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SUMMARY

Bacteriophage HK97 maturation involves discrete
intermediate particle forms, comparable to transi-
tional states in protein folding, before reaching its
mature form. The process starts by formation of
a metastable prohead, poised for exothermic expan-
sion triggered by DNA packaging. Duringmaturation,
the capsid subunit transitions from a strained to
a canonical tertiary conformation and this has been
postulated to be the driving mechanism for initiating
expansion via switching hexameric capsomer archi-
tecture from skewed to 6-fold symmetric. We report
the subnanometer electron-cryomicroscopy recon-
struction of the HK97 first expansion intermediate
before any crosslink formation. This form displays
6-fold symmetric hexamers, but capsid subunit
tertiary structures exhibit distortions comparable to
the prohead forms. We propose that coat subunit
strain release acts in synergy with the first crosslinks
to drive forward maturation. Finally, we speculate
that the energetic features of this transition may
result from increased stability of intermediates
during maturation via enhanced inter-subunit inter-
actions.

INTRODUCTION

Virusmaturation corresponds to a transition from an initial nonin-

fectious, often fragile assembly product to an infectious and

robust virion (Veesler and Johnson, 2012). Initial subunit interac-

tions occur under conditions where the assembling entities have

an association energy that favors assembly over disassembly,

but that is near equilibrium to allow ‘‘self-correction’’ of misas-

sembled subunits through annealing (Katen and Zlotnick,

2009). Because viruses require sturdy stability to survive in the

extracellular environment, they undergo a staged assembly

process due to a mechanochemical reorganization program,

encoded in the capsid structure, that governs events underlying

maturation.

Assembly and maturation of dsDNA phage capsids are tightly

regulated processes, at both the genetic and biochemical levels,
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exhibiting conserved features in all Caudovirales and in some

eukaryotic viruses such as herpesviruses (Johnson, 2010; Ste-

ven et al., 2005; Veesler and Cambillau, 2011; Veesler and John-

son, 2012). Moreover, the striking conservation of the coat

subunit fold observed in all tailed phages and herpesviruses,

as well as some archeal viruses, suggests that it is derived

from a common ancestor preceding the divergence of eukary-

otes, bacteria and archea (Baker et al., 2005; Heinemann et al.,

2011; Veesler and Cambillau, 2011; Veesler and Johnson,

2012). The lambdoid dsDNA phage HK97 constitutes an acces-

sible model system for studying maturation of such viruses due

to its well-characterized genetics and ease of handling. Its

capsid maturation pathway involves discrete intermediate

particle forms, comparable to transitional states in protein

folding, that can be isolated using a combination of molecular

biology and biochemical techniques.

The HK97 capsid precursor protein is a fusion of the scaf-

folding protein (d-domain, residues 2–103) and of the coat

subunit (residues 104–385) that forms a mixture of hexameric

and pentameric capsomers upon expression. In vivo, 415 coat

subunits (60 hexamers and 11 pentamers) assemble with a

dodecameric portal and �60 copies of the viral protease to

form the first icosahedral particle termed Prohead-1 (Figure 1).

Activation of the viral protease results in digestion of the scaf-

folding domains and autodigestion to produce small peptide

fragments that diffuse out of the particle to yield Prohead-2.

The two prohead particle forms exhibit distorted tertiary subunit

structures readily recognized by the bent spine helix and the

twisted P-domain b sheet. The quaternary structures of these

particles also display distortions from canonical symmetry as

the hexameric capsomers are skewed, displaying only 2-fold

symmetry (Gertsman et al., 2009; Huang et al., 2011). These

structural distortions are believed to be induced by the scaf-

folding domain interactions when capsomers are formed and

are stabilized by quaternary interactions following d-domain

proteolysis in Prohead-2 (Gertsman et al., 2010a). Prohead-2 is

thus a metastable intermediate trapped in a local free energy

minimum that is primed for transition to a lower energy confor-

mation in response to small perturbations. Initiation of dsDNA

packaging triggers Prohead-2 expansion, resulting in the forma-

tion of successive maturation intermediates (termed expansion

intermediates) characterized by an increase of capsid diameter,

a reduction of the shell thickness and a ‘‘curing’’ of the hexon

asymmetry (Gan et al., 2006; Wikoff et al., 2000). Moreover,

H/D exchange experiments coupled to mass spectrometry
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Figure 1. HK97 Assembly and Maturation Pathway

Prohead-1 particles are assembled from 415 copies of the capsid precursor protein, one portal dodecamer, and �60 copies of the viral protease. Proteolytic

processing yields Prohead-2, which is ametastable intermediate, trapped in a local minimumof free energy, primed to transition to a lower energy conformation in

response to initiation of DNA packaging. The first expansion intermediate (EI-1) is transient and embodies a significant level of energy in its coat subunit structure

that will act in synergy with crosslinking to yield the subsequent expansion intermediates. Biasing of the thermal motions via a Brownian ratchet mechanism

based on the capture of coat subunit E-loops at the capsid surface promote switching to the Balloon conformation that will eventually yield the final mature

Head-II conformation forming a molecular chainmail stabilized by the presence of 415 covalent crosslinks between coat subunits. All the maps were generated

from thematuration intermediate crystal structures and low-pass filtered at 9 Å except for EI-1 where themap corresponds to the cryoEM reconstruction reported

in this study and low-pass filtered at 9.3 Å.
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(HDXMS) suggested that in intermediates later than the Pro-

head-2 form, the capsid subunit tertiary structure transitions to

a relaxed state similar to those observed in the Balloon and

Head-2 crystal structures (Gertsman et al., 2010a, 2010b). The

large conformational changes occurring during formation of the

first expansion intermediate (EI-1) makes it crosslink competent

with isopeptide bonds forming immediately through an autocat-

alytic mechanism between residues Lys169, on the E-loop of

one coat subunit, and Asn356, on the P-domain of an adjacent

subunit in a neighboring capsomer (Duda et al., 1995; Popa

et al., 1991; Wikoff et al., 2000). Crosslink formation is not

concerted, making EI-1 particles transient and the population

heterogeneous. Crosslinking promotes formation of the subse-

quent expansion intermediates and has been proposed to

modulate the capsid structural reorganization by biasing thermal

motions via a Brownian ratchet mechanism based on the

capture of the subunit E-loops (Lee et al., 2008; Ross et al.,

2005). The in vivo maturation endpoint, Head-2 bears 415 cross-

links with a chainmail topology that dramatically stabilizes the

capsid enclosing the genome packaged at near liquid-crystalline

density (Helgstrand et al., 2003; Wikoff et al., 2000).

Here, we used an HK97 subunit mutation that prevents forma-

tion of crosslink or comparable noncovalent interactions and

an expression system that produces virus-like particles indistin-

guishable from authentic proheads but with the portal replaced

by a twelfth coat subunit penton. The mutation stops maturation

at the EI-1 intermediate generating a homogeneous population

of these particles without E-loop ‘‘chainmail’’ interactions. Com-

paring these particles withmature Head-2 allows themechanical

role of the Brownian ratchet in maturation to be identified. We

determined the subnanometer structure of the crosslink-free

EI-1 particle with electron cryomicroscopy (CryoEM) employing

single particle protocols. The reconstruction, unexpectedly,

reveals that coat subunit monomers exhibit distortions compa-

rable to those observed in the prohead forms although the hex-

amers are approximately 6-fold symmetric. The observed coat

subunit conformations suggest that release of their structural

strain adds an energetic assist to crosslinking, driving capsid

maturation forward with multiple energetic components. In addi-
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tion, the structure suggests that the exothermic nature of capsid

maturation (Galisteo and King, 1993) is a consequence of

enhanced quaternary interactions that stabilize the downstream

intermediates.

RESULTS

CryoEM Reconstruction of the HK97 First Expansion
Intermediate: EI-1
A construct encoding an E-loop truncation of the coat subunit

was used to produce homogenous virus-like particles stalled

at the EI-1 stage ofmaturation and lacking crosslinks.We carried

out an icosahedral reconstruction of thismaturation intermediate

using 17,116 particle images and single particle techniques. The

resulting structure has a resolution of 9.3 Å (Figure S1 available

online), exhibits pronounced icosahedral facets and its overall

size and morphology are consistent with a previously reported

reconstruction obtained at lower resolution (Lee et al., 2008;

Ross et al., 2005). The capsid forms a 43 Å thick and 600 Å

wide (along 5-fold axes) hollow shell made of 420 coat subunits

arranged with a T = 7 laevo symmetry and with protruding hex-

amers and pentamers (Figures 2A–2C). The resolution of the

reconstruction is qualitatively demonstrated by observed

secondary structure elements of the subunits and the straight-

forward segmentation of individual proteins, either visually or

by automated procedures. We further improved the quality of

the map by averaging the density of the seven subunits within

the icosahedral asymmetric unit.

Architecture of the Coat Subunits
We initially generated an EI-1 pseudo-atomic model by fitting

the mature Head-2 X-ray coordinates in the reconstruction

because tertiary structure distortion was not anticipated (Gerts-

man et al., 2009). Previous HDXMS experiments suggested that

early HK97 expansion intermediates share the relaxed major

capsid protein conformation with the late maturation intermedi-

ates as well as with the final Head-2 (Gertsman et al., 2009,

2010a, 2010b; Wikoff et al., 2000). Rigid-body docking of the

seven individual subunits forming the icosahedral asymmetric
–1390, August 8, 2012 ª2012 Elsevier Ltd All rights reserved 1385



Figure 2. Subnanometer CryoEM Recon-

struction of the HK97 First Expansion Inter-

mediate: EI-1

(A) Icosahedrally averaged reconstruction low-

pass filtered at 9.3 Å resolution. We generated an

EI-1 pseudo-atomic model by rigid-body fitting of

the Prohead-II coat subunits (PDB 3E8K) in the

map.

(B) The seven subunits forming an icosahedral

asymmetric unit are shown fitted in the corre-

sponding 7-fold averaged density viewed from the

capsid exterior. The hexon subunits are organized

with an approximate 6-fold symmetry.

(C) Side view of the coat subunit hexon depicted in

(B). Each of the coat subunits are independently

colored.
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unit revealed a striking discrepancy between the EM reconstruc-

tion and the Head-2 atomic coordinates in the spine helices and

the adjacent P-domain b sheets (Figure 3A). As the Prohead-2

coat subunits are characterized by a twisting around the

P-domain b sheet along with bending of the spine helix, we

used this model to fit into the EI-1 reconstruction. This model

dramatically improved the agreement with the density in these

regions without compromising agreement with the rest of the

density (Figures 3A and 3B). The CryoEM density also shows

that the coat protein hexamers are approximately 6-fold

symmetric (Figure 1B), in agreement with a previous EI-1 recon-

struction (Lee et al., 2008; Ross et al., 2005).

The discrepancy between this EI-1 reconstruction and

previous mass spectrometry data can be explained by consid-

ering the constructs used to produce the virus-like particles in

the two studies (Gertsman et al., 2010a, 2010b). While we used

the E-loop deletion mutant to overexpress EI-1 in the current

study, the previously characterized ‘‘EI-1’’ harbored a wild-

type coat subunit E-loop allowing immediate initiation of cross-

link formation. The latter particle formmust therefore correspond

to EI-2, which is EI-1 with crosslinks but that has not transitioned

to the Balloon particle (Lee et al., 2008).

The EI-1 hexons are 140 Å wide and 43 Å thick in our pseudo-

atomic model, corresponding to an intermediate configuration

between Prohead-2 (123 Å wide and 55 Å thick) and Head-II

(157 Å wide and 32 Å thick). The reorganization of the subunits

between Prohead-2 and Head-2, from approximately radial

to approximately tangential orientation relative to the capsid
1386 Structure 20, 1384–1390, August 8, 2012 ª2012 Elsevier Ltd Al
surface, is associated with a 2-fold increase in the buried surface

area at the interfaces between coat subunits. Accordingly, we

observe that the rotation undergone by the subunits to reach

the EI-1 state accounts for a substantial portion of the increased

buried surface area.

Subunit interactions established at 3-fold and quasi 3-fold

axes are known to be unchanged during maturation and to serve

as anchoring points allowing preservation of capsid integrity

(Gertsman et al., 2009; Wikoff et al., 2000). Although side chain

positioning cannot be achieved at the resolution of our recon-

struction, our model is fully compatible with retention of the

salt bridges established at 3-fold contact points between resi-

dues Arg194 and Glu363 as well as between Arg347 and

Glu344 (Gertsman et al., 2010a). This observation, along with

the observed approximate 6-fold symmetry of the coat subunit

hexamers, validates the quality of the pseudo-atomic model

and further reinforces the conclusions drawn from it.

Conformation of the Coat Subunit E-Loop
No attempt wasmade tomodel the conformation of the E-loop in

the previously reported EI-1 studies due to the limited resolution

of the reconstructions (Lee et al., 2008; Ross et al., 2005). While

in our case the E-loop is absent from the expressed molecule,

the density clearly shows the location of the truncated loop

and by inference the trajectory of the E-loop, if it were there (Fig-

ure 4). They extend toward the capsid exterior, parallel to the

spine helix of the neighboring subunit that is within the same

hexon or penton, and interact with it though probably less
Figure 3. HK97 EI-1 Coat Subunits Are Conforma-

tionally Distorted

(A) EI-1 coat subunits exhibit the Prohead-II distorted

conformation characterized by twisting around the

P-domain b sheet and bending of the spine helix. The

Head-II (gray) and Prohead-II (dark red) coat subunits are

fitted in the 7-fold averaged EM density to emphasize the

conformational strain present in EI-1.

(B) The Prohead-II coat subunit alone is shown within its

corresponding density [slightly rotated relative to (A)]

to emphasize on the conformational twist around the

P-domain b sheet and the spine helix.

l rights reserved



Figure 4. Conformation of the Coat Subunit E-Loops

Semi-tilted view of a coat subunit hexon viewed from the capsid exterior and

showing the conformation of the truncated E-loop used in this study to allow

trapping the particles at the EI-1 stage. The 7-fold averaged EM density

corresponding to three coat subunits is shown along with the fitted atomic

coordinates. The E-loops extend toward the capsid exterior and establish

contacts (within a given hexon or penton) with the spine helix of the neigh-

boring subunit. These interactions might be involved in maintaining the

distorted conformation of the coat subunit at this stage before release in later

maturation intermediates to allow crosslink formation.

Table 1. Residues Involved in Coat Subunit Contacts during

Maturation

Residue Prohead-II Head-II

Hydrophobic (number, % of contact residues) 197 (38) 571 (51)

Polar/charged (number, % of contact residues) 322 (62) 557 (49)
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extensively than in Prohead-2. These interactions may be

involved in maintaining the distorted conformation of the coat

subunit in EI-1, prior to disengagement as seen in later matura-

tion intermediates. The crosslink formation requires a major

repositioning of the E-loop to place the Lys169 side chain near

the Gln356 side chain of a subunit belonging to a neighboring

capsomer to form the isopeptide bond. As a result, the E-loop

conformational change disrupts the intra-capsomeric interac-

tions established with the spine helix probably allowing refolding

of the coat subunit to reach its relaxed conformation observed in

EI-2 and subsequent particle forms.

DISCUSSION

It was previously suggested that EI-1 represents the maturation

ground state and that crosslinking acts via a ratcheting mecha-

nism to shift the global equilibrium toward the Balloon and

then the Head-2 forms (Lee et al., 2008; Ross et al., 2005). The

results presented here show that EI-1 still embodies a significant

degree of conformational strain, due to the bent spine helix and

twist of the subunits around the P-domain b sheet. The structure

implies that the transition to the relaxed coat subunit conforma-

tion is tightly correlated with formation of the first crosslinks and/

or non-covalent quaternary interactions established by the tip of

the E-loops. Indeed, the ability to arrest maturation at the EI-1

stage constituted a unique opportunity to demonstrate that in

the absence of crosslinks or such non-covalent E-loop interac-

tions the capsid still resides in a stressed conformation harboring

distorted coat subunits despite the formation of �6-fold

symmetric hexamers. The observation that expansion can be

induced by various physico-chemical stimuli (such as pH change

or iso-butanol) and the characteristic two-state transition

between Prohead-2 and EI-1 evidenced by SAXSmeasurements

indicate that the latter has a lower energy than its precursor
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(Gertsman et al., 2010b; Lee et al., 2005). However, our results

indicate that EI-1 is still storing energy in its structure, probably

to ensure that, in combination with formation of the first cross-

links, the maturation moves forward (Figure 1) and reaches the

EI-2 particle form (with numerous crosslinks and coat subunits

with canonical tertiary structure). Disruption of the spine helix/

E-loop interactions facilitates Brownian motion-mediated

sampling of the conformational space by uncrosslinked E-loops

and formation of additional crosslinks between capsomers,

making the maturation process irreversible. It should be noted

that expansion from Prohead-2 to EI-1 results in a �10%

increase in particle dimension but further expansion does not

occur in the overall particle dimensions until 60% of the cross-

links are formed. When the expansion occurs from EI-1 to the

Balloon it is also a two-state transition with no detectable inter-

mediates as demonstrated by time-resolved SAXS experiments

(Lee et al., 2008).

Differential scanning calorimetry (DSC) studies of bacterio-

phage P22 maturation revealed that its expansion is strongly

exothermic (Galisteo and King, 1993). The striking conservation

of the coat subunit fold among tailed phages as well as of many

aspects of their maturation suggests that exothermic expansion

is a common feature of such viruses (Johnson, 2010; Veesler and

Cambillau, 2011; Veesler and Johnson, 2012). During expansion,

coat subunits establish an increasing number of interactions

with each other to stabilize the capsid concomitantly with

dsDNA packaging in order to withstand the remarkable pressure

generated by the genome (Fuller et al., 2007; Veesler and John-

son, 2012). The gradual enhancement of subunit intertwining

increases by a factor �2 the total buried surface area involving

the subunits from a given icosahedral asymmetric unit as well

as the number of residues participating to these contacts during

the transition from Prohead-2 to Head-2. During this transition

both hydrophobic and polar interactions are increased, but the

proportions of each of these are dramatically modified in favor

of hydrophobic stabilization (Table 1). However, electrostatic

complementarity of the coat subunit A domains seems to play

a major role in the reorganization observed. In the skewed

Prohead-2 hexamers, subunits B and E adopt a specific confor-

mation involving only tenuous interactions of their A-domains

with the anticlockwise located neighboring subunits (view from

the capsid exterior) in comparison to the other four subunits

(Figures 5A–5F). In contrast, all the Head-2 hexamer subunits

are characterized by the formation of identical interactions lock-

ing the capsomer conformation by the high level of A-domain

charge complementarity (Figures 5G–5J). Polar and covalent

interactions create thus specific contacts and provide the direc-

tionality for rearranging subunit-subunit interactions. It is worth

mentioning that release of the strain in coat subunit pentamers

during expansion provokes a dramatic reorganization of the hex-

amers/pentamers interactions. Therefore, the energetically un-

favorable coat subunit refolding event occurring during capsid
–1390, August 8, 2012 ª2012 Elsevier Ltd All rights reserved 1387



Figure 5. Reorganization of Coat Subunit Interfaces During Maturation

(A and B) Ribbon (A) and electrostatic surface potential (B) rendering of the Prohead-2 A/B dimer. Subunit B exposes a negatively charged patch of residues from

its A domain toward the capsid exterior (the situation is identical at the interface between subunits D and E) that will be engaged in interactions with subunit A at

a later stage of maturation (cf. panels G–J).

(C and D) Ribbon (C) and electrostatic surface potential (D) rendering of the Prohead-2 B/C dimer in which the twomonomers are optimally aligned relative to each

other to maximize interactions of their A-domains.

(E and F) Subunits B (E) and C (F) are shown individually after rotation to reveal the nature of the interacting surfaces.

(G and H) Ribbon (G) and electrostatic surface potential (H) rendering of the Head-2 A/B dimer.

(I and J) Subunits A (I) and B (J) are shown individually after rotation to reveal the nature of the interacting surfaces. The orange arrows indicate the interacting

surface area between A-domains in the different ribbon rendering.
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expansion is likely compensated by the enthalpy gain from the

increase in polar interactions and by enhancement of hydro-

phobic interactions in addition to the contribution of chainmail

crosslinks. This drives the maturation process forward, ensuring

its irreversibility (beyond the EI-1 stage) by a progressive stabili-

zation of the different expansion intermediates likely explaining

the exothermic nature of bacteriophage expansion. Work is still

in progress to address the discrepancy between the EM and

SAXS data discussed here and some previously reported DSC

results (Ross et al., 2005; 2006).

Overall, the program encoded in the initial assembly products

that directs particle maturation to the fully mature particle, is

slowly being discerned as a remarkable integration of chemistry,

thermodynamics, and mechanobiology that evolution has tuned

to a very high level.

EXPERIMENTAL PROCEDURES

Preparation of EI-1

We used a mutated version of the HK97 gp5 coat subunit in which residues

159–171 are replaced with residues APGD (Gertsman et al., 2009). This
1388 Structure 20, 1384–1390, August 8, 2012 ª2012 Elsevier Ltd Al
construct harbors an E-loop shortened at its distal part preventing the forma-

tion of crosslinks and of part of the quaternary interactions. The capsid protein

(gp5) and the protease (gp4) were coexpressed using Escherichia coli

BL21pLysS cells induced with 0.4 mM IPTG at 28�C overnight. After harvest-

ing, cells were lysed using the Bugbuster reageant (Merck) supplemented with

20 mg/ml of DNase I and 10 mM MgSO4. Cell debris were removed by centri-

fugation and capsids were precipitated in presence of 0.5 M NaCl and 6%

polyethylene glycol 8000. Remaining Prohead-1 particles were disassembled

by incubation in 2M KCl, 100 mM CHES, pH 9.5 for 5–6 hr before purification

on a 10%–30%glycerol gradient. Prohead-2 expansion was triggered by incu-

bation in a buffer Na-acetate pH4.0, 300 mM NaCl during 6 hr at RT. The pH

was raised to 7.5 and an anion exchange chromatography (5 ml FF DEAE)

was carried out before exchanging the buffer of the particles by ultracentrifu-

gation to 10 mM Tris pH7.5, 40 mM NaCl.
Data Collection

Purified EI-1 capsids were prepared for cryoEM analysis by placing 3 ml of

sample on a C-flat carbon-coated grids (Protochips, Inc.) previously glow-

discharged in a Solarus plasma cleaner (Gatan, Inc.). Grids were manually

blotted before plunging into liquid ethane and subsequently transferred to

liquid nitrogen in which they were stored. Data were acquired on a Tecnai

F20 Twin transmission electron microscope operated at 200 keV, using

a dose of 20 e-/Å2, a nominal magnification of 62,000 and a nominal
l rights reserved
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underfocus ranging from 1.0 to 3.5 mm. One data set containing 1,714 images

was automatically collected using the Leginon data collection software (Sulo-

way et al., 2005) using a Tietz F415 4K x 4K pixel CCD camera (15 mm pixel).

Data Processing

We extensively relied on the Appion processing pipeline for initial processing

of the images (Lander et al., 2009). The contrast transfer function for each

micrograph was estimated using CTFind3 and applied to each micrograph

before particle extraction (Mindell and Grigorieff, 2003). We manually masked

all the micrographs to exclude the particles lying on the carbon regions before

carrying out an automated particle picking using FindEM (Roseman, 2004).

Capsids were extracted using a box size of 704 pixels and binned by a factor

of 2 for processing yielding a stack of 24,394 particles. Three-dimensional

reconstruction was performed using Frealign (Grigorieff, 2007) including

17,116 particle images and an initial model obtained by low-pass filtering at

50 Å the EI-2 pseudo-atomic model previously reported (Lee et al., 2008).

The resolution of 9.3 Å for the EI-1 reconstruction was assessed by calculating

the Fourier shell correlation at a cutoff of 0.143 (Grigorieff and Harrison, 2011).

The amplitudes of the resulting refined structure were adjusted with the

SPIDER software package to more closely resemble those of an experimental

low-angle X-ray scattering data (Frank et al., 1996; Gabashvili et al., 2000).

Averaging of the seven subunits belonging to the icosahedral asymmetric

unit has been carried out using the RAVE package (LSQMAN, MAMA, IMP,

and AVE) (Kleywegt et al., 2001).

Structure Analysis

We generated a pseudo-atomic model of the EI-1 capsid by rigid-body fitting

the Prohead-2 atomic coordinates (PDB 3E8K) in the reconstruction using

UCSF Chimera (Goddard et al., 2007) before carrying out an energy minimiza-

tion imposing strict icosahedral symmetry with CNS 1.3 (Brunger, 2007;

Brünger et al., 1998). Visualization was carried out with Coot (Emsley et al.,

2010). Interface and interaction analyses were done using ViperDB (Carrillo-

Tripp et al., 2009). Electrostatic surface potential calculations were done using

pdb2pqr (Dolinsky et al., 2004) and APBS (Baker et al., 2001).
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Figure S1. Fourier Shell Correlation of the HK97 EI-1 reconstruction. The 

resolution is estimated to be 9.3 Å at FSC=0.143. 
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