correlation coefficient between the target and the template. The 2DTM

p-value demonstrates robust detection accuracies under various imaging and sam-

ple conditions and outperforms the 2DTM SNR and z-score alone. Specifically, the

2DTM p-value improves the detection of aspherical targets such as a modified arti-

ficial tubulin patch particle (500 kDa) and a much smaller clathrin monomer (193

kDa) in simulated data. It also accurately recovers mature 60S ribosomes in yeast
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lamellae samples, even under conditions of increased Gaussian noise. The new metric

will enable the detection of a wider variety of targets in both purified and cellular

samples through 2DTM.

1. Introduction

Accurately placing macromolecular assemblies in the cellular context is important

in understanding their mechanistic role inside the cell. Previously, we developed a

2D template matching (2DTM) approach (Rickgauer et al., 2017; Lucas et al., 2021)

in cisTEM (Grant et al., 2018) to detect targets in cellular cryo-EM images with

high positional and orientational accuracy. 2DTM not only detects targets such

as ribosomes in cryo-EM images but also provides data that enable the in situ

classification and high-resolution reconstruction of these targets (Lucas et al., 2022;

Lucas et al., 2023; Elferich et al., 2022). Building on these successes, this work

aims to improve the 2DTM framework to detect more challenging targets in various

environments.

A 2DTM search yields a signal-to-noise ratio (SNR) for every location in the

cryo-EM image that depends on the cross-correlation between the template and the

image (Rickgauer et al., 2017). A target is detected when the SNR value exceeds

a statistically defined threshold that limits the average false positives to one per

image, based on the assumption that the cryo-EM image is dominated by noise

and cellular background and that the cross-correlation values observed across the

image after whitening the noise/background follow a Gaussian distribution. The

2DTM SNR can be further normalized by subtracting the mean and dividing by the

standard deviation of cross-correlations calculated across all sampled orientations at

each location in the image (Rickgauer et al., 2017). This step is often referred to as

“z-score” normalization (Spiegel & Stephens, 1999). Using the z-score instead of the

SNR improves the detection of rotavirus double-layered particles (DLPs) (Rickgauer

et al., 2017) and ribosomes in a crowded cellular environment (Lucas et al., 2022).

In the following, we will refer to the outputs of 2DTM as 2DTM SNR and 2DTM

z-score, respectively.

Previous applications of 2DTM have shown that the 2DTM SNR and z-score

function differently depending on the characteristics of the sample and target. For

example, when low-resolution features were suppressed by using a near-focus image
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setting (70 nm), the 2DTM SNR map showed a flat background with sharp peaks

indicating the locations of apoferritins, even in a dense protein (BSA) background

(Rickgauer et al., 2017). On the other hand, low-resolution features from the tar-

get itself when strongly defocused (> 2000 nm), or from the background structural

noise, can result in broader peaks or an uneven background in the SNR map, com-

plicating target detection (Rickgauer et al., 2017; Lucas et al., 2022). The mislead-

ing low-resolution background can be suppressed by calculating the 2DTM z-score

(Rickgauer et al., 2017), which removes spurious correlations between the template

and the structural noise in the image, thereby flattening the background and improv-

ing detectability of targets in cellular environments (Rickgauer et al., 2020; Lucas

et al., 2022). In Fig. 1A, a segment of a previously published micrograph of a yeast

lamella near the nucleus is presented (Lucas et al., 2022). This image section con-

tains various cellular compartments located from left to right, including the vacuole,

cytoplasm, and nucleus. Using the mature 60S as a search template, 2DTM outputs

a 2DTM SNR map and a 2DTM z-score map (Fig. 1B and C). The bright spots

in the 2DTM SNR map are locations with high correlation values, indicating 60S

ribosomes. However, the peaks are surrounded by halos of increased SNR values

extending to other low-resolution features in the image, such as membranes. The

z-score map removes these halos and spurious matches of high-contrast features,

thereby reducing the number of false detections (membranes or partial overlap with

ribosomes) while preserving locations with high-resolution matches from the ribo-

somes.

Despite its success, the current 2DTM workflow faces several challenges. Origi-

nally, the goal of 2DTM was the detection and localization of unlabeled molecules in

the cellular context (Rickgauer et al., 2017), but more recent works have expanded its

scope to other applications (Lucas et al., 2023; Lucas & Grigorieff, 2023). The ques-

tion of detectability depends, therefore, on the target to be searched and the imaging

conditions. First, in images of a purified sample, the likelihood that a low-resolution

feature in the image is a valid target is high, making low-resolution contrast a reli-

able indicator of a true positive. However, this useful information is down-weighted

in the z-score. Second, detecting smaller targets remains difficult since the cross-

correlation value depends on the size of the target. Although the detection limit of

2DTM was estimated as 150 kDa for purified samples (no molecular background)
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and 300 kDa for cellular samples (Rickgauer et al., 2017), no studies have systemat-

ically explored the detection of targets smaller than 200 kDa without incorporating

prior information about their locations. Third, the shape of the targets plays a crit-

ical role in their detectability. Previous research has primarily focused on spherical

targets, but as we demonstrate below, non-spherical shapes present additional chal-

lenges that have not been fully addressed. Finally, the detection threshold is based

on the 2DTM SNR and images lacking strong low-resolution contrast. It remains

unclear whether this threshold applies to other types of images or the 2DTM z-score.

These factors highlight the need for further refinement of the 2DTM workflow to

improve its applicability to a broader range of targets.

In this work, we investigate the performance of 2DTM applied to smaller and

aspherical targets. We develop a novel metric, the 2DTM p-value, which combines

information from the 2DTM SNR and z-score. We show that the 2DTM p-value has

a more robust performance under varying imaging and sample conditions compared

to using the 2DTM SNR or z-score alone. In particular, we demonstrate that the

2DTM p-value improves the detection of clathrin, a previously unexplored target

due to its small size and aspherical shape, in simulated images under varying imaging

conditions. We also show that the 2DTM p-value accurately recovers mature 60S

ribosomes in yeast lamellae samples, even in increased levels of Gaussian noise.

2. Theory

Our current implementation of 2DTM outputs two scores, the 2DTM SNR and

z-score. The novel 2DTM p-value integrates these two features into a new “metafea-

ture”. The 2DTM p-value is designed to improve the detection of smaller and dis-

tinctly aspherical targets by utilizing correlations between the template and target

across the entire resolution spectrum.

2.1. Previously developed metrics: 2DTM SNR and z-score

During a 2DTM search, we generate 2D projections from a 3D density map (V ) of

the molecule of interest (3D template) across over a million orientations (τ) within

SO(3) space and multiply them with the contrast transfer function (CTF). A 2D

projection is denoted as

t(x, y; τ) = F−1
{
CTF(k) · F

{∫ ∞

−∞
V (x, y, z; τ) dz

}}
. (1)
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CTF parameters, such as defocus, can be estimated using the software package

CTFfind (Rohou & Grigorieff, 2015; Elferich et al., 2024) and subsequently included

in the search. We whiten the image to be searched, apply the same whitening filter

to each 2D projection, then pad the 2D projection to the same size as the image.

The whitened image Y and padded 2D projection t′(i, j; τ) are then normalized to

zero mean and unity variance by

Ỹ (x, y) =
Y (x, y)− µY

σY
, (2)

and

t̃(x, y; τ) =
t′(x, y; τ)− µt′(τ)

σt′(τ)
, (3)

where µY , σY are the mean and standard deviation of Y , and µt′(τ), σt′(τ) are those

of t′(i, j; τ). We then calculate the cross-correlation for each 2D projection-image

pair

r(i, j, τ) =
∑
x,y

Ỹ (x+ i, y + j)t̃(x, y; τ), (4)

evaluated at all i, j locations in the image (Sigworth, 2004; Rickgauer et al., 2017).

For each i, j location, we record the maximum cross-correlation

r(i, j) = max
τ

r(i, j; τ), (5)

along with the best-aligned orientation

τ(i, j) = argmax
τ

r(i, j; τ). (6)

Additionally, the mean cross-correlation r̄(i, j), and the standard deviation of cor-

relations σ(i, j) at each i, j location are calculated over sampled orientations as

r̄(i, j) =
∑
τ

wτr(i, j; τ), (7)

and

σ2(i, j) =
∑
τ

wτ (r(i, j; τ)− r̄(i, j))2 , (8)

where wτ is the quadrature weight to approximate integration in SO(3) space where∑
τ wτ = 1.

The 2DTM SNR at location i, j in the image is then defined as the ratio of r(i, j)

to the standard deviation of the cross-correlation values when only noise is present,

2DTM SNR(i, j) :=
r(i, j)

σn
. (9)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.01.616095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.01.616095
http://creativecommons.org/licenses/by/4.0/


6

Assuming that the signal from detectable targets generates only a small amount of

the variance of the entire image, we can estimate σn using the standard deviation

of correlation values from the entire image

σn =
∑
τ

wτ

∑
i,j

1

Np
(r(i, j; τ)− r̄)2 , (10)

where Np is the number of pixels in the image and r̄ is the average of all the

correlation values calculated in the search

r̄ =
∑
τ

wτ

∑
i,j

1

Np
r(i, j; τ). (11)

Given the normalizations of image and projection given in Eq. 2 and 3, previous

work (Grigorieff, 2000) showed that

σn ≈ 1√
Np

. (12)

The 2DTM z-score at each i, j location is calculated by subtracting the average

correlation from the maximum correlation and dividing by the standard deviation

of the correlation values over the entire orientational space

2DTM z-score(i, j) :=
r(i, j)− r̄(i, j)

σ(i, j)
. (13)

The 2DTM targets are generated by identifying local maxima in the 2DTM z-

score map using a user-defined exclusion radius (typically 10 pixels). The targets

are then subjected to a z-score threshold defined as

cisTEM z-score threshold :=
√
2 · erfcinv

(
2

Nc

)
· σn, (14)

where erfcinv is the inverse complementary error function. In this equation, Nc is

the number of correlation values calculated during the search. While factors such

as symmetry in the template (as in the case of apoferritin) reduce the number of

independent searches, leading to a z-score threshold that may be too high, we will

show later that our new metric is unaffected by symmetry.

2.2. Theoretical analysis of the 2DTM z-score

In the following, we demonstrate that (a) the 2DTM z-score effectively removes the

correlations originating from the rotationally invariant components of the template,

and (b) the 2DTM z-score is related to the Fisher information which quantifies how

tightly peaked the likelihood is at r(i, j) regarding orientation τ .

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.01.616095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.01.616095
http://creativecommons.org/licenses/by/4.0/


7

To prove the first point, we can write r(i, j, τ) as the sum of correlations from

rotationally invariant component rconst(i, j) and variant component rvary(i, j, τ). We

can minimize the norm of the rotationally variant component rvary(i, j, τ) by setting

the τ -average of rvary(i, j, τ) to zero

∑
τ

wτrvary(i, j, τ) = 0, (15)

so that r̄(i, j) = rconst(i, j). This implies that by constructing the z-score, the rota-

tionally invariant components will be removed in Eq. 13. The rotationally invariant

correlation components originate primarily from the low-resolution signal that is

due to background structural noise that shares a similar size as the template. Pre-

vious studies have shown that Zernike polynomials can be used to decompose cryo-

EM maps and analyze the continuous heterogeneity of biological macromolecules

(Herreros et al., 2021; Herreros et al., 2023). We show in Appendix B that calcu-

lating the Zernike moments and Zernike invariants of a 3D template allows us to

quantify the relative weight of the rotationally invariant and variant components,

thereby measuring the asphericity of a template.

We next explore the relationship between the z-score and Fisher information

regarding perturbations in τ . In previous works, Fisher information was applied to

study how well a 3D potential map can be estimated from noisy, randomly rotated

2D projections under different noise levels (Fan et al., 2023; Fan et al., 2024). Here,

we calculate the Fisher information regarding perturbations in τ instead. We first

note that the l2-norm of the difference between the shifted image Y (x, y; i, j) and

padded projection t′(x, y; τ) can be written as

logP (Y |i, j, τ) ∝ −1

2

∥∥Y (x, y; i, j)− t′(x, y; τ)
∥∥2

= −1

2

∥∥∥σY Ỹ (x, y; i, j) + µY −
(
σt′(τ)t̃(x, y; τ) + µt′(τ)

)∥∥∥2
= [σY σt′(τ)]× r(i, j, τ)− 1

2
Np

[
σ2Y + σ2t′(τ) + (µY − µt′(τ))

2
]
.

(16)

Assuming that each point-spread function has the same integral and the particle

is not too aspherical, we have µt′(τ) = µt′ and σt′(τ) = σt′ . If we further assume

that the image is generated by taking the “true” signal and adding independent

identically-distributed pixel noise, we see that r(i, j, τ) is an affine transformation

of the logarithm of the probability P (Y |i, j, τ) of observing the image Y , given a
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single particle at location i, j, and orientation τ ,

logP (Y |i, j, τ) = a× r(i, j, τ) + b, (17)

where a = σY σt′ and b = −1
2Np

[
σ2Y + σ2t′ + (µY − µt′)

2
]
. We see the Fisher infor-

mation I(τ) is proportional to the second-τ -derivative of r(i, j, τ)

I(τ) = −E
[
∂2

∂τ2
logP (Y |i, j, τ)

]
∝ ∂2r(i, j, τ)

∂τ2
. (18)

We consider the simple case of 1-dimensional r(ψ), where ψ is in domain Ω. r(ψ)

can be roughly modeled as a Gaussian profile with a single peak (Appendix Fig. 12)

r(ψ) ∼ R× 1√
2πσ

exp(−ψ2/(2σ2)), (19)

with zero mean, standard deviation σ, and a scaling factor R. We can calculate the

following maximum (rupb), average (ravg), and variance (r2std) of r(ψ) regarding ψ

as

rupb = R× 1√
2πσ

, (20)

ravg = R× 1

|Ω|
, (21)

r2std =
R2

|Ω|

(
1√
π2σ

− 1

|Ω|

)
. (22)

The 2DTM z-score, z, based on its definition, is

z =
rupb − ravg

rstd
=
√
|Ω| ×

1√
2πσ

− 1
|Ω|√

1√
π2σ

− 1
|Ω|

. (23)

If we assume that the ‘size’ of the space |Ω| is relatively large compared to σ, then

z ∼
√
|Ω| × 1

π1/4
√
σ
. (24)

Meanwhile, the Fisher information of likelihood at r(i, j) with respect to perturba-

tions in ψ, based on its definition in Eq. 18, is

rfis =
1

σ2
× rupb =

1

σ2
× R√

2πσ
= R× 1√

2πσ3
, (25)

from which we could see that the z-score is related to the Fisher information by

log(rfis) = const + 6 · log(z). (26)

In Appendix A, we extend our discussion to τ ∈ SO(3) and demonstrate that,

while the 2DTM SNR and z-score are related, they are not entirely redundant and

can effectively complement each other. Specifically, peaks in the SNR map roughly
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correspond to local maxima in the log-likelihood of observing the data given that a

true particle is being imaged (Eq. 17), whereas peaks in the z-score map correspond

to locations and orientations with high Fisher information (Eq. 26). Given these

differences, we aim to develop a method that integrates the 2DTM SNR and 2DTM

z-score.

2.3. Quantile normalization

We now propose a general strategy for designing a “metafeature” that integrates

the 2DTM SNR and z-score, estimating the probability of target detection without

relying on a fixed z-score threshold. To combine features with varying scales, we first

identify the local maxima in the 2DTM z-score map, extracting their corresponding

2DTM SNR and z-score values. Next, we independently apply a probit-function to

both the z-scores and the SNRs (Amaratunga & Cabrera, 2001). The probit-function

transforms the marginal distributions of both features into the standard Gaussian

distribution, N (0, 1), with zero mean and unit variance. This method can be easily

extended to more than two features and applied to datasets with even greater scale

differences. The resulting quantile-normalized data is referred to as

X =


x1

x2
...
xn

 =


x11 x12
x21 x22
...

...
xn1 xn2

 , (27)

where xi ∈ R2 is a 2D vector encoding the quantile-normalized features for a particu-

lar data point. For example, for the i-th data point xi, xi1 represents the transformed

2DTM z-score and xi2 represents the transformed 2DTM SNR.

2.4. Fit with anisotropic Gaussian

To derive our new statistic, we fit an anisotropic Gaussian to the transformed data

matrix X. This fit involves the empirical covariance matrix C−1, or equivalently the

precision matrix C. We perform the eigenvalue decomposition of C−1 as

C−1 = U−1 · diag(σ21, σ22) · U−⊺ , (28)

where diag(σ21, σ
2
2) is the diagonal matrix formed from eigenvalues σ21, σ

2
2, and the

unitary matrix U−1 = [u,u⊥]. This results in an anisotropic Gaussian distribution

fit to X with elliptical contours with major-axis u of length σ1 and minor-axis

u⊥ of length σ2. Our assumption below is that the joint distribution of X is well
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approximated by

ρ(x) =
1

2π

1

σ1σ2
exp

{
−1

2
x⊺ · C · x

}
. (29)

2.5. Calculation of the 2DTM p-value

Given a particle data point xk, we can define pk, the probability of finding a

sample from ρ in the first quadrant with a lower probability density than xk, as

pk =

∫
x∈Ωk

ρ(x)dx , (30)

where the ‘first-quadrant” domain Ωk (Fig. 2) is defined as

Ωk = {x | x1 > 0, x2 > 0, ρ(x) < ρ (xk)} . (31)

Describing the direction of u using angle ω such that u = [cos(ω), sin(ω)]⊺, pk can

be calculated by transforming the anisotropic Gaussian into a standard Gaussian

and then integrating this standard Gaussian within the wedge corresponding to the

(now transformed) first quadrant. The relevant angle associated with this wedge is

γ = arccot (0.5 sin(2ω)(σ2/σ1 − σ1/σ2)) , (32)

and pk can then be written as

pk =
γ

2π
exp

{
−1

2

∣∣diag(1/σ1, 1/σ2) · U−⊺ · xk

∣∣2} . (33)

3. Results

3.1. Detection of simulated targets of distinct shapes in ice

To understand how molecular shape affects target detection by 2DTM, we sim-

ulated images of two molecules with similar molecular weights but distinct shapes

and performed 2DTM searches on these images. The first target, apoferritin (Fig.

3A), is a spherical-shaped protein complex with octahedral symmetry that has fre-

quently been used as a model system for benchmarking cryo-EM methods. In our

study, we used the recently determined 1.27 Å resolution structure (PDBID: 7RRP),

with a molecular weight of 498 kDa (Zhang et al., 2020). The second target is an

artificial tubulin patch (different views shown in Fig. 3B and C) derived from the

single-particle model of deacetylated microtubules (PDBID: 6O2S) (Eshun-Wilson

et al., 2019). This rod-shaped particle consists of six α-tubulin subunits, four β-

tubulin subunits, and one additional modified β-tubulin subunit, with a total molec-

ular weight of 500 kDa.
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The simulated particle images at different orientations were generated using the

program simulator in cisTEM (Himes & Grigorieff, 2021), with an underfocus of

500 nm and a uniform B-factor of 30 Å2 (Fig. 3 second column). The simulations

were performed with a pixel size of 1.0 Å and a total exposure of 30 e−/Å2 in 100 nm

ice. Segments of the 2DTM SNR and z-score maps of the three simulated particle

images are shown in the third and fourth columns. Targets exceeding the cisTEM

z-score threshold were labeled as either true positives (orange) or false positives

(blue). Similar to the 60S ribosome (Fig. 1), the z-score map of the apoferritin

particle features a sharp peak with a clean background (Fig. 3A). In contrast, the

z-score map of the tubulin patch particle is either noisier (Fig. 3B) or contains a

false positive (Fig. 3C).

We then simulated cryo-EM images of 100 apoferritin particles and 100 tubulin

patch particles, each with defocus values of 70 and 2000 nm (Rickgauer et al.,

2017), in random orientations. We arranged the 100 particle images into a pseudo

cryo-EM image in a 10-by-10 montage. A segment of the montage containing four

tubulin patch particles (arranged 2-by-2) at 2000 nm defocus is shown in Fig. 4A.

We searched the montages by 2DTM using an angular search grid with an in-plane

step of 1.5◦ and an out-of-plane step of 2.5◦. The defocus was searched in a range

of +/- 100 Å and a step size of 20 Å (Lucas et al., 2021). 2DTM targets were

identified as local maxima within a 10-pixel radius in the z-score map and labeled

according to their angular and translational errors relative to the expected values

from the simulation, taking into account the octahedral symmetry of apoferritin.

The angular error was calculated based on the average l2 distances between points

in the two (unit vector) templates after angular transformation. The translational

error (dxy) was defined as the distance between the target and the grid center of

the closest simulated particle. The distribution of errors for one of the tubulin patch

montages at 2000 nm is shown in Appendix Fig. 13. We used a cutoff of 7 pixels

for dxy and 0.4 for Euler error for labeling the targets. True targets (orange) were

accurately located near the centers of the particle grid cells, whereas false targets

(blue), which resulted from partial overlaps with tubulin patches or matches with

background noise, were not necessarily near the centers (Fig. 4B).

Comparing the 2DTM SNRs to the z-scores for targets identified in the simu-

lated montage (Fig. 4C), we found that using either feature individually led to a

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.01.616095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.01.616095
http://creativecommons.org/licenses/by/4.0/


12

higher number of false positives or false negatives compared to using both features

together. We applied quantile normalization to the 2DTM SNRs and z-scores of the

targets and calculated the 2DTM p-values for data points located exclusively in the

first quadrant after transformation (Fig. 4D), as a true target is expected to exhibit

both high SNR and high z-score. The zoomed-in scatter plot (Fig. 4E) shows the

transformed threshold corresponding to a cisTEM z-score threshold of 7.77. Several

true targets fell below this threshold, indicating false negatives, while several false

positives were observed near the threshold. We combined the results from 300 sim-

ulated particles and evaluated the accuracies by calculating their receiver operating

characteristic (ROC) curves (Fig. 4F). To better understand the classification accu-

racy when a low false positive rate (FPR) is desired, we focused on a specific FPR

range with fewer than 25 false positives. Our results show that the 2DTM p-value

successfully recovered more true targets than the other two metrics.

Next, we compared the detection of apoferritin and tubulin patch at different

defocus. In the 70 nm montages (Fig. 5A and 5G), particles were barely visible,

whereas in the 2000 nm montages (Fig. 5D and 5J), there was strong low-resolution

contrast from the particles. Analyzing the scatter plots of 2DTM SNRs versus z-

score and the ROC plots, we made the following observations. First, at low defocus,

the SNR values of the true targets showed strong correlations with the z-scores,

in contrast to the correlations observed at higher defocus. Specifically, the Pear-

son correlations observed at 70 nm defocus were 0.92 for apoferritin (Fig. 5B) and

0.85 for tubulin patches (Fig. 5H). However, at 2000 nm defocus, these correlations

dropped to 0.47 (Fig. 5E) and -0.19 (Fig. 5K), respectively. This is because, at low

defocus, low-resolution contrast was suppressed, causing the 2DTM SNR to con-

tain mostly high-resolution information, similar to the z-score. Second, for tubulin

patches, the SNRs and z-scores of the true targets were less correlated compared

to apoferritin, suggesting the two metrics may provide complementary information

for aspherical targets. This finding highlights the need to design a “metafeature”

that integrates both metrics, which our new metric, the 2DTM p-value, achieves.

Finally, we found that for apoferritin, all three metrics showed comparable target

detection accuracies at both defocus values, although the z-score exhibited slightly

lower accuracies at low FPR ranges (Fig. 5C and 5F). In contrast, for aspherical

particles, the p-value proved to be the optimal metric, with its performance improv-
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ing as the low-resolution contrast from the particles increased, outperforming the

z-score (Fig. 5I and 5L). Unlike the z-score threshold, the p-value is unaffected by

template symmetry because it uses the statistics at the optimal orientation once it

is found.

3.2. Detection of simulated clathrin monomers in isolation

We next focused on the more difficult task of detecting both small and aspher-

ical targets. Clathrin is a protein crucial for endocytosis, facilitating the cellular

uptake of substrates from the extracellular environment (Kaksonen & Roux, 2018).

It forms a three-dimensional lattice known as a clathrin coat, which transports vesi-

cles with cargo to be endocytosed. The clathrin triskelion consists of three heavy

chains that interact at their C-termini, with each heavy chain tightly bound to a

nearby light chain (Fotin et al., 2004). The high-resolution structure of the invari-

ant hub, determined using single-particle cryo-EM (PDBID: 6SCT), exhibits C3

symmetry (Morris et al., 2019). The template we used is the clathrin monomer,

consisting of three heavy chains and two light chains, with a molecular weight of

193 kDa (orange part Fig. 6). Although the clathrin monomer slightly exceeds the

previously reported detection limit of 2DTM (150 kDa for particles embedded in

ice (Rickgauer et al., 2017)), it is the smallest target studied by 2DTM so far. Its

relatively small molecular weight and highly aspherical shape provided an excellent

test case for exploring the limits of 2DTM.

We simulated cryo-EM images of clathrin monomer particles in 100 nm ice in

random orientations using the B-factor from the PDB entry, at a pixel size of 1.06

Å, arranged them into a pseudo cryo-EM image (a segment shown in Fig. 7A),

and performed the 2DTM searches. Due to the smaller weight of the monomer, we

increased the total dose to 45 e−/Å2 and used a defocus of 500 nm in simulation. A

defocus search was performed on all images with a step size of 200 Å in a total range

of 2400 Å (+/−1200 Å). 2DTM targets were identified as local maxima in the z-score

map and labeled based on whether they were true (orange) or false (blue) (Fig. 7B).

Out of the 100 simulated particles, 92 were recovered as local maxima. The overlap

between the true and false positive populations (Fig. 7C) made it challenging to

classify the targets by a binary threshold based solely on the z-score or the SNR.

Compared to apoferritin and tubulin patch, detecting clathrin monomers using
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the cisTEM z-score threshold resulted in more false negatives (Fig. 7E), due to

their smaller size. We repeated this analysis for 2000 simulated clathrin monomers

and reported the performance of the three 2DTM metrics (Fig. 7F). Using the SNR

instead of the z-score recovered more true positives at higher FPR levels, owing to

its incorporation of low-resolution signal. In the FPR range with fewer than 25 false

positives, the 2DTM p-value consistently outperformed the SNR and z-score, as it

recovered more true positives for a given FPR, even under conditions where no false

positives were allowed.

3.3. Detection of simulated clathrin monomers with increasing solvent background

Next, we examined how increasing solvent thickness, and consequently the solvent

noise, affects the detection accuracy of the 2DTM p-value, particularly for smaller

and more aspherical targets. The 2DTM SNR theoretically increases with the molec-

ular weight of the template, limiting current 2DTM detection to around 150 kDa

in ice and 300 kDa in 100 nm thick samples with protein background (Rickgauer

et al., 2017; Rickgauer et al., 2020). To study targets in their native state, focused

ion beam (FIB)-milling is used to cut sections (lamellae) of frozen-hydrated bio-

logical specimens. Typical lamella thicknesses range from 85 to 250 nm (Lam &

Villa, 2021). However, increased sample thickness leads to the loss of electrons due

to inelastic and multiple scattering, reducing image signal, particularly at higher

resolution (Peet et al., 2019; Dickerson et al., 2022). Earlier studies have demon-

strated the importance of correctly modeling the hydration layer in cryo-EM images

(Shang & Sigworth, 2012; Himes & Grigorieff, 2021) and revealed an exponential

decay in the 2DTM z-score with an increase in solvent thickness, particularly for

detecting large ribosomal subunits (Rickgauer et al., 2020; Lucas & Grigorieff, 2023).

However, the relationship between 2DTM detection accuracy and solvent thickness

remains unexplored for targets less spherical than large ribosomal subunits. There-

fore, we conducted simulations of clathrin monomers, systematically varying the

solvent thickness within a range consistent with typical FIB-milled lamellae.

We examined three ice thickness values: 120 nm, 150 nm, and 200 nm. For each

thickness level, we simulated 1000 clathrin monomers and created ten 10-by-10 mon-

tages (example montages in Fig. 8). The accuracy of all three 2DTMmetrics declined

with increasing solvent thickness due to the loss of high-resolution signal. Notably,
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the 2DTM p-value consistently outperformed the other metrics across diverse sol-

vent conditions, although its performance converged with the SNR as the solvent

thickness approached 200 nm.

As previously discussed, the z-score depends heavily on the correlations between

the image and the rotationally variant components of the template. The rotationally

variant components tend to represent higher resolution than the invariant parts. In

contrast, the SNR relies on both high- and low-resolution signal from the template.

High-resolution signal decays faster than lower-resolution signal when ice is thick;

therefore, the detection mainly depends on the low-resolution features.

3.4. Detection of clathrin monomers in simulated protein mixture images

Previous works have pointed out that the 2DTM SNR is more affected by the

presence of proteins or structural features in the cell that share a similar size and

shape as the target, making accurate detection more difficult (Rickgauer et al., 2017;

Lucas et al., 2022). Since the 2DTM p-value is derived from the SNR, we explored

in this section whether the 2DTM p-value can correctly detect clathrin monomers

in images containing other proteins.

To simulate images with protein mixtures, we prepared montages, each containing

50 clathrin monomers and 50 proteasome particles (PDBID: 7LS6 (Schnell et al.,

2021), 408.62 kDa) in random orientations. The clathrin monomer was used as the

template in the 2DTM search. We simulated ten protein mixture montages (example

in Fig. 9A) and compared the targets’ 2DTM SNRs against z-scores. The 2DTM

p-value recovered more true positives compared to the 2DTM SNR and z-score,

consistent with the results observed in images containing only clathrins. The z-score

performed better than the SNR as it relies less on low-resolution signal that may

come from incorrect particles. Target detection based solely on the 2DTM SNR led to

false positives located near proteasome particles due to their stronger low-resolution

contrast (Appendix Fig. 14A).

As a further test, we present an extreme scenario where we simulated ten protein

mixture montage (example in Fig. 9B) containing clathrin monomer and mature 60S

ribosomal subunits (PDBID: 6Q8Y (Tesina et al., 2019), 1.72 MDa) and searched

using the clathrin monomer as the template. Due to the much stronger low-resolution

signal of the 60S subunits, the 2DTM SNR was significantly higher at these loca-
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tions, leading to incorrect detections. For the same FPR, the 2DTM SNR recovered

significantly fewer true targets than the 2DTM z-score. Most locations with high

SNR values were near the mature 60S particles (Appendix Fig. 14B). Interestingly,

the 2DTM p-value still recovered as many or more clathrins compared to the z-score.

This example confirms that even if the 2DTM SNR is unreliable in the presence of

high background noise or other proteins, the performance of the p-value is similar

to, if not better than, using the z-score alone. This highlights the potential of using

the 2DTM p-value to study densely populated cellular images.

3.5. Detection of mature 60S in experimental images with added Gaussian noise

Next, we evaluated whether the 2DTM p-value maintained its superior perfor-

mance in a setting where the z-score also performs well. Furthermore, we wanted to

investigate the performance of the 2DTM p-value for target detection in experimen-

tal cryo-EM images of cellular lamellae. Given the lack of ground truth labels for

experimental data, we introduced Gaussian noise with increasing variances to pre-

viously analyzed yeast lamellae (Lucas et al., 2022). We performed 2DTM searches

using the mature 60S template (PDBID: 6Q8Y (Tesina et al., 2019)) and compared

the detection results based on the 2DTM z-score, SNR, and p-value to those from

images without additional noise. We systematically varied the ratio of added noise

variance relative to the image variance, ranging from 0.1 to 2.5. Under each noise

condition, we generated nine images featuring random Gaussian noise.

These images were selected because they contained a significant number of matches

with high 2DTM z-scores, indicating high confidence in the identities of these loca-

tions. The small differences in the estimated defocus values between the noisy images

and the corresponding Gaussian-noise-free images were within the 2DTM defocus

search step and could, therefore, be ignored here. Comparing the images pre- and

post-noise addition (Appendix Fig. 15 to 17), we observed that the high-resolution

signal was gradually lost as the level of noise increased.

We next explain the manual labeling process using the pre-noise micrograph in

Fig. 10A as an example. The thickness of this image was estimated to be 98 nm, and

the average defocus was around 367 nm (Lucas et al., 2022). The relatively lower

defocus suppressed low-resolution noise from the cellular background and improved

the detection of the mature 60S using the 2DTM z-score. We calculated a threshold
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in the z-score histogram (Fig. 10B) that established a clear separation between

tail scores (considered true positives) and bulk scores (considered true negatives),

minimizing the overlap between the two. For locations in the image that do not

contain mature 60S signal, their 2DTM z-score values should follow a generalized

extreme value (GEV) distribution (Haan & Ferreira, 2006) as explained in Appendix

C. The GEV distribution was superimposed on the histogram (dashed blue curve in

Fig. 10B), fitted using z-scores smaller than the cisTEM z-score threshold (7.85).

While the bulk z-scores were well modeled by the GEV distribution, the tail z-

scores were not. The fitted distribution approached zero rapidly at around 8.0, while

the tail of the histogram extended to 15.1 (inset of Fig. 10B), indicating strong

correlations with the mature 60S template. Using the fitted GEV distribution as

the null hypothesis, we calculated the 2DTM z-score corresponding to a given FPR.

In this experiment, we set the FPR to 10−6, resulting in a z-score threshold of 8.212,

consistent with a visual separation of the tail from the bulk. Targets were restricted

from being detected within 100 Å to the edge of the image to avoid the detection

of partial particles. 149 targets with z-scores exceeding 8.212 were labeled as true

targets and plotted onto the micrograph based on their 2DTM-derived locations and

orientations (Fig. 10A). Using the same strategy, we labeled two other images from

yeast lamellae and found 176 and 336 true targets, respectively (Appendix Fig. 18

and 20).

We calculated the detection accuracies of the 2DTM SNR, z-score, and p-value

for the three lamellae upon adding varying levels of added Gaussian noise (Fig. 11,

Appendix Fig. 19, and 21). In cases where minimal noise was introduced, particu-

larly when the ratio of the added noise to the image noise was less than or equal

to 0.5 ((Var(n)/Var(I) ≤ 0.5)), the performance of the 2DTM p-value generally

aligned with that of the z-score and was better than that of the SNR. Since the

control targets were labeled using the z-score, the z-score was expected to exhibit

optimal accuracy under conditions of minimal Gaussian noise addition. For these

three lamellae, when the noise ratio was 0.5, the 2DTM p-value started to outper-

form the z-score across most of the relevant FPR ranges.

As the variance of the Gaussian noise was further increased (Var(n)/Var(I) ≥ 1.0),

the accuracies of the 2DTM z-score experienced a rapid decline in contrast to the

other two metrics. The performance of the 2DTM p-value closely mirrored or slightly

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.01.616095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.01.616095
http://creativecommons.org/licenses/by/4.0/


18

exceeded that of the SNR at low FPR ranges. In this case, the high levels of Gaussian

noise blurred the high-resolution features, forcing detection to primarily rely on the

remaining low-resolution signal. The performance of the 2DTM p-value and SNR

converged when the noise level was 2.5 (Var(n)/Var(I) = 2.5).

In this test, we imposed an additional constraint during the p-value computation,

requiring that both quantile-normalized features exceed 0.5 (x1 > 0.5 and x2 > 0.5

in Eq. 31). This criterion ensures that both SNR and z-score must be high for a true

target. An interesting observation is that the features from contamination (dark

regions in Fig. 10A), which could potentially lead to false positives when using a

blob detector solely based on low-resolution signal, were correctly excluded by the

2DTM p-value despite its sensitivity to low-resolution signal.

In summary, introducing Gaussian noise to experimental images from yeast cells,

coupled with the curation of control datasets based on the distribution of 2DTM

z-scores, enables the evaluation of the 2DTM p-value across varying noise levels. Our

findings show that while the z-score performs well for targets such as ribosomes, the

p-value is robust under conditions of increased noise.

4. Discussion

Detecting biological molecules and complexes in low-contrast cryo-EM images is an

important step for determining their molecular structures in situ and understanding

the mechanisms of biological processes. Previous works have demonstrated that

accurate determination of target locations and orientations can be achieved using

2DTM, with high-resolution structures as templates and sampling of poses on a tight

grid. 2DTM offers a way to study macromolecular assemblies in the broader context

of a cell, taking advantage of the increasing number of high-resolution structures

available for templates.

Building on the success of 2DTM in locating and distinguishing larger molecular

species in cells, our goal in this paper is to improve 2DTM to detect more chal-

lenging targets, especially those that are smaller and aspherical. We show that the

outputs of 2DTM, namely the 2DTM SNR and 2DTM z-score, offer complemen-

tary information for target detection. By integrating data from both metrics, we

introduce a novel 2DTM metric, the 2DTM p-value, which improves the detection

of previously unexplored targets, such as clathrin monomers. Our results show that
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the performance of the 2DTM p-value is robust across diverse imaging conditions.

Furthermore, we have established a general framework for combining multiple met-

rics of varying scales into a new “metafeature”, and developed a probabilistic model

for target detection in both purified and cellular cryo-EM images using 2DTM.

The approach used to construct the 2DTM p-value is not limited to applications in

2DTM; it can easily be extended to applications in cryo-electron tomography (cryo-

ET), including the development of a detection likelihood model that utilizes multiple

metrics derived from 3D template matching (3DTM) (Xue et al., 2022; Cruz-Leon

et al., 2023; Maurer et al., 2024).

Determining a 2DTM p-value threshold for target

In situations where labeled data are unavailable, determining an appropriate thresh-

old for target detection based on the 2DTM p-value is crucial. One approach is

to calculate the adjusted p-values for multiple comparisons using the Benjamini-

Hochberg procedure (Benjamini & Hochberg, 1995). Subsequently, the quantile of

the adjusted p-values corresponding to an estimated number of true positives can

be identified. This quantile then serves as the classification threshold. Unlike the

2DTM z-score, which relies on a uniform threshold calculated from the number of

search locations, the p-value learns from the signal and noise distribution unique to

each 2DTM search. We provide an example of using this method to calculate the

2DTM p-value for a noisy image from the yeast lamella dataset (Appendix Fig. 22),

where Var(n)/Var(I) = 0.5. In this example, we identified 166 out of 176 targets.

Molecular weight and shape jointly affect target detection

Our results in Section 3.1 and 3.2 demonstrate that detecting small and aspherical

targets using either 2DTM SNR or z-score alone is particularly challenging due to

the significant overlap between true and false targets in both metrics.

The effectiveness of the 2DTM SNR is heavily influenced by the molecular weight

of the target and the projected density distribution of the target across the image.

Specifically, when the targets are small or have a dispersed projected density, the

2DTM SNR tends to be low, making accurate detection more difficult. Conversely,

for targets viewed edge-on with a high projected density, the SNR is higher, but this

also increases the risk of misalignment.

The 2DTM z-score works well for detecting spherical targets, where the correla-

tion peak is relatively sharp due to the effective subtraction of rotationally invari-
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ant components. This characteristic is a result of the z-score transformation, which

was introduced as an “a posteriori” correction of camera characteristics in large

imaging datasets (Afanasyev et al., 2015) and previously applied in 2DTM to suc-

cessfully normalize the spurious correlations generated from low-resolution matches

(Rickgauer et al., 2017; Rickgauer et al., 2020). However, it is less reliable for aspher-

ical targets. In these cases, the z-score map tends to have a less clean background

and may lead to false positives or false negatives, as in the tubulin patch example.

When combining these factors, particularly in the context of small and aspherical

particles, the overlap between false and true populations poses a significant challenge

for accurately separating and classifying targets. However, more true targets can

be recovered by utilizing a “metafeature” like the 2DTM p-value that integrates

information from the 2DTM SNR and z-score.

The 2DTM p-value is robust regardless of image and target characteris-

tics

The 2DTM p-value combines information from the SNR and z-score, providing a

more robust metric than either alone. It ensures optimal target detection regard-

less of the signal characteristics in the image, whether dominated by low- or high-

resolution features. In many applications of 2DTM (Rickgauer et al., 2017; Lucas

et al., 2021), suppressing low-resolution signal from the background improves overall

precision. However, theoretically, the low-resolution signal of the target itself should

aid in target detection. The challenge lies in developing a method that accurately

leverages the target’s low-resolution signal without losing the ability to distinguish

true and false positives when the image contains strong low-resolution contrast.

While the 2DTM p-value incorporates correlations arising from the rotationally

invariant or lower resolution components between template and targets, it largely

avoids incorrect low-resolution features that may be present in cellular cryo-EM

images. Our findings in Section 3.4 show that even in images where incorrect low-

resolution features can strongly bias the 2DTM SNR, the 2DTM p-value still out-

performs the z-score. This highlights the potential of using the 2DTM p-value for

target detection in native cells, even in the presence of cellular background noise,

such as membranes and other molecules.

In this work, we present extensions of 2DTM applications specifically targeting

aspherical targets, demonstrating the versatility of the 2DTM p-value in diverse
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experimental scenarios. Using examples of tubulin patches and clathrin monomers,

we demonstrate the advantage of using the 2DTM p-value when the 2DTM SNR

and z-score may fall short.

Future improvement

Better whitening filter In 2DTM, we apply a global whitening filter based on

the power spectrum of the entire image to whiten the noise spectrum and ensure

the accurate matching of signal in the image by the template, both in real and

reciprocal space. However, the global whitening filter may not uniformly whiten

local areas within the image (Lucas et al., 2023). A better whitening strategy that

addresses local contrast variations (Roseman, 2003; Roseman, 2004) could enhance

the calculation of the z-score, thereby improving the resulting p-value. Another

approach to suppress low-resolution structural noises in cellular images is to utilize

the phase-only correlation (Horner & Gianino, 1984; Ahmed & Jafri, 2008). How-

ever, excluding amplitude information may weaken the overall signal correlation and

require multiple passes of template matching.

Conformational heterogeneity discrimination So far, 2DTM metrics have pri-

marily been used for identifying one or a few 3D templates (Lucas et al., 2022).

However, due to thermal fluctuations, it is expected that an ensemble of confor-

mations will be present within the sample. Additionally, crowded in situ environ-

ments may result in interactions between the biomolecule and binding partners,

potentially causing subtle structural modifications of the template. Consequently,

further research is needed to evaluate the discriminatory power of the 2DTM p-

value in detecting small structural changes, such as those on the order of a few

Å due to thermal fluctuations. Utilizing a library of structures generated through

molecular dynamics simulations as templates (Giraldo-Barreto et al., 2021; Tang

et al., 2023b; Tang et al., 2023a) would enable a more comprehensive exploration of

the conformational landscape of the molecules present in the image. Deep learning

methods that amortize template matching (Dingeldein et al., 2024) may be neces-

sary to overcome the challenges of dealing with large structural ensembles, where the

computational cost of matching all templates to each image becomes prohibitively

high. Additionally, efficient image alignment techniques, such as those using polar

coordinates and Fourier-Bessel transformations or SVD-based compression (Rangan

et al., 2020; Rangan, 2022), can further accelerate the 2DTM angular search.
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Alternate distribution modeling Furthermore, the quantile normalization uses

a probit-function to transform the marginalized distribution of 2DTM SNRs and z-

scores to a standard Gaussian distribution. However, as discussed earlier, the 2DTM

z-scores of locations without target signal should follow a GEV distribution with an

extended tail compared to a standard Gaussian. False positives might be avoided if

we use a GEV distribution to model the z-scores of the false targets instead of the

Gaussian distribution. Another caveat in our present approach for computing the

2DTM p-values is that the quantile normalization maintains the ranking of data but

does not preserve the distance between data points. Future work could incorporate

recent developments in computer vision, such as using quantile-quantile embedding

(Ghojogh et al., 2021), to allow data transformation while maintaining the local

distances among nearby data points.

Correlations of correlations Finally, in our exploration to optimize the use

of low-resolution signal, we calculated another correlation value: the correlation

between the auto-correlation of a 2D projection and the cross-correlation of the

image with that projection. This metric, referred to as the “correlation of correla-

tions” (CoC), was devised to capture additional information beyond the normalized

cross-correlation coefficient, particularly in assessing the similarity of the correla-

tion maps (Chen & Grigorieff, 2007). We found that the CoC can be interpreted

as the distance between an implicitly chosen latent variable associated with the

3D structure of the template and the image (data not shown). Although a similar

p-value combining the CoC and z-score was computed, its performance was found

to be lower than the combination of the 2DTM SNR and z-score. We hypothesize

that the CoC could be particularly useful in images containing predominantly low-

resolution signal, where noise is usually associated with high-resolution signal. Our

previous study showed that the product of the CoC and the cross-correlation can

serve as a better particle picker in single-particle datasets (Chen & Grigorieff, 2007).

However, additional research is required to determine the appropriate weighting and

integration of the CoC for template matching in more crowded environments.

Code availability

In cisTEM, the implementation of the method described in this paper is provided

by the program calculate template pvalue.
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Appendix A
Differences between 2DTM SNR and z-score

In the main text, we have shown that r(i, j, τ) is an affine transformation of the

logarithm of the probability P (Y |i, j, τ) of observing the image Y , given a single

particle at location i, j and orientation τ ,

logP (Y |i, j, τ) = a× r(i, j, τ) + b (34)

where a = σY σt′ and b = −1
2Np

[
σ2Y + σ2t′ + (µY − µt′)

2
]
.

Similarly, the SNR, r(i, j), is up to the same affine transformation, the maximum

log-likeihood logP (Y |i, j, τ), optimized over τ . For these reasons, we expect the SNR

to highlight locations and orientations that correspond to peaks in the posterior

likelihood of observing the data, given the position i, j and orientation τ .

By contrast, the z-score is designed to highlight only those locations where the

maximum-likelihood orientation is significantly more likely than other orientations

for that location. In practice, the z-score z(i, j) often approximates a measurement

of the ‘Fisher information’ at that location – i.e., a measurement of how tightly the

likelihood is peaked around the maximum r(i, j, τ) as a function of orientation.

To understand why this might be the case, let us assume that r(i, j, τ) adopts a

roughly Gaussian profile around its maximum value

r(τ) ∼ R
1

L detΣ
exp

(
1

2
τ⊺ · Σ−2 · τ

)
, (35)

with L = (2π)(3/2). Then we see that

rupb = R× 1

LdetΣ
, (36)

ravg = R× 1

|Ω|
, (37)

r2std =
R2

|Ω|

(
1

L× det(
√
2Σ)

− 1

|Ω|

)
. (38)

According to the definition of the z-score, and assuming |Ω| is relatively large com-
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pared to detΣ, we have

z ∼
√
|Ω| × 1

π3/4
√
detΣ

. (39)

The Fisher information regarding perturbations in τ is:

rfis = Tr(Σ−2)× rupb which, if rupb ∼ 1, must be: ∼ Tr(Σ−2). (40)

If r is roughly isotropic, the eigenvalues of Σ will be close to one another, and the

Fisher information will once again be close to a (fixed) power of the z-score.

In summary, we expect that peaks in the SNR map should roughly correspond to

locations (and orientations) that are local peaks in the log-likelihood of observing

the data, given that a true particle is being imaged. Note that the SNR does not

require any particular orientation to be more likely than any other and will pick out

locations that have broad peaks with respect to orientation. Conversely, we expect

that peaks in the z-score should roughly correspond to locations (and orientations)

that have high amounts of Fisher information regarding orientation – that is, loca-

tions where a particle can be unambiguously aligned to the image. In practice, these

two measurements are not entirely redundant and can even complement one another;

as we have shown in the Result section, the SNR and the z-score can be combined

into an even more informative metric.

In Appendix Fig. 12, we calculated the normalized cross-correlations between the

simulated particles shown in Fig. 3 and a series of 2D projections, where the angles

ψ and ϕ were kept the same as those of the simulated particles, while the polar angle

θ was uniformly sampled between 0◦ and 180◦. The polar angles from the simulated

particles, θ0, were labeled. As shown in the plots, r(i, j, θ) exhibits a sharp, unimodal

peak near θ0 for all three particles.

Appendix B
Zernike decomposition of cryo-EM density maps

The Zernike decomposition of a 3D density map V (r) can be expressed as:

V (r) =
∞∑
n=0

n∑
l=0

l∑
m=−l

cn,l,m · Zn,l,m(r) (41)

where:

• r = (x, y, z) is the position vector in 3D space.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.01.616095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.01.616095
http://creativecommons.org/licenses/by/4.0/


25

• cn,l,m are the Zernike coefficients, representing the contribution of each Zernike

polynomial to the density map.

• Zn,l,m(r) are the Zernike polynomials, defined as the product of radial and

angular components:

Zn,l,m(r) = Rn,l(r) · Y m
l (θ, ϕ) (42)

• Rn,l(r) is the radial polynomial, and Y m
l (θ, ϕ) is the spherical harmonic func-

tion.

Here, r, θ, and ϕ are the spherical coordinates related to the Cartesian coordinates

(x, y, z).

The rotationally invariant components are those that are associated with the

coefficients where m = 0, and the rotationally variant components involves terms

where m ̸= 0:

Sinvariant =
∞∑
n=0

n∑
l=0

|cn,l,0| (43)

Svariant =
∞∑
n=0

n∑
l=0

∑
m̸=0

|cn,l,m| (44)

To quantify the asphericity of apoferritin and the modified microtubule, we bin

the density map to 64× 64× 64 and calculate the Zernike decomposition with order

120 using codes from the GitHub repository zernike3d (Bayly-Jones, 2024).

Appendix C
Modeling the 2DTM z-scores using the generalized extreme value

distribution

C1. Introduction of the generalized extreme value distribution

The family of generalized extreme value (GEV) distributions is frequently used

to model the maxima (or minima) of a large set of random variables. The GEV

distribution combines the Gumbel, Fréchet, and Weibull distributions into a single

family with a common cumulative density function (CDF) given by:

F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}

(45)

where:

• µ is the location parameter,
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• σ > 0 is the scale parameter,

• ξ is the shape parameter.

Note that 1+ ξ
(
x−µ
σ

)
should be greater than zero. The probability density function

(PDF) is:

f(x;µ, σ, ξ) =


1
σ

[
1 + ξ

(
x−µ
σ

)]−(1+1/ξ)
exp

{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ
}
, if ξ ̸= 0,

1
σ exp

(
−x−µ

σ

)
exp

(
− exp

(
−x−µ

σ

))
, if ξ = 0.

(46)

When ξ is zero, the distribution is simplified to the Gumbel distribution.

C2. Modeling the z-score map using the GEV distribution

The cross-correlations r(i, j) at different locations in the cryo-EM image can have

different statistical behaviors: (a) for locations without targets and dominated by

shot noise, the correlations are primarily affected by noise, leading to overall low

values and possibly higher variations; (b) for locations with background noise (mem-

branes or dense structures in the cell), the correlations tend to have higher values

but still do not depend on orientations; (c) for locations with searched targets, cor-

relations depend on the orientation and can be significantly higher at the correct

orientation.

The 2DTM z-score is essentially a scaled maximal value drawn from a large num-

ber of correlations. For locations without targets (cases (a) and (b)), the normaliza-

tion during the z-score calculation removes local variations caused by heterogeneous

densities (e.g., membranes and other cellular structures) and varying imaging con-

ditions, aligning the z-scores more closely with the GEV distribution.

We thank the Grigorieff Lab members for the fruitful discussion on this project.

The Flatiron Institute is a division of the Simons Foundation.
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Strelak, D., Filipovic, J., Bahar, I., Carazo, J. M. et al. (2021). IUCrJ, 8(6), 992–1005.

Herreros, D., Lederman, R. R., Krieger, J. M., Jiménez-Moreno, A., Mart́ınez, M., Myška,
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Fig. 1. Comparison between the 2DTM SNR and the 2DTM z-score. (A)
Micrograph section of a FIB-milled yeast lamella showing different compartments
of the cell. (B) The 2DTM SNR map corresponding to the rectangle in (A),
searched with a mature 60S template. (C) The 2DTM z-score map corresponding
to the rectangle in (A). The pixel values were cropped to a narrower range (labeled
on the color bars) for better visualization. The original data range is labeled below.

Fig. 2. Computing the 2DTM p-value from the 2DTM SNR and z-score.
(A) 2D histogram of the 2DTM SNRs versus z-scores for one of the clathrin
montages (shown in Fig. 7A). (B) 2D histogram of the quantile transformed fea-
tures in (A). Both (A) and (B) are plotted on a log scale. (C) Schematic plot
for calculating the 2DTM p-value. A data point x(k) = [x(k)1, x(k)2], denoted
by the diamond sign, represents the quantile-normalized data vector. The p-value
is defined as the probability of finding a sample from the estimated anisotropic
Gaussian that is rarer than x(k). Ωk is the domain of samples to be considered
that satisfies: (a) both transformed features should be larger than 0, and (b) the
sample point should be rarer than x(k).
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Fig. 3. Local 2DTM SNR and z-score maps of an apoferritin particle (A)
and two tubulin patch particles (B-C). Each row shows the 3D template
generated from cisTEM program simulate (with similar views as the particles),
the simulated particle at an underfocus of 500 nm, the 2DTM matched template,
the SNR map, and z-score map centered on the particle. Targets that survived
the cisTEM z-score threshold are circled. True positives (orange) are located near
the center of the particles. Templates in rows (B) and (C) represent the tubulin
patch viewed edge-on and from the side.
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Fig. 4. Calculation of the 2DTM p-value and evaluation of three 2DTM
metrics for a simulated tubulin patch montage. (A) An example of a tubu-
lin patch montage segment with four particles arranged in a 2-by-2 grid. (B)
Local maxima identified in the 2DTM z-score map of the montage segment in
(A) using a 10-pixel radius. (C) A scatter plot of 2DTM SNR versus z-score, with
true targets labeled in orange based on their expected location and orientation.
99 of the 100 targets in the example montage were recovered as local maxima in
the z-score map. (D) The quantile-normalized data, color-coded by their 2DTM
p-values (− log(p-value)). Data points not in the first quadrant are labeled in
gray, as they are excluded from the p-value calculation. True targets are circled
in orange. (E) A zoomed-in version of (D) showing the transformed z-score thresh-
old. (F) ROC curves of the three 2DTM metrics, with shaded areas indicating
the confidence intervals calculated from 300 simulated particles. All the figures in
this work were styled using the Python library niceplots (Gray et al., 2024).
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Fig. 5. Comparison of 2DTM searches for apoferritin (A-F) and tubulin
patch (G-L) at 70 nm and 2000 nm defocus. Each row shows a segment of
the 10-by-10 montage, an example scatter plot of 2DTM SNR versus z-score, and
the ROC curves of the three metrics calculated from 300 simulated particles.
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Fig. 6. Structure of the clathrin monomer used as the template for 2DTM
searches. Shown are different views of the complete clathrin invariant hub (blue),
determined from single-particle cryo-EM, and the clathrin monomer (orange) used
as the template in our experiments. The monomer consists of three heavy chains
and two light chains, with a molecular weight of 193 kDa.

Fig. 7. Calculation of the 2DTM p-value and evaluation of three 2DTM
metrics for a simulated clathrin montage. (A) An example of a clathrin
montage segment with four particles arranged in a 2-by-2 grid. (B) Local maxima
identified in the 2DTM z-score map of the montage segment in (A) using a 10-pixel
radius. (C) A scatter plot of 2DTM SNR versus z-score, with true targets labeled
in orange based on their expected location and orientation. In total, 92 out of
the 100 targets in the example montage were recovered as local maxima in the z-
score map. (D) The quantile-normalized data, color-coded by their 2DTM p-values
(− log(p-value)). Data points not in the first quadrant are labeled in gray, as they
are excluded from the p-value calculation. True targets are circled in orange. (E)
A zoomed-in version of (D) showing the transformed z-score threshold. (F) ROC
curves of the three 2DTM metrics, with shaded areas indicating the confidence
intervals calculated from 2000 simulated particles.
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Fig. 8. Performance of 2DTM metrics under different solvent thicknesses:
(A) 120 nm, (B) 150 nm, and (C) 200 nm. For each thickness, the figures
show (from left to right): a simulated montage containing 100 clathrin monomers,
a scatter plot comparing 2DTM SNR and z-score, and ROC curves of the three
metrics for 1000 simulated particles.
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Fig. 9. Performance of 2DTM metrics when searching a mixture particle
montage using the clathrin monomer as the template. For each row, the
figures show (from left to right): an example mixture montage containing 50
clathrin monomers and 50 proteasomes (A) or 50 mature 60S ribosomes (B), a
scatter plot comparing 2DTM SNR and z-score, and ROC curves of the three
metrics for ten 10-by-10 mixture montages (which correspond to 500 simulated
clathrin particles mixed with 500 proteasome particles (or 60S particles)).
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Fig. 10. Labeling 60S targets in yeast lamella. (A) Image
150 Mar12 12.28.45 165 0.mrc from previous work (Lucas et al., 2022).
Control peaks are selected based on the threshold determined in (B). Particles
are plotted with their 2DTM-derived alignment parameters. (B) Distribution of
z-scores across all locations in the image using mature 60S as the template. The
dashed blue curve represents the fitted generalized extreme value distribution.
The threshold that best separates false matches (bulk) from true matches (tail)
is labeled.

Fig. 11. Performance of 2DTM metrics when searching for 60S in yeast
lamellae with additional Gaussian noise. ROC curves of the 2DTM SNR, z-
score, and p-value for image 150 Mar12 12.28.45 165 0.mrc with varying levels
of Gaussian noise. For each noise level, nine images were generated with random
Gaussian noise.
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Fig. 12. Normalized cross-correlation r(i, j, θ) between simulated particle
images and 2D projections generated at varying θ. The 2D projections
were generated by keeping the angles ψ and ϕ equal to those of the simulated
particles while uniformly sampling the polar angle θ at 0.5◦ intervals between 0
and π. In all three cases, r(i, j, θ) is sharp around the optimal θ = θ0.
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Fig. 13. Error distribution for the example tubulin patch montage in Fig.
4A. The angular error was calculated based on the average l2 distances between
corresponding points in the two (unit vector) templates after angular transfor-
mation. The translational error (dxy) was defined as the distance between the
target and the grid center of the closest simulated particle. The cutoffs used for
labeling were 7 pixels for dxy and 0.4 for angular error. (A) Angular error distri-
bution between the 2DTM z-score-derived targets and the ground truth. A total
of 26783 local maxima were identified in the z-score map using a local radius of 10
pixels and a threshold of 0. In this example, 99 out of 100 simulated particles were
recovered as local maxima. (B) and (C) Distribution of dxy of the 2DTM-derived
targets. True positives are indicated by circles.

Fig. 14. High 2DTM SNR values identify locations that overlap with pro-
tein particles. Shown are locations in two example mixed particle montages
where the 2DTM SNR is greater than 8.0: (A) a clathrin and proteasome mix-
ture, and (B) a clathrin and mature 60S mixture. This demonstrates that the
2DTM SNR can function as a blob detector.
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Fig. 15. Original yeast lamella image (148 Mar12 12.23.52 161 0.mrc) and
images with varying levels of added Gaussian noise. The ratio of added
noise to the original image noise ranges from 0.1 to 2.5. The image segment within
the white box is shown below.
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Fig. 16. Original yeast lamella image (150 Mar12 12.28.45 165 0.mrc) and
images with varying levels of added Gaussian noise. The ratio of added
noise to the original image noise ranges from 0.1 to 2.5. The image segment within
the white box is shown below.
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Fig. 17. Original yeast lamella image (151 Mar12 12.31.16 167 0.mrc) and
images with varying levels of added Gaussian noise. The ratio of added
noise to the original image noise ranges from 0.1 to 2.5. The image segment within
the white box is shown below.
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Fig. 18. Labeling 60S targets in yeast lamella. (A) Image
148 Mar12 12.23.52 161 0.mrc from previous work (thickness was esti-
mated to be 73 nm) (Lucas et al., 2022). Control peaks are selected based on
the threshold determined in (B). Particles are plotted with their 2DTM-derived
alignment parameters. (B) Distribution of z-scores across all locations in the
image using mature 60S as the template. The dashed blue curve represents the
fitted generalized extreme value distribution. The threshold that best separates
false matches (bulk) from true matches (tail) is labeled.

Fig. 19. Performance of 2DTM metrics when searching for 60S in yeast
lamellae with additional Gaussian noise. ROC curves of the 2DTM SNR, z-
score, and p-value for image 148 Mar12 12.23.52 161 0.mrc with varying levels
of Gaussian noise. For each noise level, nine images were generated with random
Gaussian noise.
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Fig. 20. Labeling 60S targets in yeast lamella. (A) Image
151 Mar12 12.31.16 167 0.mrc from previous work (thickness was esti-
mated to be 114 nm) (Lucas et al., 2022). Control peaks are selected based on
the threshold determined in (B). Particles are plotted with their 2DTM-derived
alignment parameters. (B) Distribution of z-scores across all locations in the
image using mature 60S as the template. The dashed blue curve represents the
fitted generalized extreme value distribution. The threshold that best separates
false matches (bulk) from true matches (tail) is labeled.

Fig. 21. Performance of 2DTM metrics when searching for 60S in yeast
lamellae with additional Gaussian noise. ROC curves of the 2DTM SNR, z-
score, and p-value for image 151 Mar12 12.31.16 167 0.mrc with varying levels
of Gaussian noise. For each noise level, nine images were generated with random
Gaussian noise.
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Fig. 22.Calculating the 2DTM p-value threshold using multiple hypothesis
testing. In this example, we calculated the 2DTM p-values for a noisy image from
the yeast lamella dataset (148 Mar12 12.23.52 161 0.mrc) with a noise variance
ratio of 0.5. We estimated 200 true positives and calculated the adjusted p-values
using the Benjamini-Hochberg procedure to control the false discovery rate (FDR)
at an alpha value of 0.05. Using this method, we identified 166 out of 176 targets.

Table 1. Quantification of target’s asphericity

Target order Sinvariant Svariant
Sinvariant

Sinvariant+Svariant

apoferritin 120 0.0020 0.0122 0.1388
tubulin patch 120 0.0007 0.0095 0.0722

clathrin monomer 120 0.0007 0.0087 0.0782

Table 2. Generalized extreme value parameter fitting of 2DTM z-scores of yeast lamella

images.

image ID shape (c) location (µ) scale (σ)

148 0.024 6.311 0.16
150 0.021 6.309 0.159
151 0.026 6.309 0.16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 3, 2024. ; https://doi.org/10.1101/2024.10.01.616095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.01.616095
http://creativecommons.org/licenses/by/4.0/

