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The structures of many helical protein filaments can be derived from electron micrographs of their
suspensions in thin films of vitrified aqueous solutions. The most successful and generally-applicable
approach treats short segments of these filaments as independent ‘‘single particles’’, yielding near-atomic
resolution for rigid and well-ordered filaments. The single-particle approach can also accommodate fila-
ment deformations, yielding sub-nanometer resolution for more flexible filaments. However, in the case
of thin and flexible filaments, such as some amyloid-b (Ab) fibrils, the single-particle approach may fail
because helical segments can be curved or otherwise distorted and their alignment can be inaccurate due
to low contrast in the micrographs. We developed new software called Frealix that allows the use of arbi-
trarily short filament segments during alignment to approximate even high curvatures. All segments in a
filament are aligned simultaneously with constraints that ensure that they connect to each other in space
to form a continuous helical structure. In this paper, we describe the algorithm and benchmark it against
datasets of Ab(1–40) fibrils and tobacco mosaic virus (TMV), both analyzed in earlier work. In the case of
TMV, our algorithm achieves similar results to single-particle analysis. In the case of Ab(1–40) fibrils, we
match the previously-obtained resolution but we are also able to obtain reliable alignments and �8-Å
reconstructions from curved filaments. Our algorithm also offers a detailed characterization of filament
deformations in three dimensions and enables a critical evaluation of the worm-like chain model for bio-
logical filaments.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Electron micrographs of thin (tens of nanometers) films of vitri-
fied, dilute suspensions of biological macromolecules and their
assemblies can be analyzed to deduce their three-dimensional
(3D) structure (Frank, 2006). Cases in which proteins form filamen-
tous assemblies are particularly well suited to structure determi-
nation, since a single image of a helical filament can yield a full
tomographic series of projections through the helical protomer.
Helical filaments permitted some of the earliest examples of struc-
ture determination by electron microscopy (De Rosier and Klug,
1968) and continue to be studied in many different contexts
(DeRosier, 2007).
In recent years, most investigators have been using variations
on iterative algorithms originally developed for the study of so-
called single particles. When adapted to helical structure determi-
nation, these methods treat short (tens of nanometers) segments of
imaged filaments as independent projections of the unknown 3D
structure to be determined. The length of those segments is chosen
carefully. They must be long enough to allow for reliable and accu-
rate alignment against projections calculated from the current 3D
reconstruction yet, because no helical filament is perfectly rigid,
short enough to approximate the canonical helical assembly de-
picted by the 3D reconstruction (Bluemke et al., 1988).

The single-particle approach may be less successful when ap-
plied to a class of protein filaments whose mass-per-length and
persistence lengths (with regards to bending, torsion and/or
stretching) are too low to be amenable to such image analysis, gi-
ven a set of optical and detection conditions. Such filaments are so
deformable that any given image segment would be unlikely to
satisfy both length requirements. Luckily, many filaments of bio-
logical importance do not fall under this regime. Even filamentous
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actin (f-actin) appears to be (or can become) rigid enough when
imaged in cryo-EM experiments to yield sub-nanometer resolution
(Fujii et al., 2010; Galkin et al., 2012).

Fibrils formed by amyloid-b (Ab) peptides, which are implicated
in Alzheimer’s disease, present an interesting intermediate case,
whence sub-nanometer reconstructions have been obtained, but
with some difficulty. A strong meridional reflection at �1/4.8 Å�1

can be seen in averaged power spectra computed from existing
micrographs of Ab fibrils (Sachse et al., 2008), suggesting that a
high degree of axial order is preserved in those specimens and that
the images should therefore be of sufficient quality for higher-
resolution reconstructions to be attainable. However, processing
micrographs of unstained Ab fibrils is challenging because they
are essentially featureless in the axial direction at resolutions
>4.8 Å and because the signal-to-noise ratio (SNR) in micrographs
recorded onto film is insufficient to give reliable alignments
(Sachse, 2007; Sachse et al., 2008). Many Ab fibril morphologies
resemble flat nanoscopic ribbons with slow twists on the order
of 1 �/nm (Meinhardt et al., 2009), so that their projection images
periodically exhibit thin (�4–7 nm) high-contrast crossovers with
projected molecular weights of �5–8 kDa nm�2 and wide (�10–
20 nm) low-contrast regions with projected molecular weights of
�2.3–3.4 kDa nm�2 (Schmidt et al., 2009), which is comparable
with f-actin (�2.8 kDa nm�2, width �6–10 nm).

Two avenues to improving the resolution of Ab fibril structures
therefore present themselves: improving the SNR of micrographs
and/or improving the image analysis algorithms to make them
even more robust to low SNR and filament deformations. Here,
we explore the second avenue and attempt to make iterative
real-space refinement of Ab fibrils even more robust to low SNR
and fibril deformations.

In previous work, knowledge about the connectivity of image
segments coming from the same filaments and their geometric
relationships due to helical symmetry was used as a criterion for
validation of segment alignments and for the a posteriori selection
of segments. For example, when analyzing micrographs of TMV,
Sachse et al. (2007) discarded those segments for which either
the assigned polarity contradicted that of other segments from
the same filament or the shifts perpendicular to the helical axis
were greater than �10 Å. Similar a posteriori exclusion of segments
is employed by the commonly-used method developed by Egelman
(2000). In our approach we tested whether this type of criterion
could also be used as a prior during the iterative real-space pro-
cessing of filament segments to improve the overall quality of their
alignments. In particular, we were interested in whether it would
be possible to reliably ‘‘align’’ filaments with high curvature and/
or low contrast.

To help answer these questions, we developed Frealix, a software
tool that introduces ‘‘full filament’’ restraints so that helical deforma-
tions can be tracked accurately using arbitrarily short linear
segments, which are not treated independently from each other.

2. Theory

2.1. Frealix

Frealix is a program for the analysis of electron micrographs of
helical filaments. Its inputs are micrographs, filament coordinates,
estimated helical parameters and a preexisting 3D reconstruction.
Its outputs are a 3D reconstruction, refined coordinates and refined
helical parameters.

Internally, each filament is represented as an assembly of (rigid-
body) subunits positioned along a helix which has a space curve as
its axis. The space curve and helical parameters are refined itera-
tively by maximizing a function which compares the experimental
(noisy) image of the filament to projections of the current
reconstruction as predicted by its model. The scoring function also
integrates restraints derived from mechanical considerations when
modeling filaments.

Below, we describe the parametrization of our model for helical
filaments (Section 2.2), the function used to ‘‘score’’ sets of param-
eter values given a model and a micrograph (Section 2.3), maximi-
zation strategies we use during refinement (Section 2.4) and the 3D
reconstruction protocol (Section 2.6).

2.2. Modeling helical filaments

The simplest model of a straight filament without distortions can
be described by two parameters: the rise (Dt) and twist (Du) per
helical subunit (Fig. 1A). If we let the helical axis coincide with the
Z axis and position the first asymmetric unit on the Z = 0.0 plane,
the Z position of the ith asymmetric unit is Z = (i � 1)Dt and its
(X,Y) coordinates are obtained from the (X,Y) coordinate of the first
unit by i � 1 rotations of Du around Z. All the asymmetric units lie
on a continuous helix which has a characteristic pitch, the distance
along its axis over which a revolution (2p) is completed. One can de-
fine t, the distance along the helical axis: in this simple case t = Z.

A more generalized description of observable filaments needs to
account for their elasticity with regards to bending, torsion and
stretching. To achieve this in the simplest possible way, we chose
to describe the axis of a filament as a space curve r defined by 3
cubic spline functions x(t), y(t) and z(t) (t, as before, is the arc
length along the axis), which interpolate a set of n waypoints de-
fined by (xi,yi,zi) coordinates, where i = 1, . . ., n.

At waypoint i, the hi (out-of-plane) and wi (in-plane) Euler an-
gles are related to the curve’s tangent vector (Fig. 1B) and thus
its derivatives x0(ti), y0(ti) and z0(ti), and can be used as constraints
when solving the splines:

x0ðtiÞ ¼ sin hi cos wi

y0ðtiÞ ¼ sin hi sin wi

z0ðtiÞ ¼ cos hi

ð1Þ

where ti is the arc length from the filament’s first waypoint to way-
point i. Interpolating cubic splines which are thus constrained by
their tangents are sometimes called Hermite splines (Knott, 2000
p. 66). Conversely, Euler angles at any point along the filament axis
can be computed from the local tangent vector:

wðtÞ ¼ tan�1 y0ðtÞ
x0ðtÞ

� �

hðtÞ ¼ � tan�1 y0ðtÞ
z0ðtÞ sin wðtÞ

� �
or

hðtÞ ¼ � tan�1 �x0ðtÞ
z0ðtÞ cos wðtÞ

� �
:

ð2Þ

Arbitrary bending deformations of the helical axis can be accurately
described by these three spline functions, given a sufficient number
of waypoints.

We also define two additional parameters per waypoint –
rotation around the helical axis (ui) and helical subunit number
(hi) – and use natural cubic splines to interpolate values for these
parameters. This allows us to define at every point along the
filament the local helical parameters Du and Dt, the axial twist
and rise which relate a subunit to its neighbors:

DtðtÞ ¼
1

h0ðtÞ

D/ðtÞ ¼
/0ðtÞ
h0ðtÞ

:

ð3Þ

Each waypoint thus contributes 7 parameters to the description of a
filament: x, y, z, h and w describe the trajectory of the helical axis



Fig.1. Helical filament parametrization. (A) Ideal straight helix. (B) A generalized helical axis is a space curve r, drawn in bold. Its x, y and z positions are functions of t, its arc
length, and it interpolates a set of n waypoints (blue dots). At any given point, the derivatives of x, y and z with respect to t define the tangent vector (dashed arrow) and are
related to the local (instantaneous) Euler angles w (in-plane) and h (out-of-plane rotation). The helix was not drawn in this panel, for clarity.
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while u and h describe the position of helical lattice points (we
chose the convention that subunits be located where h(t) is inte-
gral). Every possible asymmetric, 1-start helical lattice can be mod-
eled by these 7n parameters (where n is the number of waypoints).
Multiple helical starts and symmetries can be described by adding 3
more parameters: axial symmetry, perpendicular (side dyad) sym-
metry and the number of starts. Although these 3 parameters can
be supplied by the user, they are not optimized by Frealix.

The goal of refinement within Frealix is to find the best possible
description of each imaged filament using this parametrization. In
other words, optimal values for 7n parameters must be sought. We
define optimal parameter values as those which maximize the
scoring function described below.
2.3. Scoring function

The purpose of the scoring function is to evaluate the agree-
ment between the (3 + 7n)-parameter description (internal repre-
sentation) of a filament and its experimental image, given a 3D
reconstruction. To achieve this, we compute a normalized cross-
correlation coefficient between projections from the reconstruc-
tion and image data along the path of the filament. Our algorithm
is described below and in Fig. 2.

First, the model of the filament must be updated with the new
parameter values to be evaluated (of which there may be up to 7n).
In practice,

(1) the new values for xi, yi, zi, hi and wi (i = 1,..., n) are used as
constraints to solve the x(t), y(t) and z(t) splines and redefine
the axial space curve;

(2) the arc lengths between waypoints are recalculated using
Pythagoras’ relation over very short steps, giving new values
of ti;

(3) steps 1 and 2 are repeated until convergence – the axial
space curve is now arc-length parametrized;

(4) u(t) and h(t) are solved as natural cubic splines, which inter-
polate the new ui and hi values.

Once the filament model has been updated, a set of m ‘‘scoring’’
positions regularly spaced along the path of the filament is defined.
The helical filament will be treated using a linear approximation at
each position, with m (and therefore the linear segment length)
chosen such that the approximation is accurate enough even in
cases of large local deformations (see Section 2.3.1). At each
position:

(1) the image of a small segment is extracted from the micro-
graph and Fourier-transformed (the segment length is such
that there is no overlap with neighboring segments);

(2) using the Euler angles corresponding to the model’s space
curve tangent at that point (Eq. (2)), a plane through the
Fourier transform of the 3D model is also extracted;

(3) the pixel-wise cross-product between the image and the
projection is evaluated (up to a radius corresponding to
the maximum spatial frequency to be used during refine-
ment), as well as the power of the image and the power of
the projection.

The cross-correlation between the model and the experimental
image of the filament is then the sum of the cross-products accu-
mulated at each of the m points, normalized:

CC ¼
P

m

P
pixelsimage projffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m

P
pixelsimage

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m

P
pixelsproj

q ð4Þ

Optionally a weighted, rather than linear, cross-correlation score
can be computed (Stewart and Grigorieff, 2004) and/or mechanical
considerations can be used to modify the scoring function
(Section 2.6.3).

2.3.1. Segment length
The choice of m (the number of scoring positions), which deter-

mines the segment length, is crucial to successful refinement of
helical structures. Lower m values allow for faster computation,
since there are fewer projections to compute. However, since our
algorithm does not use overlapping segments (each pixel in the
micrograph is used only once by the scoring function), lower m val-
ues also imply longer segments, which offer less accurate approx-
imations of local deformations such as bending of the helical axis
or local variations in helical parameters.



Fig.2. Scoring function algorithm.
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Among other considerations, our algorithm imposes an upper
bound on the segment length L (and therefore m) for a given fila-
ment by taking into account its maximal local curvature (c, in
Å�1, see Section 2.6.3), the spatial frequency corresponding to the
target resolution for the refinement (f, in Å�1; this can be specified
by the user at runtime) and a maximum tolerated phase error (UT,

for example p/6): L 6
ffiffiffiffiffiffi
4UT
fpc

q
.

Future implementations of the algorithm could include similar
upper bounds on L derived from torsional and stretching
deformations.
2.4. Maximization strategy

Finding the best model for each filament requires that we max-
imize the scoring function described in Section 2.3. Because of the
large number of parameters (up to 7n, where n > 3), this is a search
problem in a high-dimensionality space which is likely to be mul-
timodal because of the periodic nature of the filaments and their
images. Below we describe some strategies we implemented in
Frealix to approach this problem.

2.4.1. Minimizers
Frealix currently uses three types of minimizers: Powell conju-

gate gradient (Harwell Numerical Library, 1979), downhill simplex
(Nelder and Mead, 1964) and differential evolution (Brest et al.,
2006; Storn and Price, 1996). The choice of minimizer is made at
runtime by the user (conjugate gradient being the default). The
user has the option to start the minimizer several times at random-
ized positions in the neighborhood of the current best parameter
values. Such multi-start strategies can lead to the discovery of bet-
ter local maxima, particularly during early stages of refinement.

2.4.2. Reducing dimensionality
The refinement in 7n dimensions of a helical reconstruction can

account for many possible types of filament deformations. At times
it is appropriate to ignore some of these deformations and thus re-
duce the dimensionality of the problem, for example because such
deformations are known to be insignificant at the target resolution.
As an extreme example one can imagine an ideal filament, entirely
rigid and with every helical subunit related to its neighbors by the
canonical helical parameters. Such an idealized filament could be
parametrized by 7 quantities (five to describe its straight helical
axis, one for the length of the filament and one for the position
along that length of one of the repeats).

Frealix allows for many combinations of refinement parameters
between these two extremes (7 and 7n). Here are a few examples
available in the current implementation:

� The rise per subunit can be held constant, which may be a good
approximation for amyloid b fibrils (this replaces n dimensions
corresponding to hi and replaces them with a single value for
the filament’s phase origin of subunits).
� One may ‘‘turn off’’ out-of-plane (h) refinement, e.g. because it is

not necessary when targeting 8–10 Å resolution for some spec-
imens (e.g. Sachse et al., 2008). This removes 2n dimensions
from the refinement problem (Z and h) by constraining fila-
ments to the plane of the micrograph, which may be approxi-
mated by using CTF estimation (Mindell and Grigorieff, 2003).
� The Z position of waypoints can be computed from the out-of-

plane tilt at waypoints (hi angles), the filament’s average Z
(defocus) and a constraint to minimize the filament’s curvature.
This removes n dimensions.
� The rise and/or twist per subunit can be held constant by intro-

ducing discontinuities in the helix between waypoints, so that
the internal representation of the helical assembly has sharp
discontinuities halfway between waypoints, while the axis is
still a continuous space curve (this is described in detail in
Section 2.4.2.1). This can remove n or 2n dimensions.

There are other ways to reduce the minimization’s
dimensionality:

� the number of waypoints can be reduced (see Section 2.3.1);
� rather than refining all of a filament’s free parameters simulta-

neously, each waypoint can be refined in turn;
� longer filaments can be ‘‘split’’ so that they are modeled as two

independent filaments (connectivity restraints are then lost, but
this can be alleviated by leaving ‘‘overhanging’’ ends).
2.4.2.1. Dropping continuity restraints. Frealix implements two run-
time options for the user to drop continuity restraints. One option
drops all restraints and treats the n waypoints as independent
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objects, in a manner similar to previously-described single-particle
approaches.

The other option lets the user drop continuity restraints for u
and/or h. In this case, linear extrapolation from the nearest way-
point (rather than cubic spline interpolation between waypoints)
is used to compute an arbitrary point’s u(t) and h(t) parameter val-
ues. All other parameters are computed as described in Section 2.2.

2.4.3. Normal modes parametrization of the search space
Under the control of a runtime option, the minimizer can either

refine directly the real-space representation of filaments (de-
scribed in Section 2.2) or refine a normal mode re-parametrization
thereof. The normal mode analysis describes deviations from a per-
fectly straight helix with constant helical parameters but it does
not attempt to be mechanically realistic. Rather, it is used as an
alternative way for the minimizer to address and modify the con-
figuration of filaments. The analysis is done as follows.

Before refinement begins, the analysis is set up by treating the n
waypoints as coupled oscillators with coupling constants inversely
proportional to the arc lengths between them. We then compute
the one-dimensional normal mode eigenvectors and eigenvalues
for the system and sort them by increasing eigenvalues (i.e. low-
frequency modes first). Typical normal modes (eigenvectors) are
plotted in Fig. 3 for the case where waypoints are equidistant.
We then perform a linear fit of the 5 splines (x, y, z, u, h), treat
these fits as the equilibrium configuration for each dimension
and use the normal modes (eigenvectors) to describe residuals
from these fits. This amounts to a change of coordinate system.

During refinement, if the user has activated that option, the
minimizer refines the normal mode amplitudes corresponding to
these transverse displacements rather than the actual waypoint
parameter values. The normal mode amplitudes are converted to
waypoint parameter values before the scoring function is called.

Normal-mode parametrization often results in a much sparser
representation of the filament model. For example, decreasing
the twist per unit length along the filament involves increasing
the amplitude of the second mode (mode 1 in Fig. 3) for the u
spline. Without the use of normal modes, the minimizer would
have to ‘‘tweak’’ n values to achieve the same result.

2.4.4. Refining waypoints sequentially
In some cases, only a few of the waypoints are misaligned. For

those situations, Frealix has an option to refine waypoints sequen-
tially rather than simultaneously. This reduces considerably the
dimensionality of the minimization problem while retaining the
full set of restraints from the full-filament model. However, it
may then miss solutions that involve ‘‘moving’’ several neighbor-
ing waypoints together. One may iterate between sequential and
simultaneous maximization of waypoints during refinement
Fi
t r

es
id

ua
ls

 

Mode 0

 

 

Mode 1

Fi
t r

es
id

ua
ls

Arc length

Mode 2

 

Arc length

Mode 3

Fig.3. Normal modes of linear fit residuals in the case where waypoints are equally
spaced along the filament. These modes are reminiscent of the hydrodynamic
modes of an unconstrained slender rod (Howard, 2001, p. 108).
(normal-mode reparametrization can only be used during simulta-
neous waypoint refinement).

2.5. Refinement bootstrapping

Frealix is a refinement program. Although this may be a feature
in a future release, it does not attempt an initial estimate of the
helical parameters. Therefore, a good estimate of those parameters
must be supplied by the user. This can be done by selecting rela-
tively straight filaments to get estimated helical parameters using
single-particle or Fourier–Bessel approaches (see for example
Desfosses et al., 2013 and references therein). Once helical param-
eters (and a reliable 3D reconstruction) have been obtained, Frealix
can be used to analyze the full dataset, including bent and twisted
filaments. So far, we have implemented two ways to obtain initial
values for the 7 waypoint parameters refined by Frealix:

� A Frealign (Grigorieff, 2007) parameter file and the correspond-
ing stack of boxed images can be given as input. A normalized
cross-correlation search (Roseman, 2003) is performed to find
which micrograph each segment was extracted from as well
as its coordinates.
� The relevant data are extracted from Boxer (Ludtke et al., 1999)

coordinate files or IMOD (Kremer et al., 1996) model files (X,Y,
w) and the output of either CTFFIND or CTFTILT (Mindell and
Grigorieff, 2003; Z, h). If the supplied X,Y coordinates are of
crossovers, u angles of i � 180� degrees are assigned to way-
points (i is the waypoint index). Otherwise, the helical parame-
ters supplied by the user are assumed to be constant along each
filament and u and h values are assigned as a linear function of
arc length (in which case the filaments are not ‘‘phased’’ with
respect to each other).

2.6. Three-dimensional reconstruction

3D reconstruction in Frealix is done using a direct Fourier inver-
sion similar to that of Frealign (Grigorieff, 2007). At each point
along the filament where h(t) is integer, an image is extracted from
the micrograph, Fourier transformed, multiplied by the local CTF,
filtered with a B factor, and inserted into the 3D reconstruction.
The Euler angles at which this insertion occurs can be computed
from the model splines, as detailed in Section 2.2. Therefore,
whereas the scoring function relies on a piecewise linear approxi-
mation of filament deformation during refinement, this assump-
tion is dropped during reconstruction. If the helical geometry
includes a point-group symmetry, the insertion is repeated in the
symmetry-related orientations. Squared CTF functions are accu-
mulated in a separate volume and once all image and CTF2 data
have been accumulated into their respective volumes, a Wiener-
like filter is applied as described by Grigorieff (2007), yielding a
single volume which is back Fourier transformed.

This real-space volume suffers from two distinct artifacts:
attenuation near its edges and corruption by aliases. The attenua-
tion is due to the convolution step during Fourier-space interpola-
tion and is corrected exactly using the inverse of the reciprocal of
the convolution kernel. The corruption by aliases, which is due to
the sampling step of the interpolation operation, cannot be avoided
but since the aliases are also modulated by the attenuation func-
tion, a judicious choice of convolution kernel and reconstruction
volume dimensions can minimize their influence (Jackson et al.,
1991). We have implemented several interpolation schemes in
Frealix (nearest-neighbor, linear and windowed sinc), which can
be selected at run-time by the user for use during refinement
and reconstruction. The appropriate attenuation function correc-
tion is performed on the final 3D reconstruction volume, according
to the user’s choice. The default is linear interpolation.
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2.6.1. Helical symmetrization
Currently, to our knowledge, the most common way to impose

helical symmetry on a real-space volume (for example in Frealign
(Alushin et al., 2010) or SPARX-IHRSR (Behrmann et al., 2012)) is to
‘‘smear’’ a central slab of the volume over the full volume, with
rotations matching the Z-shift of the slab. In the reconstruction
algorithm used by Frealix, however, only the ‘‘central’’ helical
asymmetric unit of the reconstructed volume is optimally recon-
structed. All the other repeats will be slightly low-pass filtered,
depending on their distance from the origin of the reconstruction
and on filament deformations. Frealix therefore implements a heli-
cal symmetrization algorithm whereby each output voxel is
mapped back into the central asymmetric unit cell and its value
interpolated from the input volume at that position.

In our implementation, the primitive helical unit cell is defined
by the two basis vectors ~a and ~b which, in a (u,z) plot (Fig. 4), are
the vectors that define the helical starts with the smallest absolute
rise and twist per subunit, respectively. This choice is intuitive
when visualizing helical reconstructions such as TMV, f-actin, etc.
because it relates a given repeat to its nearest neighbors to the
sides (~a) and above and below (~b). For example, in the case of a
TMV reconstruction, the chosen helices are 1- and 16-start, respec-

tively: ~a ¼ D/
1�start

Dt
1�start

� �
and ~b ¼ D/

16�start
Dt

16�start

� �
.

When looping over output voxels, the interpolating coordinates
are computed by converting from Cartesian to cylindrical coordi-
nates, then to indexed (u,z) lattice coordinates, which can be
mapped to the primitive unit cell by translation by an integer
multiple of ð~a;~bÞ. The coordinates are then converted back via
cylindrical coordinates to the Cartesian grid, where interpolation
is carried out.

2.6.2. Fourier shell correlation
For the purposes of spectral SNR estimation, for example to ap-

ply a figure-of-merit filter, Fourier shell correlations (FSC) may be
computed at every refinement round. For this, the data are split
into two groups, either even- and odd-numbered filaments or the
first and second halves of a filament if only one is available. 3D
reconstructions are computed from each half, helical symmetry is
imposed on both volumes and a mask is computed from each vol-
ume. These masks are then applied to each half-dataset recon-
Fig.4. (u,z) Plot of the real-space helical lattice of TMV. This is the real-space
equivalent of (n,Z) plots (DeRosier, 2007). The two axes are scaled arbitrarily to aid
visualization. Two vectors ~a and ~b are chosen to define the primitive helical unit
cell. In Frealix, the helical starts with the smallest absolute rise (1-start) and twist
(16-start) per subunit are selected. Any point P (gray) with cylindrical coordinates
(UP,zP; light gray) can be mapped into the unit cell (gray shaded area) by first
recasting its coordinates to the ð~a;~bÞ coordinates system, giving (x,y; in blue) and
then shifting it by integer numbers of ~a and ~b.
struction before the volumes are Fourier transformed for FSC
computation.

The masks are computed from the reconstructed volumes thus:
(1) the volume’s Z edges are tapered to 0.0 in real space with a
cosine-edge falloff over the first and last 4 slices; (2) a Fourier-space
low-pass filter is applied with a cosine falloff width of 1/40 pixels�1

(equivalent to 7.5 Fourier shells for a volume of 3003 voxels) so that
frequencies beyond 1/20 Å�1 are zeroed; (3) the filtered volume is
binarized such that the number of non-zero voxels corresponds to
the expected protein volume; (4) the first and last 20% of Z slices
are set to 0.0; (5) the binary mask is ‘‘softened’’ in real space with
a cosine edge extending from the current 3D boundary with a falloff
of �16 pixels.

2.6.3. Geometrical & mechanical properties
Using the parametrization introduced in Section 2.2, it is

possible to evaluate geometrical properties of each filament such
as curvature and torsion. The local curvature C(t) (in units of
inverse distance or radians per distance) can be evaluated from
the axial space curve’s first and second derivatives r0(t) and r00(t)

(Kreyszig, 1959): CðtÞ ¼ j.ðtÞj ¼ jr
0ðtÞ � r00ðtÞj
jr0ðtÞj3

. The .(t) vector lies

in the plane normal to the tangent r0(t) and indicates the direction
of filament bending at t, in the laboratory frame of reference. This
can be affine-transformed to the frame of reference of the 3D
reconstruction by using the Euler angles u(t), h(t) and w(t).

In addition to curvature, local torsional and stretching deforma-
tions can be characterized relative to the canonical (undeformed)
helical twist per unit length ðu00Þ and rise per subunit (1=h00)
(Kornyshev et al., 2007): TðtÞ ¼ /0ðtÞ � /00 and SðtÞ ¼ h0ðtÞ � h00.

If the rigidities (persistence lengths) of a filament with respects
to curvature, torsion and stretch are known, the total elastic energy
associated with an observed deformed state can be evaluated
by integrating the squared deformations over its arc length L
(Kornyshev et al., 2007):

E ¼ 1
2

kBT
Z L

0
lc1 C1ðtÞ2 þ lc2 C2ðtÞ2 þ ltTðtÞ2 þ lsSðtÞ2dt;

where lc1 and lc2 are the principal bending persistence lengths and lt
and ls are the torsion and stretching persistence lengths. In the case
of isotropic bending rigidity, a single curvature term and bending
persistence length are sufficient.

Assuming that observed deformations are thermal in
nature, the probability of observing a particular deformation is re-
lated to the deformation energy by Boltzmann’s constant:
PðEÞ / expð� E

kBTÞ (Boal, 2002). For example one might expect a nor-

mal probability distribution of curvatures, so that large curvatures

are unlikely to occur: PðEÞ / exp � 1
2 lc
R

CðtÞ2dt
� �

(assuming isotro-

pic bending rigidity and thus a single bending persistence length).
If the persistence lengths are known, these Gaussian priors can

be used to improve our search for the correct parameter values for
a given filament, by biasing the scoring function against large fila-
ment deformations (Chen et al., 2009):

S ¼ CC þ r2 �1
2

Z
lcCðtÞ2 þ ltTðtÞ2 þ lsSðtÞ2dt

� �
ð5Þ

In Frealix, the user can activate any combination of these three re-
straints and specify the relevant persistence lengths on input. In the
current version, isotropic bending rigidity is assumed in the imple-
mentation of the curvature restraint.

3. Implementation

Frealix is implemented in Fortran 2003 with OpenMP directives
for shared-memory parallelism. Image file input/output and Powell
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conjugate gradient minimizer routines were adapted from Frealign
(Grigorieff, 2007), while the rest of the code was developed inde-
pendently. It is dependent on the FFTW (Frigo and Johnson,
2005) and GSL (Galassi et al., 2003) libraries. Source code and exe-
cutable binaries are available from http://grigoriefflab.janelia.org.
4. Results

To test the algorithms implemented in Frealix and help mini-
mize the number of implementation errors, we re-processed data-
sets which had been analyzed previously with single-particle
methodologies (Sachse et al., 2008, 2007).
4.1. Ab(40) fibrils

We selected for analysis 450 filaments (ranging in length from
�0.3 to 1.6 lm; Fig. 5F) from 63 micrographs densitometered by
Sachse et al. (2008). We included all the filaments we could select
visually, regardless of their curvature or crossover-to-crossover dis-
tances, excluding only those which were bundling or aggregating
with others and those for which we could not select three consec-
utive crossovers. The positions of crossovers were selected manu-
ally using the program Boxer (Ludtke et al., 1999), and for each
filament we additionally selected two extra (non-crossover) points
at either end of the filament. CTFTILT (Mindell and Grigorieff, 2003)
was used to estimate the defocus of the micrographs.

To generate a starting model, a single fibril was reconstructed
by assigning u angles of multiples of 180� to crossover points
(see Section 2.5). This reconstruction was then refined and used
as a starting model for the analysis of the full dataset.
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Fig.5. Ab(40) fibril reconstructions. Central sections of 3D reconstructions of Ab(40) fibri
(B), and the 188 straightest filaments with mean crossover distance between 130 and 150
from the alignment parameters determined by Frealix. The reconstruction after 15 roun
assuming 2-fold axial symmetry. A negative B factor (�600 Å2) was applied, as well as a l
Distribution of mean crossover-to-crossover distance (measured along the arc length of t
change of direction of filaments, defined as the integral of the curvature along the leng
reconstructions are shown in Fig. 6. (H) FSC curves for Ab(40) reconstructions. Following
was computed. The FSC for the full set of 450 fibrils (blue) is greater than 0.5 and 0.143 un
than 0.5 and 0.143 until 9.0 and 7.1 Å, respectively, as compared to 8.9 and 7.2 Å (Sachse
& FSC curve, greater than 0.5 and 0.143 until 9.0 and 8.3 Å (red). (I) Digitized film microg
(top & bottom right corners), as are the film label (top) and the fringes at the edge of
frequency digitization artifacts and high-frequency noise. (J) Traces of the filaments analy
in crowded environments. Dots indicate waypoints, which correspond approximately to
Throughout processing the rise per subunit was assumed to be
constant (4.8 Å), 2-fold axial symmetry was assumed and the Z
coordinates were not free parameters (they were functions of the
hi values with each filament’s mean Z value constrained to the CTF-
TILT plane; see Section 2.4.2). To reduce the influence of image
noise on the refinement, only data up to 1/20 Å�1 were used during
early rounds. This limit was gradually increased to 1/9 Å�1, while
ensuring throughout that only frequencies with high estimated
SNR (FSC > 0.9) were used for refinement.

Successive rounds alternated simultaneous and sequential
refinement of waypoints, as well as real-space and normal-mode
search space parametrization. The average waypoint-to-waypoint
distance was 132.7 nm (r = 13.5 nm) and the average segment size
was 4.3 nm (r = 0.2 nm). The final reconstruction obtained from
the full dataset (450 filaments) had a resolution of 7.5 Å
(Fig. 5H). Its central section normal to the helical axis is shown
in Fig. 5A. This reconstruction and its estimated resolution are very
similar to those obtained previously (Sachse et al., 2008).

Using the same refined alignment parameters, we computed
reconstructions from subsets of the data which included the same
number of fibrils as were used in that study (e.g. Fig. 5B, computed
from the 188 most bent fibrils). Those reconstructions had esti-
mated resolutions of 8.0–8.3 Å, marginally lower than previously
reported (Sachse et al., 2008), but suggesting that Frealix is able
to align curved filaments almost as well as straight ones. This is
not the case for single-particle refinement: when processed using
Frealign (Alushin et al., 2010) for 15 rounds starting from the align-
ment parameters obtained by Frealix, the 188 most bent fibrils
gave a reconstruction where most features of the peptide backbone
were smeared (Fig. 5C), consistent with significant misalignments,
especially in between crossovers. We also found that the Frealix
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algorithm was generally resistant to overlap between filaments,
with no significant misalignments in ‘‘crowded’’ regions of micro-
graphs (Fig. 5I and J).

After selecting fibrils with mean crossover distances between
130 and 150 nm, as was done by Sachse et al. (2008), we obtained
a 7.1-Å reconstruction (Fig. 5D), matching the resolution obtained
by these authors (Fig. 5H). This suggests that mean crossover dis-
tance is a correlate of Ab peptide conformation. As in previous
work, we did not reach resolutions sufficient to distinguish the b
strand repeats of the cross-b structure, despite the increase in
the number of fibrils analyzed. In addition to the difficulties caused
by the lack of image features (power in the Fourier transform)
between �1/50 and 1/4.8 Å�1 along the helical axis of amyloid
fibrils and their heterogeneity (see Discussion), this may be be-
cause experimental factors during microscopy such as beam-
induced specimen movement (Brilot et al., 2012) and suboptimal
contrast transfer at 1/4.8 Å�1 (because of variable defocus) ren-
dered some images inadequate for registration at this spatial
frequency.

Inspection of 3D reconstructions from each individual filament
would seem to support this notion. Reconstructions from filaments
of similar lengths should have similar SNR (all other things being
equal), yet we observed large variations in the quality of their
reconstructions, indicative of significant variations in the quality
of imaging and/or alignment of individual filaments, even in spatial
frequencies around 1 nm�1. For example, only in about 3% of
reconstructions from individual Ab(40) fibrils, all of which were
longer than 0.8 lm (Fig. 5F, red bars), some internal density fea-
tures were partially resolved (Fig. 6), suggesting that those fibrils
had been reconstructed to higher resolution than is usual for single
filament reconstructions (compare Fig. 6 to fibril 11 in Fig. 6 of
Meinhardt et al., 2009). The SNR at �1 nm�1 in those reconstruc-
tions is still too low to permit reliable interpretation, but the sep-
aration between the two peptides within each protofilament (see
description in Sachse et al., 2008) appears to be partially resolved
in a few of the 16 filaments, particularly in the core region of the
fibril, near the helical axis.

At 1/4.8 Å�1, although in aggregate the set of fibrils has a clear
diffraction line (Fig. 1C in Sachse et al., 2008), indicative of high or-
der and sufficiently good imaging, individual fibrils vary greatly in
the strength of this reflection (data not shown) and the quality of
their reconstructions (Fig. 6). It is likely that disorder or conforma-
tional heterogeneity in parts of the peptide are limiting our resolu-
tion – multi-reference refinement could be applied to sort out this
Fig.6. 3D reconstructions from individual Ab(40) fibrils. After visual inspection, 16 of the
within the molecular envelope. A figure-of-merit filter was applied to each reconstruction
B factor (�100 Å2) filter. In addition, a cosine-edge low-pass filter was applied to remov
heterogeneity but it is not implemented in the current version of
Frealix.
4.2. TMV

Starting from the approximate coordinates of 135 TMV fila-
ments on seven micrographs, which had been picked manually
by Sachse et al. (2007), and a map decimated in Fourier space to
give a pixel size of 4.65 Å, we bootstrapped the analysis of TMV fil-
aments by assuming constant helical parameters for all filaments,
as described in Section 2.5.

Initial efforts to refine this structure using ‘‘full-filament’’ mode,
where all parameters are constrained to continuous functions,
yielded reconstructions of approximately 5.8 Å resolution. We
hypothesized that this may have been due to the shallow helix of
TMV filaments, which means that slight errors in translation (on
the order of 1.4 Å) along the helical axis or in h (helical repeat num-
ber, see Section 2.2) could yield strong local maxima of the scoring
function, which the minimizer was unable to escape from. In other
words, very small deviations from canonical helical parameters,
which are to be expected even from very rigid filaments such as
TMV, may be challenging to track accurately because of the highly
periodic and polymodal nature of the scoring function along those
parameters.

To test this, we continued refinement with an assumption of
constant helical parameters and without continuity restraints on
the u and h parameters (see Section 2.4.2.1). Data up to 5.5 Å were
eventually included in the refinement. We estimated the resolu-
tion of the final reconstruction to be 4.5 Å and the map was of com-
parable quality to that obtained by Sachse et al. (Fig. 7). The final
segment size used in the scoring function was 2.4 nm on average
(r = 0.1 nm) and the waypoint-to-waypoint distance was fixed at
10 nm.
4.3. Bending fluctuations

Bending fluctuations can be used to estimate the flexural rigid-
ity of biological filaments by assuming a worm-like-chain (WLC)
model is applicable (see Boal, 2002 for an overview). Since Frealix
generates and refines geometrical descriptions of each filament as
a ‘‘byproduct’’ of the structure-refinement process, we attempted
to estimate the bending rigidities of TMV and Ab(40) filaments
from our data.
450 single-filament 3D reconstructions were selected because they showed features
, based on the FSC between the two halves of each filament, as well as a sharpening
e remaining high-frequency data (beyond 1/8 Å�1). Scale bar: 30 Å.
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The smaller dimension of our micrographs was �1.2 lm
(Fig. 5I). This means that filaments whose measured arc length is
>1.2 lm must be significantly curved and conversely that we could
not have observed straight filaments with those arc lengths. We
therefore excluded filaments with arc lengths longer than 1.0 lm
from the analysis below to avoid biasing the analysis towards more
bent filaments.

The bending persistence length lc (Kratky and Porod, 1949) is
defined in three dimensions by hr0ð0Þ � r0ðsÞi ¼ e�s=lc , where the left
hand side is the mean dot product between tangent vectors sepa-
rated by arc length s. We calculated this quantity for
24 nm 6 s 6 1 lm and the resulting fit with an exponential yielded
estimates of lc = 13.1 ± 0.7 lm and lc = 405.2 ± 17.5 lm for Ab(40)
and TMV filaments, respectively (Fig. 8; ± denotes the asymptotic
standard error of the fit). Another estimate of the persistence
length can be obtained by measuring the chord length L and
mid-point normal distance du in 2D projection (Turner et al.,
2006): lc ¼ 1=ðdu4

ffiffi
3
p

L
3
2
Þ

2
. Using this method, we obtained estimates

of lc = 26 ± 2 lm and 202 ± 39 lm for Ab(40) and TMV, respectively
(± denotes standard error of the mean). These estimates are similar
to previous estimates from the same micrographs (290 lm for
TMV, see Sachse, 2007; 30–100 lm for Ab(40), see Sachse et al.,
2010) but TMV filaments are so rigid that on the length scales ob-
servable here, lc estimates using either method may not be reliable.
Indeed, they differ significantly from estimates reported in the lit-
erature (1.4 mm in Falvo et al., 1997; 7 mm in Schmatulla et al.,
2007; 1.3 mm Zhao et al., 2008).

To test whether the WLC model offers a valid description of our
data in the first place, we computed the distribution of curvatures
of short segments of the filaments. Contrary to our expectation (see
Section 2.6.3), the distributions of curvatures were not normal
(Fig. 9A and B). In the case of TMV filaments, the probability
P(C)dC of observing a curvature in the interval between C(t) and
C(t) + dC followed approximately the theoretical prediction of
Rappaport et al. (2008) for worm-like chains in three dimensions:
PðCÞdC ¼ lcDte�

1
2lcDt C2

CdC.
In the case of Ab(40), the curvature distribution did not seem to

match that prediction. Heuristically, we found the following func-
tion described the observed distribution more accurately:
PðCÞdC ¼ 4lcDte�2

ffiffiffiffiffiffi
lcDt

p
CCdC. This empirical function also approxi-

mated the TMV curvature distribution quite well (Fig. 9B). This
suggests that the curvatures of Ab(40) fibrils observed in our
experiments are not solely due to thermal bending of thin rods
with isotropic material properties in three dimensions as com-
monly assumed in the WLC description. Indeed, as expected from
their cross-sections, we found that TMV but not Ab(40) had isotro-
pic bending probabilities by recording the distribution of the
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azimuth of the curvature vector . in the frame of the 3D recon-
struction (Fig. 9C and D).

5. Discussion

All biological filaments are subject to deformations, and these
can be direct impediments to analysis when the micrograph SNR
is too low and sufficiently short segments cannot be aligned reli-
ably independently from each other. Frealix uses a full-filament
model to allow for the use of much shorter image segments than
would be feasible otherwise, which in turn makes flexible fila-
ments more amenable to analysis.

In the current work, we used segment lengths of �4.3 and
2.4 nm for Ab(40) and TMV, respectively, much shorter than in pre-
vious work (84.2 and 70 nm, respectively; Sachse et al., 2008,
2007). We demonstrate that our implementation of connectivity
constraints makes it possible to use such short segments and
match results from a single-particle algorithm. In the case of amy-
loid fibrils, we are able to align filaments accurately regardless of
curvature or crossover distance (Fig. 5). We expect there will be
cases involving more challenging filaments in which our use of
shorter segments will be even more advantageous, and that our
ability to reliably align severely deformed filaments will make it
easier to generate large datasets for future analysis.

In its current incarnation, Frealix does not address all the tech-
nical challenges which stand between us and atomic-resolution
reconstruction of Ab fibrils. Even with improved imaging and, for
example, beam-induced movement correction (Brilot et al.,
2012), heterogeneity and disorder may need to be overcome by fu-
ture versions of the software before b-strands can be resolved. In-
deed, it is likely that only a core region of amyloid fibrils is ordered
following the cross-b fold, with the rest of the peptide acting as
noise for the purpose of alignments, and/or that there are a range
of conformations the peptide can assume, each giving rise to
slightly different helical parameters. This last complication may
be adequately addressed by collecting larger datasets and imple-
menting multi-reference refinement in Frealix, whereas the first is-
sue (of partial disorder) can probably only be alleviated by
improved imaging and higher micrograph SNR.

Processing TMV filaments also suggests how Frealix may be im-
proved in future versions. When segments do not have the ‘‘free-
dom’’ to align to the reference independently of each other, one
loses the ability to discard segments if their alignment parameters
do not conform with those of other segments from the same fila-
ment. Sachse et al. (2007) rejected �2 to 12% (at various iterations
of the refinement) of segments because they aligned with the
‘‘wrong’’ polarity or with an abnormally large shift normal to the
axis. One might speculate that some of these rejected segments
had suffered from local deformations, beam-induced movements,
ice contamination or defects in the helical assemblies. In the cur-
rent implementation of our algorithm, such segments are always
included in the 3D reconstruction and may thus impede conver-
gence towards the correct global alignment parameters. This may
explain why our TMV reconstruction has a slightly lower estimated
spectral SNR in the 1/5 Å�1 region than that of Sachse et al.
(Fig. 7C). Such marginal loss in final resolution may be acceptable
in cases where the flexibility of filaments calls for short segments,
but future versions of Frealix could also perform similar exclusion
of segments, perhaps based on localized (as opposed to filament-
wide) measures of the score.

Using ‘‘full-filament’’ constraints comes with another penalty,
at least in our initial implementation: the optimization problem
is posed in a high-dimensionality space. This can make Frealix
much more compute-intensive per filament than other ap-
proaches. We have begun exploring strategies to alleviate this
problem (see Section 2.4), and future versions of Frealix will likely
improve on the current implementation in terms of computing
efficiency.

Useful lessons might be learned from other fields of study. For
example, our approach of combining image correlations and prior
knowledge about filament connectivity and deformation statistics
(Section 2.6.3) resembles that of open active contours (Smith
et al., 2010). In our case, the relative weighting of image correlation
and mechanical restraint is inversely proportional to the SNR in the
image (Chen et al., 2009; Sigworth, 1998). A similar functional
form is also used in the field of data smoothing using spline func-
tions. In that context, the relative weighting of fidelity to observed
data versus smoothness of the fitted function is a parameter which
can be optimized using generalized cross validation (Craven and
Wahba, 1978). It would be interesting to see whether similar reg-
ularization approaches could be used to determine, for example,
the optimal number of waypoints to model filaments accurately.
Currently, the number of waypoints is chosen by the user; too
few waypoints may lead to inaccuracies and too many, to
overfitting.

It remains to be seen whether our particular choice of model,
essentially a WLC approximation (for a review see Poelert and
Zadpoor, 2012) for the helical axis, is optimal. In terms of
cryo-EM image processing, we demonstrate that this is sufficiently
accurate to derive sub-nanometer resolution structures. However,
the distribution of curvatures (Fig. 9A) and mean tangent correla-
tions (Fig. 8) of Ab(40) fibrils both appear to differ from predictions
from the WLC model, suggesting that it should be modified before
it is used to derive accurate mechanical properties of Ab fibrils in
the semi-flexible regime. The first such modification might concern
the anisotropic nature of fibrils, but other experimental factors
such as the presence of air–water interfaces or local crowding
(Fig. 5I and J) may also be taken into account. Frealix could provide
a suitable framework for testing experimentally such future ver-
sions of the WLC model, for example by providing quantitative
measurements of curvature anisotropy (Fig. 9C and D). It is possi-
ble that a WLC model that takes into account bending anisotropy
would ‘‘track’’ Ab fibrils more accurately between waypoints.

These considerations raise the question of whether the re-
straints on our scoring function are valid as currently implemented
(second term in Eq. (5)). Quantitatively, we are confident they are
not, since they assume Gaussian distribution of local curvatures.
However, we posit that they fulfill the role of restraints adequately
in a qualitative sense, since they do penalize large deviations from
straightness during refinement.

Non-Gaussian distributions of local curvatures have been re-
ported for microtubules in vivo (Bicek et al., 2009; Yang et al.,
2011) and taken as evidence of non-thermal bending fluctuations.
However, Rappaport et al. (2008) predict that as long as worm-like
chains are free to bend in three dimensions (i.e. they are not ad-
sorbed on a surface), the zero-curvature case should not be the
most common, and that non-Gaussian curvature distributions
should be expected. Our data for both TMV and Ab(40) filaments
in vitro support this notion (see Section 4.3) and in the case of
TMV these authors’ predicted distribution matches our observa-
tions well. As far as we are aware, we are the first to report on
the in vitro distribution of 3D curvatures of filaments. We could
only find one previous publication where in vitro curvature distri-
butions were reported, a cryo-EM study of microtubules in various
nucleotide-bound states (Vale et al., 1994) where curvatures were
measured in 2D and followed approximately normal distributions,
as expected (Rappaport et al., 2008).
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