
Journal of Structural Biology 176 (2011) 60–74
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/ locate/y jsbi
An adaptation of the Wiener filter suitable for analyzing images of isolated
single particles

Charles V. Sindelar 1, Nikolaus Grigorieff ⇑
Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 April 2011
Received in revised form 13 June 2011
Accepted 28 June 2011
Available online 2 July 2011

Keywords:
Electron microscopy
Wiener filter
Single particle
Protein structure
SNR
Spectral signal-to-noise ratio
1047-8477/$ - see front matter � 2011 Elsevier Inc. A
doi:10.1016/j.jsb.2011.06.010

Abbreviations: CCC, cross-correlation coefficient; C
FRC, Fourier Ring Correlation; PSSNR, single-particl
ratio; SSNR, spectral signal-to-noise ratio.
⇑ Corresponding author. Fax: +1 781 736 2419.

E-mail address: niko@brandeis.edu (N. Grigorieff).
1 Present address: Department of Molecular Bi

Yale University, 333 Cedar St., New Haven, CT 06520-8
The Wiener filter is a standard means of optimizing the signal in sums of aligned, noisy images
obtained by electron cryo-microscopy (cryo-EM). However, estimation of the resolution-dependent
(‘‘spectral’’) signal-to-noise ratio (SSNR) from the input data has remained problematic, and error
reduction due to specific application of the SSNR term within a Wiener filter has not been reported.
Here we describe an adjustment to the Wiener filter for optimal summation of images of isolated par-
ticles surrounded by large regions of featureless background, as is typically the case in single-particle
cryo-EM applications. We show that the density within the particle area can be optimized, in the
least-squares sense, by scaling the SSNR term found in the conventional Wiener filter by a factor that
reflects the fraction of the image field occupied by the particle. We also give related expressions that
allow the SSNR to be computed for application in this new filter, by incorporating a masking step into
a Fourier Ring Correlation (FRC), a standard resolution measure. Furthermore, we show that this
masked FRC estimation scheme substantially improves on the accuracy of conventional SSNR estima-
tion methods. We demonstrate the validity of our new approach in numeric tests with simulated data
corresponding to realistic cryo-EM imaging conditions. This variation of the Wiener filter and accom-
panying derivation should prove useful for a variety of single-particle cryo-EM applications, including
3D reconstruction.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Single-particle cryo-EM is increasingly used to produce high-
resolution 2D and 3D maps of biological macromolecules. The
raw data obtained by cryo-EM pose numerous technical challenges
for the image processing done to obtain useful descriptions of the
target molecules. Individual particle images exhibit extremely high
levels of noise, owing to the extreme radiation sensitivity of biolog-
ical specimens which in turn requires minimizing electron expo-
sure in order to limit radiolysis. In addition, the image signal is
itself scrambled by the microscope optics, as characterized by the
Contrast Transfer Function (CTF) of the microscope, leading to par-
tial or complete loss of the particle signal at regular intervals
throughout Fourier space. Numerous techniques have been devel-
ll rights reserved.
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oped to address these challenges, but nevertheless the processing
of cryo-EM images remains a topic of considerable research
interest.

One of the early advances in single-particle cryo-EM was the
application of digital signal processing theory, in order to improve
estimates of the reconstructed particle density as well as to assess
the quality of the reconstructions themselves (Frank, 2006). Frank
and Ali described a connection between image correlation and sig-
nal-to-noise ratio (Frank and Al-Ali, 1975) that was subsequently
extended to yield various resolution assessment techniques,
including the Fourier Ring Correlation (FRC) for 2D projection aver-
ages, and the analogous Fourier Shell Correlation for 3D recon-
structions (Harauz and van Heel, 1986). Numerous approaches
have been used to compensate for CTF effects and high noise levels,
including phase-flipping and iterative reconstruction.

One of the methods more commonly applied in reconstruction
algorithms is the Wiener filter (Wiener, 1949; Kolmogorov,
1941), which is designed to produce estimates of signal measure-
ments having the least possible mean-squared error, given some
level of prior knowledge about the system such as the signal-
to-noise ratio (SNR) of the images. The benefits of the Wiener filter
are widely acknowledged, and numerous applications to various
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Nomenclature

r real-space vector coordinates.
s Fourier-space vector coordinates.
R ¼j s j radius in Fourier space.
dR grid spacing used in digital Fourier space image repre-

sentation.
N number of measured images.
xðiÞðrÞ i’th image.
mðrÞ noise-free particle image.

nðiÞparticleðrÞ i’th specific instance of ‘‘particle’’ noise (i.e. signal fluc-
tuations from the sample itself, such as embedding
medium or support film); this is modulated by the CTF.

nðiÞimageðrÞ i’th specific instance of ‘‘image’’ noise (from the mea-
surement process); not CTF-modulated.

nðiÞðrÞ effective noise contributed from both nðiÞparticleðrÞ as well
as nðiÞimageðrÞ.

n1ðrÞ; n2ðrÞ summed noise from images 1. . .N/2 and N/2 + 1. . .N,
respectively.

XðiÞðsÞ; MðiÞðsÞ; NðiÞparticleðsÞ; NðiÞimageðsÞ; NðiÞðsÞ; N1ðsÞ; N1ðsÞ refer
to Fourier-space equivalents of the corresponding
uncapitalized symbols.

CTFðiÞðsÞ contrast transfer function for the i’th image.
M̂W Wiener filter estimate derived from a series of N noisy

images.
kðiÞW ðrÞ; KðiÞW ðsÞ real-space and Fourier-space representations of the

Wiener filter weighting function.
envðrÞ real-space binary envelope function.
envsmoothðrÞ envelope function obtained by applying a low-pass

filter to envðrÞ.

ENVðsÞ Fourier-space equivalent of envðrÞ.
FRCmaskðrÞ FRC obtained when the compared images are both

multiplied by envsmoothðrÞ.
SNR overall signal-to-noise ratio of an image.
SSNRno CTFðRÞ ratio of signal power (prior to CTF modulation) to

noise power in raw data images.
SSNRmergedðRÞ spectral signal-to-noise ratio in the final, averaged

image.
M̂SPW single-particle Wiener filter estimate derived from a

series of N noisy images.
kðiÞSPWðrÞ; KðiÞSPWðsÞ real-space and Fourier-space representations of

the modified filter weighting function for the single-
particle Wiener filter.

fparticle ¼ henvðrÞ2iimage the fraction of a boxed image with non-
zero signal corresponding to mðrÞ.

fsmooth ¼ henvsmoothðrÞ2iimage the fraction of the image within
envsmoothðrÞ.

PSSNRðRÞ ¼ 1
fparticle

SSNRno CTFðRÞ ‘‘single-particle’’ SSNR corrected

for the fractional area containing signal from the parti-
cle.

r2
Rs signal variance at Fourier radius R.

r2
Rn noise variance at Fourier radius R.

r̂2
Rs estimator of the signal variance r2

Rs (biased).

r̂2
Rn estimator of the noise variance r2

Rn (unbiased).

nR number of Fourier pixels within a given resolution
zone (R).
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single-particle applications have been described in earlier work
(Tang et al., 2007; Zhang et al., 2008). However, somewhat surpris-
ingly, the benefits of the Wiener filter are rarely if ever quantified
in comparison to other image restoration techniques, leaving it an
open question how beneficial this filter is in practice. Perhaps re-
lated to this issue, it is commonly considered impractical to extract
useful spectral SNR (SSNR) characteristics from data sets of aligned
images alone (Downing and Glaeser, 2008); instead, earlier work
has suggested that additional experimental information (X-ray
scattering factors, for example) is necessary to obtain useful SSNR
estimates for the purpose of applying a Wiener filter (Tang et al.,
2007). In the absence of accurate SSNR estimates, an arbitrary con-
stant term is commonly substituted for the SSNR expression within
the Wiener filter (Grigorieff, 2007; Zeng et al., 2007; Frank, 2006),
with the result that the filter no longer minimizes the mean-
squared error of the particle estimate.

Here, we present a quantitative evaluation of the Wiener filter
for combining pre-aligned cryo-EM images to produce estimates
of the projected density. Our results demonstrate that for images
of isolated single particles, the conventionally-defined Wiener fil-
ter fails to optimize the estimate of the particle density itself, ow-
ing to the presence of a substantial signal-free solvent region in the
raw data images. We address this problem by developing a modi-
fied version of the filter, which we call the single-particle Wiener
filter, which is designed to optimize the density estimate within
a defined mask region when the SSNR characteristics of the raw
images is available. We also present a straightforward method
for obtaining accurate estimates of the average SSNR characteris-
tics from the images themselves, with no need for additional
experimental information, via a masked FRC calculation. Our new
treatment of the Wiener filter thus establishes a self-contained
method for defining a least-squares estimate of a single-particle
density map from aligned image data sets.
2. Theory

2.1. Wiener filter expression

We begin with the derivation of the Wiener filter expression
(Saxton, 1978). We consider a series of aligned images, whose sig-
nal and noise is modeled as follows:

xðiÞðrÞ ¼ FT�1fCTFðiÞðsÞg � ðmðrÞ þ nðiÞparticleðrÞÞ þ nðiÞimageðrÞ ðreal spaceÞ

XðiÞðsÞ ¼ CTFðiÞðsÞðMðiÞðsÞ þ NðiÞparticleðsÞÞ þ NðiÞimageðsÞ ðFourier spaceÞ
ð1Þ

where ‘‘⁄’’ represents the convolution operator, and other terms are
defined as follows. For the i’th image: xðiÞðrÞ is the recorded image;
mðrÞ is the corresponding noise-free particle image; nðiÞparticleðrÞ and
nðiÞimageðrÞ are specific instances of ‘‘particle’’ noise (i.e. signal fluctua-
tions from the sample itself, such as embedding medium or support
film) and ‘‘image’’ noise (from the measurement process), respec-
tively; and CTFðiÞðsÞ is the contrast transfer function of the micro-
scope. The symbols r and s denote vector coordinates in real
space and Fourier space, respectively. Capitalized symbols XðiÞðsÞ,
MðiÞðsÞ, NðiÞparticleðsÞ, NðiÞimageðsÞ refer to Fourier-space equivalents of
the corresponding uncapitalized symbol. Note that the CTF term
here is implicitly assumed to include all transfer-function-related
effects related to the imaging process, including signal attenuation
due to envelope function (Glaeser, 2007).

To facilitate analysis, we will treat the noise contribution as a
single term, nðiÞðrÞ. This approximation is justified by at least two
aspects of cryo-EM data: (1) when a large number of images having
varying CTF functions are treated, CTF modulations of the particle
noise Fourier transform will effectively disappear in the summed
particle estimate, resulting in a ‘‘net particle noise’’ in the particle
estimate whose contribution can be grouped together with the
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image noise contribution to yield a ‘‘net noise’’; (2) the image noise
is on the order of 10� larger than the particle noise in cryo-EM
applications (Baxter et al., 2009).

In what follows, we will allow the Fourier equivalent of the
expectation value of the noise terms hj NðiÞðsÞj2i to vary as a func-
tion of resolution (thus, NðiÞðsÞ may be described as ‘‘colored
noise’’), although we will assume that, consistent with the ex-
pected behavior of cryo-EM images, the summed noise component
nðiÞðrÞ follows an identical random distribution at every point with-
in the real-space image. We then write an expression for the i’th
image in a series of noisy image measurements:

XðiÞðsÞ ¼ CTFðiÞðsÞMðsÞ þ NðiÞðsÞ ð2Þ

The Wiener filter is designed to give a least-squares estimate of
the signal, M, from the series of N such measurements, assuming a

solution of the form M̂WðsÞ ¼
P

iK
ðiÞ
WðsÞX

ðiÞðsÞ. The formal statement
of the optimization problem is to minimize the expression:

Error ¼ MðsÞ �
X

i

KðiÞWðsÞX
ðiÞðsÞ

�����
�����
2

ð3Þ

where KðiÞW are the filter coefficients to be determined.The solution to
the least-squares problem in Eq. (3) is (Saxton, 1978):

KðiÞWðsÞ ¼
fCTFðiÞðsÞg�P

iðCTFðiÞðsÞÞ2 þ VarfNðsÞg
VarfMðsÞg

! M̂W ¼
P

ifCTFðiÞðsÞg�XðiÞðsÞP
iðCTFðiÞðsÞÞ2 þ VarfNðsÞg

VarfMðsÞg

¼
P

ifCTFðiÞg�XðiÞðsÞP
iðCTFðiÞðsÞÞ2 þ 1=SSNRno CTFðRÞ

ð4Þ

where X⁄ denotes the complex conjugate of X. Thus, given an esti-
mate of the SSNR, the Wiener filter produces an optimal least-
squares estimate of the entire, noise-free image field. To emphasize
that ‘‘signal’’ in the ‘‘SSNR’’ term here refers to signal power prior to
CTF modulation, we specifically denote this term SSNRno CTF. We
further note that the noise term in SSNRno CTF refers to the noise
power found in the raw image data, as opposed to the SSNR seen
in the final, reconstructed particle (to minimize confusion, we will
refer to the latter quantity as SSNRmerged).

2.2. The specific case of isolated single particles

In the case of cryo-EM images of single particles surrounded by
large, featureless regions of bulk solvent, the above incarnation of
the Wiener filter encounters a problem: the choice of image size in
single-particle applications is essentially arbitrary, causing the
overall SNR of the image to be indeterminate. Thus, for given par-
ticle size, large image sizes will contain proportionately more noise
energy in the surrounding solvent region as compared to the signal
energy, which remains constant regardless of image size, resulting
in lower SNR estimates. Consequently, the SNR determined from
the whole image field depends on the image size, and so when
the Wiener filter is applied to solvent-rich particle images, the re-
sult is excessive filtering of the image and sub-optimal estimates of
the particle density (see Fig. 1 below).

In order to address this issue, we now recast the optimization
problem using the envelope shape of the particle, which we will as-
sume to be known (this envelope can be estimated, for example,
from the previous image estimate in a refinement cycle for the im-
age alignment parameters). We write the envelope function as
env(r), defined to be 1 at locations r where particle signal is pres-
ent and 0 otherwise. Then, to avoid the problem related to image
size just described, we seek a new filter that optimizes the
mean-squared error of the estimated density within the particle
envelope only.

Modifying the Wiener filter definition above, we obtain new
expressions for the error of the masked particle density (note that
for compactness, below we will generally omit the vector coordi-
nates when referring to various function symbols):

m̂SPW ¼ env �
X

i

kðiÞSPW � xðiÞ

Error ¼ env � m�
X

i

fkðiÞSPW � xðiÞg
 !�����

�����
2

¼ m� env �
X

i

fkðiÞSPW � xðiÞg
�����

�����
2

ðreal spaceÞ

Error ¼ M � ENV �
X

i

fKðiÞSPW XðiÞg
�����

�����
2

ðFourier spaceÞ

ð5Þ

Here we have used the fact that real-space multiplication of
the noise-free particle signal m by the envelope function leaves
the signal unchanged. In order to apply these error expressions
within the standard Wiener filter formalism, we now seek to
eliminate the envelope function from the expression. This can
be accomplished as follows. Expanding the above error expres-
sions, we obtain:

M̂SPW ¼ ENV �
X

i

KðiÞSPWðCTFðiÞM þ NðiÞÞ

¼ ENV �
X

i

KðiÞSPWCTFðiÞM

( )
þ ENV �

X
i

KðiÞSPWNðiÞ
( )

ð6Þ

Now we consider the two terms in M̂SPW.

2.3. First term: summation of restored, noise-free structure
measurements

The first term, ENV �
P

iK
ðiÞ
SPWCTFðiÞM

n o
, represents a composite

sum of noise-free measurements, first modulated by the CTF, sub-

sequently restored by the Wiener filter operator KðiÞSPW, then finally
multiplied (in real space) by the particle envelope. If we assume
that a sufficiently large number of measurements have been col-
lected for the Wiener filter to efficiently re-localize the particle sig-
nal (this condition is satisfied when a sufficient number of images
having variable defoci are collected, see Section 4), the first two

operations
P

iK
ðiÞ
SPWCTFðiÞM

n o
will yield a relatively accurate repre-

sentation of the particle, because no noise terms are present (we
note, however, that the high-resolution components of M may be
attenuated owing to the filter, see Section 4). If this correction of
the delocalization is sufficiently complete, then convolving the re-
sult by the envelope Fourier transform, equivalent to multiplying
the real-space object by the envelope function, will have almost
no effect, and we may write:

ENV �
X

i

KðiÞSPWCTFðiÞM

( )
�

X
i

KðiÞSPWCTFðiÞM

( )
ð7Þ

Thus, in cases where a number of images are available and there
is substantial defocus variation in the images (see Fig. 4), the first
term in M̂SPW is effectively unaltered by the convolution with the
particle envelope function ENV.

2.4. Second term: noise attenuated by the particle envelope

The second term in our expression for M̂SPW, ENV�P
iK
ðiÞ
SPWNðiÞ

n o
¼
P

iENV � KðiÞSPWNðiÞ, may be reduced by the follow-



Fig. 1. FRC calculations for isolated single particles depend on image size. (A) Noise-free projection image of PDB model 1MJK (256 � 256 pixels). In this figure and all
following, pixel values are scaled for maximum visual contrast within each image; these scale factors thus vary somewhat from image to image. (B) Projection image from (A)
with white noise subsequently added to achieve a whole-image SNR of 0.003. Image is reduced in scale relative to (A), and is 512 � 512 pixels in size. Dashed rectangles
indicate 256 � 256 and 128 � 128 boundary boxes. (C) SSNRno CTF characteristic of the noisy image in (B), for various image sizes. (D) Graphs of the FRC calculated between
two independent straight averages of 50 noisy images (as in (B)). Three graphs indicate the results of the calculation for the three different image sizes shown in (B).
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ing reasoning. The convolution of a given noise term in this
summation expression results in a new random noise distribution,

NðiÞ’ ¼ ENV � KðiÞSPW � N
ðiÞ

h i
, in which the original noise term is first

filtered by the Wiener term and subsequently ‘‘spread out’’ in
Fourier space by the convolution. The convolution introduces a
correlation between neighboring points in Fourier space, and thus
has the effect of smoothing out the resolution dependence of the

filtered noise term KðiÞSPWNðiÞ. However, if the particle radius is
non-negligible relative to the image dimension (a condition which
is almost always satisfied in cryo-EM applications), the Fourier
transform of the envelope function ENV will have a relatively re-
stricted extent in Fourier space, thus limiting the smoothing effect
over two or three Fourier pixels. Moreover, we note that the origi-

nal noise term NðiÞ is expected to depend on spatial frequency un-
der experimental conditions (‘‘colored noise’’), but that this
dependence is relatively small in the case of cryo-EM (see Section

5). Thus, we may conclude that the spectral behavior of NðiÞ’ will re-

main similar to NðiÞ so long as the expectation value of the filtered

noise term KðiÞSPWNðiÞ
D E

does not vary too rapidly as a function of res-
olution. In the Section 4 we present numerical simulations demon-
strating that this assumption is appropriate for cryo-EM
applications.

In contrast to the spectral behavior of NðiÞ’ , the net signal energy

of NðiÞ’ is strongly affected by the presence of the envelope function
term. To derive this effect, we begin with the observation that the

real-space equivalent of NðiÞ’ ,
P

ienv � kðiÞSPW � nðiÞ
� �

, is simply a

uniform noise field truncated by the particle envelope; thus, the

total signal energy for the summed expression =
R

image

P
i env�j

D
kðiÞSPW � nðiÞ
� �

j2d~r
E

is reduced by a factor of fparticle ¼ henv2iimage,

which may be thought of as the ratio of particle area to total image
area (although this identity is only strictly true for the case of a
binary mask). By Parseval’s theorem, the same result holds for
the signal energy of the corresponding Fourier space noise term,P

iENV � KðiÞSPW � N
ðiÞ

� �
.

Combining the above observations, we conclude that the noise

term
P

iENV � KðiÞSPWNðiÞ
� �

in the presence of an envelope is

expected to have similar spectral behavior as in the case where
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an envelope is absent
P

iK
ðiÞ
SPWNðiÞ

� �
, except that the total noise

amplitude will be attenuated by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fparticle

p
. Therefore,
X
i

ENV � KðiÞSPWNðiÞ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fparticle

q X
i

KðiÞSPW � NðiÞ: ð8Þ
2.5. Effective Wiener filter for the case of isolated single particles: the
PSSNR

Assembling the results of the last two sections, we arrive at the
following minimization condition for the new single-particle filter:
M̂SPW ¼ ENV �
X

i

KðiÞSPW CTFðiÞM þ NðiÞ
� �

�
X

i

KðiÞSPW CTFðiÞM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fparticle

q
NðiÞ

� �

! Error � M �
X

i

KðiÞSPW CTFðiÞM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fparticle

q
NðiÞ

� ������
�����
2

¼ M �
X

i

KðiÞSPW CTFðiÞM þ NðiÞeffective

� ������
�����

2

ð9Þ

The above error expression is thus identical to the Wiener
filter error expression for the envelope-free case, except that the

noise term NðiÞ is attenuated to NðiÞeffective ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fparticle

p
NðiÞ. Thus, the

form of our new single-particle filter follows the form of the con-
ventional Wiener filter, after substituting the new noise power

VarðNeffectiveÞ ¼ Neffectivej j2
D E

¼ fparticle j Nj2
D E

¼ fparticleVarðNÞ:

KðiÞSPWðsÞ ¼
ðCTFðiÞÞ�P

iðCTFðiÞÞ2 þ VarfNeffectiveðsÞg
VarfMðsÞg

! M̂SPWðsÞ ¼
P

iðCTFðiÞÞ�XðiÞP
iðCTFðiÞÞ2 þ fparticle

VarfNðsÞg
VarfMðsÞg

ð10Þ

The variance ratio in the denominator of the above expression is
thus the inverse of the conventional, or whole-image SSNR (as
found in the original Wiener filter expression), but attenuated by
fparticle. Thus, we define the ‘‘particle’’ SSNR, or PSSNR, as:

PSSNRðsÞ ¼ 1
fparticle

VarfNðsÞg
VarfMðsÞg ¼

1
fparticle

SSNRno CTFðsÞ ð11Þ

so that we may express the particle estimate as:

M̂SPW ¼
P

i CTFðiÞðsÞ
n o�

XðiÞðsÞ
P

i CTFðiÞðsÞ
� �2

þ 1=PSSNRðsÞ
ð12Þ

Eqs. (10)–(12) are a key finding of the present work, and define
what we call a ‘‘single-particle’’ Wiener filter. The novel aspect of
this filter can be understood intuitively, as follows. If one has a pri-
ori knowledge that a significant portion of the image field is free of
signal (as is the case for single particles), then the performance of
the Wiener filter can be improved by a simple modification in the
denominator, namely by scaling the SSNR term by fparticle. In con-
trast to the conventional Wiener filter, the single-particle Wiener
filter is expected to be largely independent of image size, because
the fparticle term compensates for changes in the SSNR that result
from varying amounts of signal-devoid space surrounding the par-
ticle. As we will show, this property leads to substantial gains in
the performance of the new filter.
2.6. Estimating the SSNR and PSSNR via statistical analysis of the
images

One strategy to obtain the SSNR from a set of raw image data is
to compute the variance and other statistical quantities for each
voxel in Fourier space as individual measurements are tallied dur-
ing the averaging process. This approach was used by Unser et al.
(1987), who derived an expression for SSNRmerged for the case of
sums of aligned 2D images. We have extended this approach to ac-
count for the presence of CTF modulation during image formation
(Appendix A); the result is a sequence of computations that delivers
an unbiased estimate of SSNRmerged for a collection of Fourier pixels
found in a given resolution shell, assuming that both the particle
structure factors as well as the noise terms follow normal signal dis-
tributions within a given resolution shell. Using the above relation,
this estimate can then be converted to an estimate of the PSSNR.

For convenience, we have assumed in the following computa-
tions that the average signal and noise power ðVarfMðsÞg and
VarfNðsÞg, respectively) are circularly symmetric in Fourier space,
which will give a solution of the form KðiÞW ðRÞ, where R ¼j s j, the
vector magnitude of s. This assumption is justified for particles that
do not exhibit prominent periodic features that could give rise to
significantly stronger signal in certain parts of the Fourier trans-
form. In the case of strongly anisotropic signal distribution, the
radially symmetric filter coefficients will not be optimal and a
more specialized case may need to be considered. However, the
formalism described here will still lead to an improvement over
the conventional Wiener filter we seek to replace.

These computations can be summarized as follows (referred to
in the text as Eqs. (13)):

1. Construct a least-squares estimates of the signal value for each
data point:

^

PN
i¼1 CTFðiÞXðiÞ
� �
MðsÞ ¼ PN
i¼1 CTFðiÞ
� �2
2. Perform a weighted estimation of the variance of this series of
signal values as a function of R in Fourier space:
r̂2
Rs ¼

1P
R

PN
i¼1CTFðiÞðsÞ2

X
R

XN

i¼1
CTFðiÞðsÞ2 j XðiÞðsÞj2
where the region R corresponds to an annulus in Fourier space
R� dR=2 <j~s j6 Rþ dR=2 and dR is equal to the grid spacing
used in the Fourier-space digital image representation.
3. Calculate the unbiased noise estimator, using the above signal
estimates: P PN ðiÞ ðiÞ ðiÞ

�� ��2

r̂2

RnðRÞ ¼
R i¼1 X ðsÞ � CTF ðsÞM̂ ðsÞ� �

nRðN � 1Þ
where nR is the total number of pixels within a given Fourier
resolution shell R.
4. Finally, compute the unbiased SSNR of the raw images from:
SSNRno CTFðRÞ �
r̂2

RsðRÞ
r̂2

RnðRÞ
� nRP

R

PN
i¼1ðCTFiðsÞÞ2
5. Estimate the PSSNR by
PSSNRðRÞ � 1
fparticle

SSNRno CTFðRÞ



C.V. Sindelar, N. Grigorieff / Journal of Structural Biology 176 (2011) 60–74 65
Key differences between the above formulas and the results of
Unser et al. (1987) include: (A) our derivation estimates the quan-
tity SSNRno CTF which characterizes the raw data images, whereas
the Unser derivation was for SSNRmerged of the final, averaged im-
age; (B) CTF terms are included in our expressions for the signal
estimates; (C) the bias correction for our SSNR expression,

nRP
R

PN

i¼1
CTFið~sÞð Þ2

, is increased in magnitude compared to the Unser

bias correction (1/N if Unser’s result is adapted to compute
SSNRno CTF), owing to the CTF terms having magnitudes less than
one.

2.7. Obtaining the PSSNR from masked FRC calculations

The above PSSNR expression suffers from at least two serious
shortcomings: (1) an implicit assumption is that all signal and
noise components follow normal Gaussian distributions within a
single resolution shell – a condition not always met in practice;
(2) the expression suffers from a relatively high statistical error
at higher resolution, where accurate estimation of the PSSNR is
most critical for optimal Wiener filtering (see Section 5). We there-
fore explored an alternative route for obtaining the PSSNR: deriv-
ing this quantity using cross-correlation comparisons of masked,
half-data-set reconstructions.

We begin by modifying the FRC, a standard measure of particle
resolution when two estimates are available, to include a masking
step using the particle envelope function ENV defined above. The
expectation value of the masked FRC is:

FRCmaskðRÞh i ¼
P

R½ENV � ðM þ N1Þ � ENV � ðM þ N2Þ�
� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
P

RENV � ðM þ N1Þi2h
P

RENV � ðM þ N2Þi2
q

¼

P
RM2

D E
RP

RM2
D E

R
þ

P
RENV2 � N2

1

D E
R

ð14Þ
Where N1 and N2 represent the summed noise terms from the inde-
pendent half-data sets used for the two estimates to be compared
and the expectation value of the N1 and N2 are assumed to be the
same.

We note here that in practice it is necessary to replace the bin-
ary real-space envelope function env with a smoothed envelope
function, envsmooth, in order to avoid artifactual high-resolution
features at the boundary of the particle estimate (which could lead
to inflated resolution estimates when comparing identically
masked half-data set reconstructions, for example). To avoid strong
artifacts, the cutoff spatial frequency for the smoothing filter for
ENVsmooth should be chosen to be less than the conservative lower
limit of the reconstructed particle resolution.

We now approximate the envelope-noise convolution term in
the denominator of the above expression, using the same argu-
ment developed above in our derivation of the PSSNR:

X
V

ENV2 � N2
1

* +
� fparticle

X
i

N2
1

* +
ð15Þ

where fparticle ¼ henv2iimage

This results in the following expression for the masked FRC:

hFRCmaskðRÞi ¼
P

RM2
D E

P
RM2

D E
þ fparticle

P
RN2

1

D E

¼ h
P

RM2ih
P

RN2i
h
P

RM2ih
P

RN2i þ fparticleh
P

RN2
1ih
P

RN2i

¼ SSNRmergedðRÞ=fparticle

SSNRmergedðRÞ=fparticle þ 2
ð16Þ
Comparing this expression to the relation between the conven-
tional FRC and the SSNR,

FRCðRÞ ¼ SSNRmergedðRÞ
SSNRmergedðRÞ þ 2

ð17Þ

we see that masking causes the SSNRmergedðRÞ term in the FRC
expression to be replaced by SSNRmergedðRÞ=fparticle, if a tight binary
mask is used, or by SSNRmergedðRÞ=fsmooth if a smoothed mask is used
(where fsmooth ¼ env2

smooth

� 	
image, the mean squared envelope func-

tion computed over the image area. Thus, the whole-image SSNR
for the final particle estimate is:

SSNRmergedðRÞ ¼
2FRCmaskðRÞfsmooth

ð1� FRCmaskðRÞÞ
ð18Þ

To obtain an estimate for SSNRno CTF or the PSSNR, one final step
is necessary. The expected noise variance in the final estimate is re-
duced relative to the noise variance in the raw data, proportional to
the averaged sum of squared CTF values (see Appendix A, Eq. (A.4)).
This yields the relation:

SSNRno CTFðRÞ �
nRP

R

PN
i¼1CTF2

i

SSNRmergedðRÞ

¼ nRP
R

PN
i¼1CTF2

i

� 2FRCmaskðRÞfsmooth

ð1� FRCmaskðRÞÞ

where we have used the symbol nR ¼
P

R1 to denote the number of
Fourier pixels within the resolution zone R ± dR.

Thus:

PSSNRðRÞ ¼ 1
fparticle

� SSNRno CTFðRÞ

� 1
fparticle

� nRP
R

PN
i¼1CTF2

i

� 2f smoothFRCmaskðRÞ
ð1� FRCmaskðRÞÞ

ð19Þ

Eq. (19) thus defines a close relationship between the masked
FRC calculation, the SSNR, and the single-particle Wiener filter.
This expression also indicates that, in typical cryo-EM applications,
the PSSNR will differ substantially from conventionally obtained
SSNR values, due to the fparticle term, which will be considerably
less than one in practice (see Section 4/Section 5). As demonstrated
in the Section 4, the Wiener filter is sensitive to differences of this
magnitude in the SNR term; thus, choosing the correct SNR variant
in the filter is critical for full optimization of 2D and 3D
reconstruction.

2.8. Summary of the new, adapted Wiener filter

In the first step, the raw images are divided into two half-data-
sets and two least-squares particle estimates are generated in the
absence of SNR information. Second, the particle envelope is iden-
tified, smoothed, and used to compute a masked FRC comparison
of the two initial estimates; this FRC function is subsequently con-
verted to an estimate of SSNRno CTF for the raw data images (Eqs.
(13)). Finally, the resulting SSNR function is divided by the scalar
factor fparticle (Eq. (18)). The resulting scaled function, the PSSNR,
is then substituted in place of the standard SSNR term in a modi-
fied Wiener filter which is applied to the full image data set.

3. Materials and methods

For numerical testing purposes, we created several synthetic
data sets that incorporated various combinations of key elements
of the cryo-EM imaging process. The imaged particle in each data
set was an identical view of a representative protein molecule
(kinesin, PDB ID 1MKJ), rendered as projection image of the
scattering potential as modeled by the SPIDER image processing
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program (Frank et al., 1996). Noisy images of known SSNR charac-
teristic were generated by adding white noise to the perfect refer-
ence image, after an optional CTF modulation step was applied to
the reference image. The modeled CTFs were generated by the
‘‘TF C’’ command of SPIDER, without an envelope function, and
with randomly generated defocus values uniformly distributed be-
tween 1 and 2 lm. The SSNR characteristic of the noisy images was
then computed as the ratio of the rotationally averaged, squared
Fourier amplitude to the white noise variance. The magnitude of
the white noise variance was chosen such that a net SNR in the
real-space image of 0.003 was produced in the resulting raw data
images, for the image of size 256 � 256 pixels (1 Å pixel size). Note,
as discussed below, that cropping these images to smaller sizes
substantially increases the SNR values.
4. Results

4.1. FRC calculations are highly sensitive to image size

We constructed several sets of noisy synthetic images
(SNR = 0.003 for the ‘‘standard’’ image size of 256 � 256, see Sec-
tion 3), modeling various aspects of image formation in cryo-EM
on a test particle generated from PDB coordinates 1MKJ. Fig. 1A
shows a noise-free projection image simulating the projected Cou-
lomb potential of the test molecule, and Fig. 1B shows the same
image after adding white noise to the specified SNR level. These
synthetic images were used to test various predictions of the the-
ory developed above.

The results of Fourier Ring Correlation (FRC) analysis applied to
the synthetic data sets are shown in Fig. 1. A data set of 100 raw
data images was divided into two sets of 50 images and averaged
separately, and the FRC was calculated between the two resulting
particle estimates (this procedure was repeated for several differ-
ent box sizes). For simplicity, the effects of CTF modulation were
not included in the tests shown in Fig. 1, although when these tests
were repeated in the presence of CTF modulation, very similar re-
sults were obtained (not shown). As shown in Fig. 1C, the SSNR of
the raw synthetic images depends strongly on the dimensions of
the bounding box used for analysis (three sizes were tested, as
indicated by dashed boxes in Fig. 1B), owing to the inclusion of
excess noise signal energy at the box boundaries as the box size
increases while the total particle signal energy stays the same.
Fig. 1D demonstrates that the FRC calculated between the half-
data-set averages also strongly depends on the bounding box
size, yielding values at an arbitrary threshold of 0.5 of �12 Å
(128 � 128 pixel windowed image averages), �23 Å (256 � 256),
or �39 Å (512 � 512). These results are consistent with the predic-
tion of Eq. (16) that as the featureless solvent region increases in
size with respect to the particle region, the FRC resolution estimate
correspondingly decreases owing to increased noise signal energy
relative to particle signal energy.
4.2. Wiener filter behavior is highly sensitive to image size

The behavior of the conventional Wiener filter, when applied to
the same set of images (no CTF applied), is shown in Fig. 2. We
tested the optimality of this filter, as predicted by the theory, by
comparing the filter output to a series of modified filters where
the SSNR term was scaled up or down by a linear coefficient. As
seen in Fig. 2A, the best agreement (as reported by the cross-corre-
lation coefficient, or CCC) between the filtered image and the
noise-free reference was achieved by a scale factor of unity, yield-
ing a CCC of 0.853, and either increasing or decreasing the scale
factor increased the mean-squared error of the image estimates.
Thus, these calculations are consistent with the predicted optimal-
ity of the conventional Wiener filter.

The behavior of the conventional Wiener filter, however, de-
pended strongly on the bounding box size. As shown in Fig. 2C
and Fig. 2E, the estimate for the largest box is noticeably more
blurred compared to the smaller box sizes. This feature of the filter
comes directly from the fact that increasing the bounding box size
rapidly diminishes the magnitude of the SSNR of the raw data
images (Fig. 1C); this decrease in SSNR in turn generates a much
stronger high-frequency attenuation by the Wiener filter, when ap-
plied to the larger boxes. For each box size tested, we repeated the
scaling test of Fig. 2A and confirmed that the CCC agreement of the
filtered images was maximal with respect to scaled versions of the
filter (results not shown).

However, when we zeroed the solvent region of the image using
a binary mask (Fig. 2B), we observed a very different behavior of
the CCC. As indicated in Fig. 2C and Fig. 2E, correlation of the
masked particle region to the noise-free reference drops rapidly
as the box size of the filter increases, from a value of
CCCmask-ref ¼ 0:881 for the smallest box size tested (128 � 128) to
a value of CCCmask-ref ¼ 0:737 for a 512 � 512 pixel box. These
masked CCC values were not optimal with respect to our Wiener
filter scale tests; rather, we found that with appropriate scaling
of the SSNR term, the conventional Wiener filter could be
‘‘tweaked’’ to yield a maximal value of 0.929 for the masked CCC
(equivalent to the single-particle Wiener filter result, see below).
Thus, these numeric experiments conclusively demonstrate that
when the conventional Wiener filter is applied to images of iso-
lated single particles, the filter neither (1) yields consistent results
as the box size is varied, nor does it (2) optimize the masked CCC
for the particle estimate, even for relatively small box sizes.
4.3. Validating the ‘re-localization’ assumption within the single-
particle Wiener filter derivation

In the Theory section, we presented an adapted, ‘‘single-parti-
cle’’ Wiener filter to address the above two deficiencies of the con-
ventional Wiener filter. One of the primary assumptions made in
this adaptation of the Wiener filter is that the signal energy in
the resulting filtered estimate be mostly localized within the par-
ticle envelope. Whether this re-localization condition can be satis-
fied depends on the nature and number of raw data images
collected. For example, full re-localization is trivially satisfied in
the absence of CTF modulation in the raw data images (Fig. 1 and
Fig. 2); however, currently available electron microscopes generate
CTF-modulated images that require CTF correction. We therefore
sought to test the re-localization properties of the single-particle
Wiener filter using more realistic test images.

Fig. 3 shows the noise-free signal component of a CTF-modu-
lated particle as the data processing proceeds through various fil-
tering and estimation steps. Note that because the Wiener filter
is a linear operator, and the noise is additively combined with
the signal, it is possible to consider the signal component indepen-
dently of the noise. We therefore omit the noise component of the
images in Fig. 3, while noting that the filters used therein are spe-
cific to the case of our 256 � 256 pixel, SNR = 0.003 test images. As
shown in Fig. 3A, the CTF-modulated signal found in a raw data im-
age is highly delocalized, such that more than half of the image
contrast (defined as the signal magnitude squared, integrated over
the total image area) lies outside the particle boundary. As shown
in Fig. 3B, if this single image is corrected by phase-flipping, much
of the delocalized signal energy is restored to within the particle
boundary but nearly 25% of the energy remains outside the particle
boundary. These observations provided a baseline for comparison
with delocalization behavior of the Wiener filter.



Fig. 2. Image restoration of a synthetic single-particle image using a conventional Wiener filter. (A) Results of whole-image cross-correlation comparison between the noise-
free reference image (Fig. 1A) and a Wiener-filtered composite of 100 256 � 256-pixel noisy images, each noisy image having a SNR of 0.003 but no CTF applied (as in Fig. 1B).
In this figure, the SSNR term in the Wiener filter (Eq. (4)) has been varied above and below its known value in the image data set by multiplication with a scalar factor (‘‘filter
scale factor’’), such that each x-value represents a slightly different incarnation of the filter and x = 1 corresponds to the ‘‘true’’ Wiener filter. Note that in this plot the single-
particle Wiener filter would correspond to a ‘‘filter scale factor’’ of 1/0.0328 = 30.5, for which the masked correlation to the perfect image was found to be 0.66 (not visible on
the scale shown here). Inset in the lower right corner shows a magnified view of the particle region; inset in lower left corner shows the identical view of the noise-free
particle, for comparison. (B) Tight binary envelope function generated from the noise-free image in Fig. 1A. (C)–(E) Output of the conventional Wiener filter for sets of 100
noisy images as in Fig. 1B, for the three different box sizes. Note that CCCmask-ref = 0.929 for the SP Wiener filter reconstruction. Inset is as in (A).

C.V. Sindelar, N. Grigorieff / Journal of Structural Biology 176 (2011) 60–74 67
Next we analyzed the performance of a single-particle Wiener
filter generated specifically for the case of a low-SNR synthetic
image data set (SNR = 0.003, 256 � 256 images, as in Fig. 1 and
Fig. 2 except with CTF modulation added). Each instance of such
a Wiener filter, as defined in Eq. (12), depends on the specific
SSNR characteristic of the imaged particle as well as the number
of images collected and their defocus characteristics. The result-
ing filter functions are shown in Fig. 3F for specific test data set
instances containing 1, 10, and 100 images. Operating on a sin-
gle image, the SP Wiener filter reduces the delocalized signal en-
ergy seen with phase-flipping correction by a factor of nearly 3,
to 9% (Fig. 3C). Increasing the image data set to include multiple
images, having defoci randomly distributed between 1 to 2 lm,
progressively reduced the delocalization to much lower levels:
to 1.7% for a 10-image data set (Fig. 3D), and to 0.12% for 100
images (Fig. 3E). These results indicate that the amount of delo-
calized signal present in the filtered image can be decreased to
an arbitrarily low level by increasing the number of images in
the data set, and that as few as 10 images yield an adequately
localized signal for use with the single-particle Wiener filter.



Fig. 3. Re-localization of signal intensity by single-particle Wiener filtering applied to a defocus series of images. (A) Noise-free, CTF-modulated image (defocus is 1.4 lm). (B)
Signal restoration achieved by phase flipping the image in (B). (C) Signal restoration achieved by applying a single-particle Wiener filter to the image in (B). The Wiener filter
is implemented for the specific case of white noise, added to produce a net SNR of 0.003. (D) Signal restoration achieved by applying a single-particle Wiener filter to a series
of 10 randomly defocused images as in (B) (defocus range 1 lm to 2 lm), for the same SNR condition as in (D). (E) Signal restoration as in (E) but for a series of 100 images. (F)
Plotted is the ratio of the squared power spectrum to the noise-free power spectrum for a series of single-particle Wiener noisy image restorations, as a function of resolution.
These plots give the effective transfer function (or filtering function) that is applied to the ‘‘perfect’’ image signal (independent of the noise) during image restoration.
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Fig. 4. Image restoration using the single-particle Wiener filter. (A) Image restoration of the CTF-corrupted 100-image series as achieved by the conventional Wiener filter;
random defocus variations between 1 and 2 microns were applied to the image series. (B) Similar to (A) but using the single-particle Wiener filter, applying the known PSSNR
function (Fig. 1C). Insets in this and subsequent panels follow the scheme of Fig. 2. (C) Similar to (A), but using the single-particle Wiener filter, and applying the estimated
PSSNR function (see Fig. 5). (D) Similar to (A), but image restoration achieved by phase-flipping. (E) Similar to (A), but image restoration achieved by dividing the noisy images
by the CTF before summation. (F) Masked cross-correlation agreement between the Wiener-filtered composite image (D) and the noise-free image (A), for a series of modified
Wiener filters where the PSSNR input to the filter was adjusted upwards or downwards by a scalar factor (x-axis). Note that in this graph, the conventional Wiener filter
would correspond to a ‘‘filter scale factor’’ of 0.0328 (the mean squared value of the binary mask function depicted in Fig. 2A, see text). The conventional Wiener filter result is
therefore off the scale in this graph; the masked correlation to the perfect image for this latter condition was 0.77.
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Fig. 5. Estimation of the PSSNR from masked FRC calculations. (A) FRC calculations for a 100-image data set (as in Fig. 2), split into halves and averaged to produce two noisy
particle estimates. In the masked FRC calculations, we applied either a binary mask (identical to Fig. 3B) or a smoothed mask. The smoothed mask was obtained by expanding
the border of the binary mask with a cosine-edge smoothing function (Grigorieff, 2007) such that henv2i increased by approximately 50%. (B) FRC calculations from (A), but
with the smoothed-mask calculation rescaled by Eq. (19). (C) FRC calculations from (A), but with the non-masked calculation rescaled by Eq. (19).
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4.4. PSSNR/Wiener filter approximates a least-squares particle density
estimate

We tested the absolute performance of our single-particle adap-
tation of the Wiener filter on a set of 100 noisy, CTF-modulated
images. In comparison to the conventional Wiener filter, the sin-
gle-particle Wiener filter estimates eliminate a noticeable smooth-
ing effect, and showed greatly reduced mean-squared error when
masked CCC comparisons to the noise-free reference image were
made: CCCmask-ref ¼ 0:776 for the conventional filter vs.
CCCmask-ref ¼ 0:893 for the single-particle filter (Fig. 4A and B). In
contrast, the value of CCCmask-ref was 0.589 for a sum of phase-
flipped images; and CCCmask-ref was 0.798 for a correction scheme
used by the FREALIGN package (Grigorieff, 2007), which closely
resembles a Wiener filter but replaces the SSNR term with an ad
hoc constant. Thus, the single-particle Wiener filter greatly im-
proved the masked correlation relative to other available particle
estimation schemes.

We also investigated the optimality of the single-particle Wie-
ner filter by performing scaling experiments, analogous to
Fig. 2A, modulating the PSSNR term within the filter (Fig. 4F). These
scaling experiments demonstrated that the scaling the PSSNR func-
tion either above or below its true value (according to our deriva-
tion) increased the error in the masked CCC comparison to the
noise-free reference image. These numerical tests thus indicated
that our filter adequately minimizes the mean-squared error with
respect to the reference particle.

In contrast to the excellent performance of the single-particle
Wiener filter in the masked CCC comparison, however, the
whole-image CCC to the noise-free reference yielded by this filter
(Fig. 4B, CCC = 0.778) is markedly inferior to the whole-image
CCC for the conventional Wiener filter (Fig. 4A, CCC = 0.861). Thus,
the conventional Wiener filter and the single-particle Wiener filter
have reciprocal properties: the former minimizes error in the over-
all image at the expense of increased error within the particle
region (see Fig. 2), while the latter minimizes error in the particle
region at the expense of the solvent region.

4.5. Estimating SSNR characteristics via image statistics

The above numerical experiments utilized prior knowledge of
the SSNR characteristic of the synthetically generated raw data
images, which allowed a ‘‘perfect’’ Wiener filter to be constructed.
Most experimental cryo-EM images, however, are obtained in the
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absence of prior SSNR information. We therefore tested our above-
derived relations between the masked FRC and the ‘‘particle’’ SSNR,
for the same synthetic data sets, to determine whether the SSNR
could be adequately estimated from the raw data alone.

Initial numeric tests following the ‘‘direct’’ SSNR calculation
method of Unser et al. (1987) (Eqs. (13)) produced accurate esti-
mates for the SSNR in the low-resolution regime, but rapidly be-
came unreliable for the synthetic data sets tested here at
resolutions approaching �8 Å or higher (results not shown), de-
spite the presence of significant structure signal as indicated by
masked FRC comparisons of filtered particle estimates with the
noise-free reference (Fig. 5A). We attributed this issue to the pres-
ence of noise in the solvent region of the particle images, which
cannot be removed by any straightforward method during the ‘‘di-
rect’’ SSNR calculation scheme. We therefore tested the validity of
Eq. (19) in providing more accurate estimates of the SSNR and/or
PSSNR.

An important result contained within Eq. (19) is that the effects
of masking on the FRC calculation can effectively be removed by
applying a scaling factor fsmooth/fparticle at the appropriate point
within the expression, where fsmooth is the average squared mask
function value evaluated over the image. The resulting estimate
for PSSNR is then expected to be independent of mask size (so long
as the mask does not intrude on the particle density), but with
varying fidelity depending on the amount of solvent noise included
in the FRC calculation.

We tested the above predictions by performing FRC compari-
sons between a pair of noisy particle estimates, each obtained by
a straight average of 50 noisy images (no CTF applied, with
SNR = 0.003, as in Fig. 2). The result is shown as FRCmask (calcu-
lated) in Fig. 5A. We also used Eq. (16) to predict the expected va-
lue of the masked FRC (FRCmask (theory) in Fig. 5A). To obtain the
expected value of SSNRmerged for this latter computation, we scaled
the known SSNR characteristic of the raw images (SSNRno CTF) by
the number N of image measurements (50 in the present calcula-
tion). Hence, SSNRmerged ¼ N � SSNRno CTF. This is equivalent to the
calculation presented by Unser et al. (1987) (see Eq. (7) in the Un-
ser paper). As shown in Fig. 5A, these calculations yielded excellent
agreement between predicted and calculated values for FRCmask, as
predicted by our theory. Also consistent with our predictions, a
non-masked FRC calculation gives substantially lower values,
when compared with FRCmask, and a smoothed mask also shows
systematically lower values in this comparison (Fig. 5A).

However, when Eq. (19) is used to rescale the non-masked and
smooth-mask FRC functions, compensating for the different mask
sizes, the resulting estimates converge on the FRCmask function
(Fig. 5B and C). These results support the validity of assumptions
used here to obtain Eq. (19). We observed significantly increased
random error in the rescaled FRC functions in Fig. 5B and C, how-
ever, reflecting extra solvent noise that is included when the mask
size increases (see Section 5). The increased error was particularly
pronounced in the absence of masking (Fig. 5C). Thus, the calcula-
tions in Fig. 5 indicate that masked FRC computations, in concert
with Eq. (19), provide a suitable estimate of the PSSNR for use in
the single-particle Wiener filter.

4.6. Application of the estimated SSNR values in the single-particle
Wiener filter

We tested the applicability of the above PSSNR estimates in the
single-particle Wiener filter by repeating the numeric tests of
Fig. 4, but substituting these estimated values in place of the PSSNR
function previously obtained from the known SSNR characteristic
(Fig. 1). These tests thus simulated a cryo-EM experiment per-
formed on data with unknown SSNR properties. The resulting par-
ticle estimate (Fig. 4C) closely resembled the one produced using
‘‘perfect’’ SSNR information, yielding a masked correlation value,
CCCmask-ref , only slightly lower (0.882) than the value obtained for
the ideal filter (0.893) and substantially greater than the correla-
tions obtained with other tested CTF correction schemes (Fig. 4,
panels A, D and E). These results thus demonstrate that the sin-
gle-particle Wiener filter can be successfully implemented in the
absence of prior knowledge of the data SSNR, yielding particle esti-
mates that significantly reduce the mean-squared error relative to
other schemes.
5. Discussion

Here we have shown that the Wiener filter must be modified to
give consistent and suitable results when treating images of single
particles. The form of the modification (Eq. (10)) is straightforward,
requiring only that the SSNR term in the denominator of the filter
expression be scaled by fparticle, which is effectively the fraction of
the image area occupied by the particle. In a related result, we have
shown that a highly accurate estimate of the SSNR found in the im-
age data set can be obtained by performing a masked FRC calcula-
tion between two half-data-set image averages (Eq. (18)). Taken
together, these two findings provide a practical and effective solu-
tion for finding a least-squares estimate of the particle density
from a set of noisy images.

Prior applications of the Wiener filter to single-particle prob-
lems have operated under the assumption that this filter mini-
mizes the mean-squared error of the particle. In carefully testing
this assumption, the current work has revealed that it is important
to distinguish between the error in the entire image, versus the er-
ror within the particle region itself. As the calculations presented
in Fig. 2 show, while the Wiener filter succeeds in minimizing
the overall error throughout the image, the error produced within
the particle region is far from optimal (and depends on the size of
the considered image field). Closely related to this issue is the
property that the FRC (or analogous FSC for 3D reconstructions)
for a given particle data set depends on the dimensions of the total
image field, and whether the particle is masked prior to the FRC
calculation. The theory presented here accounts for the effects of
image size and masking, not only in the Wiener filter but also in
the FRC resolution estimator.
5.1. The single-particle modification to the conventional Wiener filter
is large and significant

We have shown that the SSNR of an imaged particle depends on
the size of the image field, relative to the particle dimension. This
property in turn means that the behavior of the Wiener filter is not
unique, progressively leading to over-blurring of the particle as the
image size increases. Thus, our results demonstrate that it is not
sufficient to obtain the SSNR of such imaged particles, if one de-
sires a best estimate of the particle density. Rather, the SSNR of
the images must be scaled by 1/fparticle to obtain the PSSNR, permit-
ting application of the single-particle Wiener filter defined here.

It should be noted that our derivation of the single-particle
Wiener filter relies on two specific properties of the image data
set; this aspect of our theory contrasts with the conventional Wie-
ner filter, which is more generally valid. First, the derivation re-
quires that sufficient defocus variation is present in the data in
order to counteract the delocalization effects generated by the
CTF of the microscope. Our numeric tests, however, demonstrate
that the single-particle Wiener filter requires relatively few images
(10–100; Fig. 3 and Fig. 4) to meet this requirement, indicating that
this restriction is not a serious one. A second requirement is that
the noise power found in the data varies slowly with spatial fre-
quency, compared to the Fourier transform of the particle mask
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function (see the discussion preceding Eq. (8)). We have not inves-
tigated this aspect of noise in our numeric simulations. However,
earlier work (for example, a study of purple membrane crystals
by Glaeser and Downing (1992)) has indicated that cryo-EM
images possess a suitably low spectral dependence for the noise,
such that our theory should be generally valid. Moreover, if a path-
ological case of noise variability did arise, this could easily be ad-
dressed by applying a ‘‘noise-whitening’’ procedure to the image
data (Sigworth, 2004). Thus, we anticipate that the single-particle
Wiener filter is broadly applicable to cryo-EM image processing.

Many of the examples discussed here used a larger image size
(256 � 256) than strictly necessary given the size of our test parti-
cle in combination with the modeled delocalization characteris-
tics; this was done for illustrative purposes. However, it is
important to note that the signal delocalization caused by CTF
modulation, in cryo-EM applications, means that a relatively large
image size must be used in order to collect all the delocalized sig-
nal information – and this is particularly true for the highest-reso-
lution signal components, which tend to be delocalized furthest
from the particle center (Downing and Glaeser, 2008). Further-
more, many particles of interest in cryo-EM have irregular or even
hollow shapes, leading to 1/fparticle values significantly greater than
1 even when the image size is minimized relative to particle
dimension. Suitable image sizes for high-resolution image process-
ing are therefore likely to give values for 1/fparticle of 5, 10 or great-
er. Moreover, if our methodology is extended to 3D reconstruction,
1/fparticle reflects a 3D quantity rather than a 2D quantity, and is
therefore increased relative to the 2D case. These qualities suggest
that substantial error may commonly be introduced if the conven-
tional Wiener filter is used in place of the single-particle Wiener
filter, in high-resolution cryo-EM applications.

We note that this conclusion has apparently not been reached
in earlier applications of the Wiener filter to single-particle prob-
lems. For example, Ludtke et al. (2001) applied the conventional
Wiener filter within the context of a 3D reconstruction algorithm,
but did not report over-filtering as our theory would predict. How-
ever, unlike the work presented here the images averaged by Lud-
tke et al. (2001) contained alignment errors which would have
attenuated the effective SNR required for optimal Wiener filtration,
relative to a perfect alignment. In contrast, the SNR estimates used
by Ludtke et al. were derived using scattering profiles from X-ray
experiments, which yielded the SNR of a perfectly-aligned data
set. As pointed out by the authors, alignment errors would dimin-
ish the effective SNR of the data, particularly at high resolution.
Thus, a Wiener filter applying the ‘‘true’’ SNR would be expected
to under-filter the result in this case. This under-filtering would
tend to compensate for the over-filtering effect that results from
the use of a conventional Wiener filter rather than a ‘‘single-parti-
cle’’ Wiener filter, in the Ludtke et al. study.

5.2. Effect of masking on the FRC

It has been noted that the FRC (and analogously, the FSC in the
3D case) can produce unrealistically low estimates of particle res-
olution, and that this effect can be corrected by masking (Stewart
et al., 2000; LeBarron et al., 2008). The theory presented here quan-
titatively explains this effect. As we have shown, masking not only
reduces the amount by which the true resolution of the particle is
systematically underestimated, it also reduces the amount of ran-
dom error in the FRC estimate (and consequently in the resulting
SSNR/PSSNR estimates, see Fig. 5). Moreover, the results presented
here (Eq. (19), as well as Fig. 5) demonstrate that non-masked FRC
calculations can be adjusted to quantitatively correct for underes-
timation effects, simply by converting the FRC function to an
equivalent SSNR function and subsequently multiplying by the sca-
lar factor 1/fparticle (defined above) that expresses the ratio of the
molecular area to total image area. From the resulting PSSNR func-
tion, the particle resolution estimator FRCparticle, which will be
independent of image size, can be obtained. Thus, our results make
clear that, in the absence of this adjustment and/or masking, FRC
calculations will underestimate the resolution of a reconstruction
by a variable amount, depending on how large an image size was
chosen by the user.

We note that fparticle is somewhat difficult to determine pre-
cisely. One way to estimate this quantity is to use the molecular
weight of the particle, in combination with estimates of protein/
DNA density (in the case of biological macromolecules) to form
an estimate. This approach, however, neglects the possibility that
portions of the molecule may be disordered, abnormally dense,
or that an ordered solvation layer may be present. However, the
theory relations presented here suggest that fparticle could also be
determined experimentally from the image data set itself. Results
presented in Fig. 4D indicate that there is one unique value that
maximizes the masked real-space CCC agreement between the
particle estimate and the true particle density map, when applied
via the single-particle Wiener filter. While the true particle density
map is never known experimentally, a feasible alternative is to
search for the value of fparticle that maximizes the masked CCC be-
tween two half-data-set reconstructions. In this approach, the
mask used for CCC comparison need not extend over the entire
particle, but could be specifically designed to only include a subset
of the particle region that is known to be well ordered.

A difficulty with basing resolution estimates on FRC calculations
is that over-refinement of the alignment parameters can lead to
noise-derived artifactual signal in the particle reconstructions, thus
leading to overestimation of the resolution (Grigorieff, 2000).
While the current work does not address this issue, we note that
existing approaches are capable of minimizing or even eliminating
such artifacts (Stewart and Grigorieff, 2004): for example, by
emphasizing lower-resolution information during alignment, or
by performing independent refinement of alignment parameters
for half-data-set reconstructions. Combining such approaches with
the resolution estimation technique proposed here thus may pro-
vide an avenue to more accurate, less-biased estimates of the par-
ticle resolution.

5.3. Disadvantage of the SSNR as a resolution estimator, when
computed directly from image data

Earlier investigations of the SSNR of reconstructed single parti-
cles observed that with statistical analysis of the raw image data
(via expressions similar to Eqs. (13)) one can in certain circum-
stances obtain more accurate SSNR estimates in comparison to
those obtained from FRC calculations (Unser et al., 1987; Penczek,
2002). Our results and theory show, however, that for single parti-
cles this advantage is more than offset by the fact that the former
method of obtaining the SSNR must necessarily include all the
noise found within the solvent region of the images, leading to a
significant underestimation of the resolution of the particle as well
as substantially larger random fluctuations in the SSNR estimate it-
self. This disadvantage is particularly noteworthy for the case of
cryo-EM images, where it is necessary to process images substan-
tially larger than the particle diameter, in order to include informa-
tion delocalized due to the CTF of the microscope. Thus, ‘‘raw-data’’
methods of estimating the SSNR can lead to unacceptably high
noise levels, thus prevent the SSNR from being usefully rescaled
to reflect the true particle resolution.

A second disadvantage of the SSNR approach embodied in Eqs.
(13) is that its accuracy relies on the assumption that the Fourier
pixel values of the image transform obey normal statistics. Unfor-
tunately, molecular transforms are not guaranteed to have this
property (particularly when symmetry in the particle concentrates
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signal power in certain regions of Fourier space). For these two rea-
sons, masked FRC calculations should be preferred for computing
SSNR characteristics of isolated single particles, under most
circumstances.

5.4. Which ‘‘SSNR’’ to use?

We note that there is a certain ambiguity in the literature
regarding the term ‘‘SSNR’’. As originally introduced by Unser,
the SSNR described the final reconstruction, thus qualifying as a
resolution estimator (Unser et al., 1987). On the other hand, the
SSNRno CTF quantity required for use with the Wiener filter de-
scribes the original data and is independent of measurement con-
ditions (for example, SSNRno CTF does not depend on the CTF). Thus,
the SSNR obtained by the standard relation SSNR = 2 � FRC/
(1�FRC) is not itself suitable for Wiener filter application, because
this describes the final reconstruction. Our Eq. (19) provides a way
to back-calculate SSNRno CTF, namely by dividing the most accurate
available estimate of SSNRmerged (here obtained via masked FRC
calculation) by the mean sum-of-squared CTF values per Fourier
pixel.

As mentioned before, this back-calculation scheme is closely
related to the relation presented by Unser (Eq. (7) in Unser et al.
(1987)), which using our terminology is expressed as
SSNRmerged ¼ N � SSNRno CTF, where N is the number of images. In
the presence of CTF modulation, which was not considered by Un-
ser et al. (1987) the effective number of images contributing to a
given Fourier pixel is reduced from N owing to attenuation of each
image component, on average, by the CTF. Thus, averaging
N images together (using the Wiener formula) will improve the
SSNR of the final estimate (compared with a raw image) by only
a factor of NhCTF2i rather than N (see Appendix A). At higher reso-
lution, when large numbers of images with a random defocus
are gathered, the CTF falls between �1 and 1 in a sinusoidal
distribution, causing this ‘‘improvement factor’’ to converge on
the value N/2. This value therefore indicates that if a value
SSNRmerged is measured in a given image reconstruction,
SSNRno CTF should be estimated as SSNRmerged ¼ N � SSNRno CTF=2
(rather than SSNRmerged ¼ N � SSNRdata for the case of no CTF). We
emphasize here that SSNRno CTF, which refers to the signal present
before CTF modulation, is the correct quantity to apply in a conven-
tionally defined Wiener filter; in contrast, at least one prior usage
of the Wiener filter incorporated a variation on the SSNR in which
the signal power referred to the signal present after CTF modula-
tion (Zeng et al., 2007).

5.5. Multiple image measurements allow the Wiener filter to fully
re-localize the signal energy

A prior analysis of the Wiener filter (Downing and Glaeser,
2008) concluded that the Wiener filter fails to re-localize all signal
in a CTF-modulated cryo-EM image, leading to substantial degra-
dation in the resulting particle estimate. In that work, however,
the size of the considered data set was only a single image, in con-
trast to the large sets of variable-defocus images considered here.
As we have validated numerically (see Fig. 3), multiple image
measurements on a given particle allow the Wiener filter (includ-
ing our single-particle variant) to re-localize essentially all of the
signal energy, resulting in a particle estimate with minimized error
with respect to the true noise-free object.

A further difference between our analysis and that of Down-
ing and Glaeser is that we apply a frequency-dependent SNR
term in the Wiener filter. The analysis of Downing and Glaeser
followed the assumption that the SNR was a constant term inde-
pendent of resolution. This assumption is commonly made in
cryo-EM applications of the Wiener filter where accurate resolu-
tion-dependent SSNR estimates have not been obtained (Gri-
gorieff, 2007; Zeng et al., 2007; Frank, 2006) but is not
accurate for imaged biological molecules (see Fig. 1C). The
assumption of a constant SNR drastically changes the output
characteristics of the Wiener filter, leading to over-filtering at
low spatial frequencies (where the true SSNR is much higher
than the average value) and under-filtering at high spatial fre-
quencies (where the SSNR is much lower than the average va-
lue). The particle estimate thus produced will therefore have
higher error relative to application of the correct, resolution-
dependent SSNR term within the Wiener filter. In addition, the
ability of the Wiener filter to correct CTF-driven signal delocal-
ization is compromised by the inappropriate use of a constant
SNR term, leading to significantly more delocalization in such
an estimate particularly when noise levels are high, in compari-
son to when the correct SSNR function is used (compare Fig. 3C
in Downing and Glaeser (2008) to Fig. 3C here).

We can therefore conclude that applying the Wiener filter to
multiple images and utilizing a more accurate SSNR function, as
done here, leads to near perfect recovery of the delocalized par-
ticle signal, in contrast to the single-image, constant-SNR sce-
nario considered by Downing and Glaeser. It is sometimes
stated that if a particle image is delocalized in a noisy image
field, the particle signal is necessarily ‘‘contaminated’’ by extra
noise due to it being spread over a larger noisy area (Downing
and Glaeser, 2008; LeBarron et al., 2008). The current analysis
shows that this problem is avoided when multiple images are
combined using a Wiener filter, because the particle signal will
be effectively re-localized, and this re-localization will occur
independently of the noise component of the images (assuming
linear additivity of the noise and signal components as in stan-
dard image formation models). We note, however, that CTF mod-
ulation nevertheless leads to a substantial loss in signal energy,
regardless what type of reconstructing filter is applied, simply
due to attenuation in the average signal amplitude; such atten-
uation, for example, is evident at low resolution where the CTF
value approaches a minimum value near zero. Resetting the
CTF of the microscope to a uniform value of one, as is the goal
of recently-introduced Zernike ‘‘phase plate’’ correctors (Danev
and Nagayama, 2010), appears to be the only feasible way of
mitigating signal loss due to this latter effect.
6. Conclusions

We have presented a new method based on the Wiener filter for
minimizing mean-squared error in single-particle reconstructions,
together with a comprehensive theory connecting this filter to
mask operators and resolution estimation. While we have re-
stricted the analysis in this report to the problem of 2D images,
we note that our theoretical relations may also be extended to
the problem of 3D reconstruction, where a further benefit
emerges: the Wiener filter can actually improve the Fourier-space
statistics of a 3D reconstruction by dampening poorly-sampled re-
gions of Fourier space. In contrast, improvements in the 2D case
are limited to gains in real-space CCC statistics; in other words,
the FRC is unchanged by the Wiener filter for the case where Fou-
rier space is uniformly sampled.
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APPENDIX A: ESTIMATING THE SSNR IN CTF-CORRUPTED IMAGES 
 
Beginning with the image formation model presented in the text, we have: 
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for a series of N images (FT-1 = inverse Fourier transformation). 
 
Assuming normally distributed noise, let the standard deviation of the noise terms 
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The expected measurement variance of the above estimate will be (for a given Fourier pixel s): 
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From Equation (A.4) it can be seen that if all the CTF's were identically equal to 1, one would obtain a 
variance that was reduced by a factor of 1/N -- the expected result when N identical random variables 
are averaged together.  On the other hand, if  N = 1 and the CTF is very small, then one obtains a very 
large increase in the variance, owing to inflation of the noise term in Equation (A.2) relative to the 
signal. 
 
From Equation (A.4) we obtain the more general expression for the expected reduction in variance of 
the estimate, over the entire resolution zone R, from the N-image estimate: 
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where we have used the symbol ∑

R
R =n 1 to denote the number of Fourier pixels within the resolution 

zone R.  Note that Equation (A.5) will be identical to Equation (A.4), in the case where the CTF terms 
are everywhere the same within the resolution zone; this condition would be violated for example if 
astigmatic CTF's were present. 
 
Signal strength estimate 
 
We now write an estimate of the signal variance, using a weighted average composed from the above 
estimates ( )sM̂  for each pixel s  within the image Fourier transform contained within a resolution zone 
R.  We note that each of these ( )sM̂  terms within the composite average may have a potentially 
different variance and mean.  We therefore weight each term (corresponding to a given ( )sM̂  ) by the 
inverse of  the measurement variance defined in Equation (A.4) .  
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Removing the leading normalization factor, we obtain a non-central chi-squared expression: 
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The above expression may be compared to the result of Unser et al. (1987) (following their Equation 
A.1 ), who did not include CTF terms in their analysis: 
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which clearly agrees with Equation (A.4) in the case where all CTF values are all identically equal to 1. 
 
The chi-squared expression Equation (A.4) is characterized by the non-centrality parameter (Stuart et 
al., 2009): 
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We will use Equation (A.5) to derive an unbiased estimate of the signal-to-noise ratio, below. 
 
Just as with our expression for 2

Rsσ  above, our expression for λ  differs from the result of Unser et al. 
only by the replacement of the factor N by a sum of squares CTF term, such that the expressions are 
equivalent when all CTF values are identically equal to one: 
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Noise strength estimate 
 
We now construct a biased estimate of the noise variance:   
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We can take the expectation value and reduce this expression to a function of 2

Rnσ , in order to 
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determine the bias of this expression, as follows: 
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We now reduce the summation, using the fact that the noise component of 

€ 

X i( ) and 

€ 

X j( )  is uncorrelated 
the above expression except when i is equal to j. 
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This result demonstrates that the bias in this noise variance estimate can be eliminated by using 
Bessel's correction,

€ 

N −1( ) /N , as is the case in the absence of CTF modulation (Unser et al., 1987). 
 
Constructing a chi-squared expression, summed over the entire resolution zone R, 
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we thus obtain the following unbiased estimate for 2

Rnσ : 
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Estimate of the signal-to-noise ratio: 
 
We now construct a quantity Nα̂ , from which we will determine the signal-to-noise ratio, by taking the 
ratio of the above two chi-squared expressions, after dividing each chi-squared expression by the 
appropriate degrees of freedom: 
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The estimator Nα̂  follows a non-central F distribution.  We can therefore obtain an unbiased estimate 
for this quantity in terms of 

€ 

v1 , 

€ 

v2 ,  and λ , defined as the degrees of freedom in the 
numerator/denominator and non-centrality parameter of the numerator respectively: 
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The result is (Stuart et al., 2009): 
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and for 12>>v  (satisfied when N and/or

€ 

nR  are sufficiently large) Equation (A.20) reduces to: 
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Thus we can obtain the unbiased estimator for the SSNR by solving for 2

2

Rn
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σ
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Comparing this result to the equivalent expression obtained in the absence of CTF terms (Unser et al., 
1987): 
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we see that the new estimate is nearly the same, except that the correction term will increase from 1/N 
to a larger value due to the fact that the CTF values will always be less than 1.  Thus, we tend to 
overestimate the SSNR even more, due to the CTF-induced attenuation which amplifies the 
contribution of noise to the SSNR estimate. 
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