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We describe an implementation of maximum likelihood classification for single particle electron cryo-
microscopy that is based on the FREALIGN software. Particle alignment parameters are determined by
maximizing a joint likelihood that can include hierarchical priors, while classification is performed by
expectation maximization of a marginal likelihood. We test the FREALIGN implementation using a sim-
ulated dataset containing computer-generated projection images of three different 70S ribosome struc-
tures, as well as a publicly available dataset of 70S ribosomes. The results show that the mixed
strategy of the new FREALIGN algorithm yields performance on par with other maximum likelihood
implementations, while remaining computationally efficient.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Electron cryo-microscopy (cryo-EM) is a versatile technique to
visualize the three-dimensional (3D) structure of macromolecules
and their assemblies. Since its inception in the 1970s and 80s
(Adrian et al., 1984; Taylor and Glaeser, 1974), methods for sample
preparation, microscopy instrumentation and image processing
have all been significantly improved. Research in the past decade
has focused especially on developing the single-particle technique,
which can be applied to non-crystalline, isolated molecules. The
single-particle technique has recently been applied to a dataset
of 80S ribosomes to obtain a resolution of about 4.5 Å (Bai et al.,
2013). The data was recorded with a direct electron detector that
registers electrons directly rather than via a scintillator. This new
detector technology is also capable of recording movies that cap-
ture sample motions occurring during beam exposure, allowing
for motion correction (Brilot et al., 2012; Campbell et al., 2012).
The work on the 70S ribosome further highlighted the importance
of new image processing algorithms, most notably the application
of Bayesian statistics and the related maximum likelihood (ML) ap-
proach for the estimation of 3D structures from the noisy images
obtained using low-dose imaging. These methods are less suscep-
tible to initial model bias and over-refinement, especially at low
signal-to-noise ratio (SNR) (Sigworth, 1998; Sigworth et al., 2010).
Originally introduced for the processing of images of viruses
and the ribosome (Doerschuk and Johnson, 2000; Provencher and
Vogel, 1988; Vogel and Provencher, 1988), ML was later developed
as a more general approach for single particle structure estimation
(Scheres et al., 2005a,b; Sigworth, 1998). A general difficulty to
overcome when implementing ML and Bayesian methods is the
representation of the noise in cryo-EM data. Implementation of a
Gaussian prior for the noise is straightforward and leads to effi-
cient maximization algorithms. Therefore, current implementa-
tions assume that data points (pixels) are independent of each
other either in real space or reciprocal space (Scheres, 2010).
Assuming independence in real space, one cannot accommodate
correlations due to the contrast transfer function (CTF) of the elec-
tron microscope. Conversely, assuming independence in reciprocal
space prohibits real-space masking of noise surrounding each par-
ticle to boost overall SNR. The RELION software (Scheres, 2012b)
implements an ML approach with a hierarchical prior to impose
smoothness in the estimation of single particle structures from
cryo-EM images. It performs most calculations in Fourier space,
thus taking CTF effects into account. Using RELION, the authors
demonstrate superior results compared to most other software
that does not make use of the ML formalism. Specifically, they
show improved resolution in the final 3D reconstruction, reduced
refinement artifacts such as inflated resolution estimation (overfit-
ting), and better separation of structurally distinct particles in het-
erogeneous datasets (mixtures).

The FREALIGN software (Grigorieff, 2007) used in the present
study is designed to refine single particle reconstructions when
an initial reconstruction at lower resolution is already available.
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While FREALIGN is not based on ML or Bayesian statistics, it also
implements a series of measures to reduce overfitting and over-
estimation of resolution (Chen et al., 2009; Grigorieff, 2007; Sinde-
lar and Grigorieff, 2012; Stewart and Grigorieff, 2004), leading to a
refinement performance similar to RELION. However, unlike RE-
LION, FREALIGN cannot currently be used for classification of het-
erogeneous datasets. Here, we describe an extension of FREALIGN
that allows classification using an ML approach that is related to
that described previously (Scheres, 2012a). The new algorithm
works together with the previously implemented FREALIGN refine-
ment scheme and is therefore computationally more efficient than
implementations that are entirely based on ML. We apply the new
algorithm to a computer-generated dataset of 70S ribosomes, as
well as an experimental (Baxter et al., 2009) dataset, both of which
contain a heterogeneous mixture of conformationally and compo-
sitionally variable single particles.

2. Theory

Our new algorithm is an ML procedure: we seek to find the val-
ues of our model parameters that maximize the probability of our
data. We will first describe a simple likelihood model for EM data
from a single structure, connecting our data model to earlier work,
and then expand the model to include data generated from mix-
tures of multiple different structures.

2.1. A Gaussian statistical data model

Following seminal work by Sigworth (Sigworth, 1998), we as-
sume a multivariate Gaussian model for our EM image data. We
consider each image to be a two-dimensional (2D) projection of a
randomly translated and rotated 3D structure, to which indepen-
dent white Gaussian noise has been added to each pixel. This data
model can be represented by:

Xi ¼ Pð/i;AÞ þ riGi ð1Þ

where Xi is the ith image in a dataset of N images, /i ¼ fa;b; c; x; ygi

is a set of transformation parameters (a;b; c particle Euler angles
and x,y coordinates) for image Xi, P is the projection operator to pro-
duce a transformed 2D projection of A according the Euler angles,
coordinates /i and determined CTF (we assume that image defocus
is determined in an independent step using, for example the CTF-
FIND3 software (Mindell and Grigorieff, 2003) that is not part of this
formalism), ri is the standard deviation of the noise in the image,
and Gi is a ‘‘noise image’’ of independent pixels with values sampled
from a standard Gaussian distribution (zero mean and unit
variance).

2.2. The likelihood function

Given the data model in (1), the probability of observing a single
image Xi is given by the Gaussian probability density function
(PDF):

pðXi /i;Hj Þ ¼ 1ffiffiffiffiffiffiffi
2p
p

ri

� �M

exp �kXi � Pð/i;AÞk
2

2r2
i

" #
ð2Þ

where M is the number of pixels in image Xi (in practice, M includes
only pixels within an appropriate mask that is often applied to the
particle image to reset image densities to a constant value outside
the mask), kXk2 ¼ XT X denotes the squared Frobenius norm of X
(the squared inner product of X, so that kXi � Pð/i;AÞk

2 is the sum
of squared differences between each pixel in X and the transformed
A), H ¼ fA;rg is a set of parameters associated with structure A,
and r ¼ fri; . . . ;rNg is vector of ri for all images. Here H trivially
contains only the true structure A and r, but H will be expanded
later with more complex models. The notation for the conditional
probability pðx yj Þ is read as ‘‘the probability of x, given parameter
y’’, and both x and y may be scalars, vectors, or matrices.

Because our error model assumes statistical independence of
pixels and images, the joint PDF for a set of images is simply given
by the product of PDFs for each individual image:

pðX /;Hj Þ ¼
YN

i

pðXi /i;Hj Þ ð3Þ
¼ 1ffiffiffiffiffiffiffi
2p
p
� �MNYN

i

r�M
i exp �kXi � Pð/i;AÞk

2

2r2
i

" #
ð4Þ

where now fX;/g are each vectors of length N.
When we have fixed, observed data Xi, and the parameters / in

Eq. (3) are unknown, the probability pðX /;Hj Þ is a function only of
the parameters, and Eq. (3) is called the likelihood of the parame-
ters. The term ‘‘likelihood function’’ is used to emphasize that
in the likelihood function the variables are the parameters, in
contrast to the PDF in which the data values are the variables.
In the method of maximum likelihood, the objective is to choose
the parameter values that maximize the likelihood, i.e., we find
the parameter values that assign the highest possible probability
to our observed data. Maximizing the likelihood over the parame-
ters is equivalent to maximizing the log of the likelihood ‘ðH Xj Þ,
which is usually more convenient to work with. The log-likelihood
for Eq. (3) is:

‘ðH;/ Xj Þ ¼ �MN
2

lnð2pÞ � 1
2

XN

i

kXi � Pð/i;AÞk
2

r2
i

�M
XN

i

lnri ð5Þ

Often the maximum likelihood estimate of a parameter can be
found analytically by taking the first derivative of the log-likeli-
hood with respect to the parameter, setting it to zero, and solving
for the unknown parameter.
2.3. Cross-correlation maximization and least squares as ML

After some algebraic rearrangement, it can be shown that max-
imizing the log-likelihood (5) over H and / with a constant r is
equivalent to maximizing either.

XN

i

XN

j

½Rð/i;XiÞT Rð/j;XjÞ� ð6Þ

or

XN

i

½Rð/i;XiÞT Â� ð7Þ

where

Â ¼
XN

i

Rð/i;XiÞ ð8Þ

and Rð/;XÞ is a ‘‘back-projection’’ operator that puts the 2D image
back into 3D. These equations can be recognized as restatements
of the classical least-squares solution to finding the optimal image
registration (Frank et al., 1988), based on maximizing cross-correla-
tions. Thus, when assuming a simple Gaussian model with a com-
mon r for all pixels and images, ML is equivalent to least-squares.
If each image is further assumed to have its own respective ri, then
the sums in Eqs. (6)–(8) are simply weighted by the inverse of the
r2

i , a procedure equivalent to weighted least-squares.
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2.4. Nuisance parameters and hierarchical priors

In most scientific estimation problems, certain parameters are
of central interest while other parameters are only used as a means
to an end. In statistics these ‘‘uninteresting’’ parameters are called
nuisance parameters. Sigworth (Sigworth, 1998) treated the EM
transformation variables (e.g., the rotations and translations that
align images) as nuisance parameters, since they are only used
transiently to estimate the parameter of interest, the reference
structure. When SNR is low, the estimates of nuisance parameters
can be highly uncertain. Since ultimately we do not care about the
particular values of nuisance parameters, it would be useful to
somehow account for, and perhaps mitigate, the uncertainty in
their values.

A general statistical method for dealing with nuisance parame-
ters is to treat them as random variables with their own PDF. For
example, Sigworth recognized that the image transformation vari-
ables could be considered to be random variables themselves, and
he proposed a bivariate Gaussian distribution for the x,y coordinate
(translation) transformation variables:

pð/i rx;ry; x̂; ŷ
�� Þ ¼ 1

2prxry
exp �kxi � x̂k2

2r2
x
� kyi � ŷk2

2r2
y

" #
ð9Þ

where fx̂; ŷ;rx;ryg are the means and standard deviations of the x,y
coordinates. Model parameters for the Euler angles can also be
introduced if their distribution is non-uniform.

A PDF for parameters is called a prior. In this case Eq. (9) is specif-
ically referred to as a hierarchical prior, since we now have a statisti-
cal model with a hierarchy of distributions — a PDF for the data, given
certain parameters, supplemented by a higher level PDF for some of
the parameters. The parameters of the hierarchical prior (e.g., rx and
ry in Eq. (9)) may be called hierarchical parameters, to distinguish
them from the parameters of the pure likelihood function.

Given a hierarchical prior for the /i parameters, the likelihoods
in Eqs. (2) and (4) can then be augmented to construct an extended
likelihood function pðXi;/i Hj Þ by multiplying the normal likelihood
by the hierarchical prior:

pðXi;/i Hj Þ ¼ pðXi H;/ij Þpð/i rx;ry; x̂; ŷ
�� Þ ð10Þ

¼ 1ffiffiffiffiffiffiffi
2p
p

ri

� �M

exp �kXi � Pð/i;AÞk
2

2r2
i

" #
pð/i rx;ry; x̂; ŷ

�� Þ

ð11Þ

where the H ¼ fA;r; x̂; ŷ;rx;ryg is the augmented set of all model
parameters associated with reference structure A. Note that Eqs.
(10) and (11) correspond to 3D versions of Eqs. (11) and (12) of Sig-
worth, using our notation. The full hierarchical joint likelihood of a
set of images is thus:

pðX;/ Hj Þ ¼ 1ffiffiffiffiffiffiffi
2p
p
� �MNYN

i

r�M
i exp �kXi�Pð/i;AÞk

2

2r2
i

" # !
pð/i rx;ry; x̂; ŷ

�� Þ

ð12Þ

with corresponding log-likelihood:

ln½pðX;/ Hj Þ� ¼ �MN
2

lnð2pÞ � 1
2

XN

i

kXi � Pð/i;AÞk
2

r2
i

�M
XN

i

lnri

þ
XN

i

ln½pð/i rx;ry; x̂; ŷ
�� Þ�:

ð13Þ

Other hierarchical priors can be added in a similar fashion to de-
scribe the distribution of other parameters, for example defocus
(Chen et al., 2009) and magnification. The form of the additional
distributions is often assumed to be Gaussian. Other authors may
refer to an extended likelihood as a regularized likelihood, penalized
likelihood, or a hierarchical likelihood. An extended likelihood as in
Eq. (11) is also a joint likelihood, as it is equivalent to the joint
PDF of the data and the parameters given the hyperparameters.

Given a hierarchical statistical model and a corresponding ex-
tended likelihood, there are several different ways to proceed with
parameter estimation. When the hyperparameters of the hierarchi-
cal prior distributions are estimated from the data using variants of
ML methodology, such techniques are referred to as extended like-
lihood or empirical Bayes. There are two main ML variants: (a) to
maximize the extended likelihood directly, and (b) to maximize
the marginal likelihood, in which the nuisance parameters have
been integrated out.

2.5. Maximization of the joint extended likelihood

The extended likelihood can be maximized over all unknown
parameters simultaneously, including both the parameters and
the hyperparameters in the optimization. In practice, this is usually
done using an iterative algorithm, in which each parameter is max-
imized in turn, conditional on the current optimal values of all
other parameters. However, any multi-parameter optimization
method may be used.

Maximization of the joint extended likelihood aims to find the
joint point estimates of the ‘‘best’’ values for all parameters simul-
taneously. However, this method may not work well when the
hierarchical prior is diffuse or multimodal. Direct maximization
of the joint likelihood works best when the prior PDF for the hyper-
parameters is smooth and highly peaked.

2.6. Maximization of the marginal likelihood

Alternatively, when the nuisance parameters are highly uncer-
tain, it may be desirable to completely eliminate them from the
analysis, while taking into account the uncertainty in their values.
This is accomplished by integrating them out of the extended like-
lihood, resulting in a marginal likelihood function. For example, we
can eliminate /i from the extended likelihood function in Eqs. (10)
and (11) by integrating over its distribution:

pðXi Hj Þ ¼
Z

/i

pðXi H;/ij Þpð/i rx;ry; x̂; ŷ
�� Þd/i ð14Þ

which results in a marginal PDF that is independent of /i. This is the
approach taken by Sigworth (Sigworth, 1998), where he integrates
out the transformation parameters and maximizes the marginal
likelihood function over A and r .

In practice there are several choices for accomplishing the mar-
ginalization. In the simplest cases an analytical solution can be ob-
tained. Usually we are not so lucky and must resort to numerical
methods such as brute force integration, the Expectation–Maximi-
zation algorithm, or some combination of the two (Scheres, 2012a;
Sigworth, 1998).

2.7. Expectation–Maximization of the marginal likelihood

The Expectation–Maximization algorithm (normally abbrevi-
ated as EM, but we will avoid that here) finds the parameter values
that maximize the marginal distribution using a mathematical
trick that only requires the (non-integrated) joint likelihood. In
its most general form, the algorithm cycles between two steps:
(a) the ‘‘expectation step’’, in which one finds the expected loga-
rithm of the joint likelihood function, where the expectation is ta-
ken over the nuisance parameters (e.g., / in Eq. (11)), conditional
on the current values of the other parameters and the data, and



380 D. Lyumkis et al. / Journal of Structural Biology 183 (2013) 377–388
(b) the ‘‘maximization step’’, in which one maximizes the expected
log likelihood function found in (a), as usual, over the other (non-
nuisance) parameters of interest (e.g., A in Eq. (11)). While it may
not be obvious why the Expectation–Maximization algorithm
works, it can be shown that the algorithm increases the marginal
likelihood at each step, and thus it is guaranteed to find a local
maximum of the marginal likelihood.

Often the expectation in the first step can be determined analyt-
ically. However, in the present case no analytical solutions exist for
the expectations of Eq. (13) needed to maximize the marginal like-
lihood in (14), and so they must be found by numerical integration,
making the procedure computationally expensive (Scheres et al.,
2005a,b; Sigworth, 1998). Expectation–Maximization of the mar-
ginal likelihood delivers superior performance compared to maxi-
mizing the joint likelihood in Eq. (12) when the likelihood function
is multimodal or does not display clear peaks due to a low SNR.
However, as explained below, in most practical cases we expect
the likelihood function to exhibit a single peak close to the correct
particle alignment parameters /i. If so, the model parameters that
maximize the joint likelihood function (12) will also approximately
maximize the marginalized likelihood (14).

2.8. Extended likelihood, hierarchical priors, and Bayesian methods

The extended likelihood is reminiscent of Bayesian methodol-
ogy, in which the likelihood is multiplied by a prior for each
parameter. However, there is an extremely important methodolog-
ical and ideological difference. In Bayesian methods, the values of
the prior parameters are assumed constants, based on prior knowl-
edge. In contrast, in the ML methods discussed here, the hyperpa-
rameters of the prior are unknown parameters that ultimately are
estimated from the data via a maximization procedure.

A related Bayesian approach seeks the model parameters with
the maximum probability given the data and any prior information
or assumptions (known as maximum a posteriori probability or
MAP). However, like all Bayesian methods, MAP requires explicit
Bayesian prior distributions with fixed parameters that are inde-
pendent of the observed data. Scheres (Scheres, 2012a) has de-
scribed an extended likelihood procedure which includes a
hierarchical zero-mean Gaussian prior on the reciprocal space vox-
els of each image (which can be considered a ‘‘smoothing’’ tech-
nique that regularizes the voxel values). While Scheres describes
this method as MAP, the parameters of his hierarchical prior are
in fact estimated from the data by maximizing the extended likeli-
hood function, similar to Sigworth’s method (Sigworth, 1998) and
others, including our ML classification method discussed below.
Hence, Scheres’ methodology is also a variant of empirical Bayes,
which is purely likelihood based.

2.9. Mixtures of particles with distinct structures

We now extend this EM data model to the case where the sam-
ple contains a heterogeneous mixture of structures in different,
distinct conformations. We assume that there are K classes of
structures that may be observed in a dataset of images. We imag-
ine that the molecule under consideration adopts a particular con-
formation Ak with probability pk, and then an image of this
structure is generated according to the data model presented in
Eq. (1). Each particular class will have its own respective set of
parameters, e.g., /ik, and Hk (however, note that we presently as-
sume that a given image has the same ri regardless of which class
it is in). Each image also has an additional integer ‘‘indicator’’
parameter zi that holds the value of the index of the structural class
Ak that generated the image. For example, if the ith image belongs
to class 1, then zi ¼ 1. The likelihood of an individual image, given
that it is from class k, is thus:
pðXi;/ik Hkj ;zi ¼ kÞ

¼ 1ffiffiffiffiffiffiffi
2p
p

ri

� �M

exp �kXi�Pð/ik;AkÞk2

2r2
i

" #
pð/ik Hk;zi ¼ kj Þ

ð15Þ

where

pð/ik Hk; zi ¼ kj Þ ¼ 1
2prxkryk

exp½� kxik � x̂kk2

2r2
xk

� kyik � ŷkk2

2r2
yk

�: ð16Þ

Initially, imagine that we have a set of N data images Xi from K
different classes, and that we know to which class each image be-
longs (i.e., we know the value of zi). The joint probability of a single
image being from class k and having a specific orientation, transla-
tion, and pixel values, is:

pðzi ¼ k;Xi;/ik Hkj Þ ¼ pðXi;/ik Hk; zi ¼ kj Þpðzi ¼ kÞ ð17Þ

where it can be seen that

pðzi ¼ kÞ ¼ pk: ð18Þ

The total likelihood of this set of images is:

pðz ¼ k;X;/ Hj Þ ¼
YN

i

pðzi ¼ k;Xi;/ik Hkj Þ: ð19Þ

Note that we can equivalently write Eq. (19) as

pðz;X;/ Hj Þ ¼
YN

i

YK

k

pðzi ¼ k;Xi;/ik Hkj ÞIðzi¼kÞ ð20Þ

where Iðzi ¼ kÞ in the exponent is an indicator function whose value
is 1 if zi ¼ k and is 0 otherwise. If the image does not belong to class
k, then Iðzi ¼ kÞ ¼ 0 and the total product in Eq. (20) is left un-
changed. Careful inspection will verify that Eq. (20) reduces to Eq.
(19) when all Iðzi ¼ kÞ are known integers. However, the central
problem of classification is that we do not know to which class each
image belongs.

2.10. Expectation–Maximization for classifying particle mixtures

For a mixture of different particles, the joint log-likelihood is
thus given by the logarithm of Eq. (20):

‘ðH; z;/ Xj Þ ¼
XN

i¼1

XK

k¼1

Iðzi ¼ kÞln½pkpðzi ¼ k;Xi;/ik Hkj Þ� ð21Þ

where H contains all parameters for all classes, including A1 . . . Ak

that represent the underlying structures for each class. The log-like-
lihood in (21) is also a hierarchical likelihood, as pk can be consid-
ered a hierarchical prior for both the zi indicator values and the
indicator function Iðzi ¼ kÞ. Of course, in practice we do not know
the values of zi and Iðzi ¼ kÞ, and so they are unknown parameters.
Directly maximizing (21) is difficult, and the zi may be considered to
be nuisance parameters that are only used as a means to find the k
reference structures. Hence, we would prefer to integrate them out
and maximize the marginal likelihood pðX;/ Hj Þ:

pðX;/ Hj Þ ¼
Z

z
pðX;/; z Hj Þdz ð22Þ

We cannot accomplish this integration analytically, but it is rel-
atively easy to maximize the marginal likelihood in (22) with the
Expectation–Maximization algorithm. We simply find the expecta-
tion of the joint log-likelihood (21) with respect to z, and maximize
that instead.

A natural choice for the target function to maximize for the par-
ticle refinement with respect to model k is the probability distribu-
tion pðXi;/ik Hkj Þ (Eq. (2), (Sigworth, 1998)). The target function
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used in FREALIGN, which we will use in our present study, is a
weighted correlation coefficient CCw (Eq. (17) in Stewart and
Grigorieff, 2004) modified with the hierarchical prior pð/ik Hkj Þ in
analogy to Eq. (21) in (Sigworth, 1998). Therefore (Chen et al.,
2009),

/m
ik ¼ argmaxfkXikkPð/ik;AkÞk CCwðXi;Hk;/ikÞ
þ r2

i lnpð/ik Hkj Þ g: ð23Þ
2.11. Algorithm

Classification is performed using Expectation–Maximization
with fixed alignment parameters /m

ik found in the refinement. The
expected probability of a particle i belonging to class k is given by

qik ¼ pðzi ¼ k H;Xj Þ ¼ pðXi;/
m
ik Hkj ÞpkPK

k¼1pðXi;/
m
ik Hkj Þpk

ð24Þ

which will be set to 1/K as the starting estimate. We will refer to
these probabilities as particle occupancies. Other parameters are
updated in each classification cycle as

pk ¼
1
N

XN

i¼1

qik ð25Þ

Ak ¼

PN
i

qik
r2

i
Rð/i;XiÞPN
i¼1

qik
r2

i

ð26Þ

x̂k ¼
1PN

i¼1qik

XN

i¼1

qikxik ; ŷk ¼
1PN

i¼1qik

XN

i¼1

qikyik ð27Þ

r2
xk ¼

1PN
i¼1qik

XN

i¼1

qikðxik � x̂kÞ2 ;

r2
yk ¼

1PN
i¼1qik

XN

i¼1

qikðyik � ŷkÞ2 ð28Þ

r2
i ¼

1
M

XK

i¼1

qikkXi � Pð/i;AkÞk2 ð29Þ

where R is the reconstruction operator used in FREALIGN (a Fourier
inversion algorithm, Grigorieff, 2007). Rounds of non-ML parameter
Fig.1. Pixel correlation in a typical cryo-EM image. (a) Correlation matrix calculated us
images were recorded at 200 kV with an underfocus of 2.8 lm and digitized with a pixel s
between pixels that are close to each other in the image. The correlations are due to mod
and other effects (envelopes) leading to non-white noise. (b) Thon ring pattern (Thon, 196
(a). (c) Rotational average of the pattern in (b).
refinement to update /ik using Eq. (23) can be run between rounds
of ML classification to benefit from the improved class averages.

In the initial stages of the refinement, a single reference can be
used that represents the average of the mixture present in the
dataset. For multi-reference refinement, the desired number of
seeds can be generated either by calculating reconstructions from
randomly sampled subsets of the data (Penczek et al., 2006; Spahn
and Penczek, 2009), or by supplying reconstructions that represent
known aspects of the conformations present in the dataset (super-
vised classification, van Heel and Stoffler-Meilicke, 1985). The
number of required seeds is somewhat arbitrary, which is a recog-
nized problem for K-means classification schemes like the one de-
scribed here. Different numbers of seeds can be tested to find the
largest number that produces classes with new features (Scheres,
2010).
2.12. White noise assumption

In applying our ML method to EM data, we model the real space
noise as independent, constant variance white Gaussian noise (Sig-
worth, 1998). However, it is well known that CTF effects and other
factors affecting image amplitudes (envelopes) can potentially
introduce strong correlations among neighboring pixels in real
space, which could invalidate the white noise approximation. We
make three major assumptions about the images that help validate
the white noise model: (1) The contrast in an image is unrelated to
the actual single particle density (signal) and is due to background
generated by the sample support layer (ice and/or carbon), shot
noise, and noise introduced by the detector/scanner (Baxter et al.,
2009; Zeng et al., 2007). (2) Detector MTF effects are small in the
resolution range of interest or can be corrected (Zeng et al.,
2007). (3) Of the three sources of noise (i.e., background, shot
noise, and detector noise), the shot noise is the most dominant,
which should largely eliminate CTF induced correlations. This
approximation appears to be valid for typical low-dose images of
particles embedded in ice (Baxter et al., 2009), where shot noise
is relatively large.

The effect of the white noise assumption can be gauged by
inspecting the M �M Pearson correlation matrix C of the images.
For white noise, the correlation matrix C is equivalent to the iden-
tity matrix, with ones on the diagonal and zero cross-correlations
elsewhere. In principle, we could apply a more complicated Gauss-
ian statistical model in which we assume an arbitrary correlation
structure, where the correlations are estimated from the data
ing 40 � 40 pixel patches excised from 200 cryo-EM images of 70S ribosomes. The
ize of 2.82 Å/pixel. Lines parallel to the diagonal are visible that indicate correlations
ulations of part of the noise by the contrast transfer faction (CTF) of the microscope
6) calculated from 857 ribosome images, corresponding to the imaging conditions in
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simultaneously with the other model parameters. In this aug-
mented statistical treatment, the r is effectively multiplied by
the reduced determinant of the correlation matrix jCj1=2M , which
ranges from zero to one (corresponding to completely correlated
data and non-correlated data, respectively). By ignoring correla-
tions, then, one underestimates the actual sigma by a factor of
jCj1=2M . In the case of the real ribosome data analyzed in this paper
(see Results, Fig. 1a), the reduced determinant of the correlation
matrix ranges from 0.916 to 0.928, depending on the defocus.
These values are close to one, indicating largely uncorrelated data,
and only a minor overestimation of the r, by roughly 7–9%. Taking
all these factors into account, our white noise approximation ap-
pears appropriate.

2.13. Justification for maximizing the joint likelihood instead of the
marginal likelihood

As noted previously, the first exponential in Eq. (11) can usually
be approximated by a delta function once the reconstructions Ak

are reasonably close to their corresponding underlying structures
(Scheres, 2010). This will be true even if all reconstructions are
set to a single reconstruction representing the average of the differ-
ent underlying structures, provided the differences between the
underlying structures are relatively small. The latter condition is
fulfilled if the differences will not significantly affect the strong
low-resolution signal (typically at 20 Å and lower), which follows
the molecular transform of the particle and exceeds the signal at
higher resolution usually by several orders of magnitude (Rosen-
thal and Henderson, 2003). We therefore propose a strategy in
which initial refinement of a single reconstruction is performed
using our established high-resolution (non-ML) protocols imple-
mented in FREALIGN (Chen et al., 2009; Grigorieff, 2007) to a point
where no further improvement is observed.
3. Implementation in FREALIGN

To implement the ML approach described in Section 2, we mod-
ified FREALIGN to calculate ln½pðXi;/ik Hkj Þ� for each particle i and
each class k. This can be done by running K instances of FREALIGN,
each using its own set of alignment parameters /ik and model
parameters Hk. In a second step, particle occupancies qik and mix-
ture frequencies pk are updated using Eqs. (24) and (25). This sec-
ond step is done using a small additional piece of software called
CALC_OCC. This implementation therefore allows straightforward
parallelization of the refinement of K classes. The computational
load is proportional to the number of particles N and the number
of classes K. Furthermore, because maximization of Eq. (23) is done
per particle, only one reference reconstruction Ak and image Xi

have to be kept in memory at a time. One cycle of alignment
parameter refinement, classification and reconstruction of the
experimental 70S dataset (see below; 10,000 particles with a box
size of 130 � 130 pixels and four classes) took about 12 min of
CPU time using an Intel Xeon X5690 3.47 GHz CPU. The memory
requirements were about 550 MB.
4. Results

4.1. Quantification of pixel correlations in experimental images

As explained in the Theory section, our implementation of the ML
classification algorithm is based on the assumption that the noise
present in different pixels of an image is uncorrelated. In practice,
however, CTF modulations and various slowly varying functions
(envelopes) describing the decay of image and noise amplitudes to-
wards high resolution will introduce pixel correlations. To quantify
the amount of pixel correlation and its spatial distribution, we calcu-
lated correlation matrices C for experimental cryo-EM images of 70S
Escherichia coli ribosome (Baxter et al., 2009) recorded at different
defoci. We used sets of N = 200 images measuring 40 � 40 pixels
that were excised from the ribosome images in areas that excluded
signal from the particles. The images were recorded at 200 kV and
digitized with a pixel size of 2.82 Å/pixel. The pair-wise pixel corre-
lations were then calculated as

cmn ¼
PN

i ðxi;m � x̂mÞðxi;n � x̂nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ðxi;m � x̂mÞ2

PN
i ðxi;n � x̂nÞ2

q ð30Þ

where cmn are the elements of the correlation matrix C, indicating
the correlation coefficient between pixel locations m and n, i indi-
cates the image in the set, xi;m are the pixel values and x̂m are the
pixel means calculated for the set. For white noise, the expectation
value for cmn is zero for m–n, leading to a correlation matrix that is
similar to the identity matrix (except for random fluctuations
affecting the correlation coefficients).

Fig. 1 displays a correlation matrix calculated using images with
an underfocus of 2.8 lm. The matrix displays a pattern of lines run-
ning parallel to the diagonal and separated by 40 pixels. These lines
are due to the conversion of the 2D images into one-column vec-
tors which leads to a 40 pixel periodicity in physical pixel dis-
tances. Therefore, these lines describe correlations between
nearest neighbors, second nearest neighbors and so on, that arise
from the CTF modulations and amplitude envelope. Lines up to
about the fourth nearest neighbor are discernible. The average
nearest neighbor correlation (average correlations seen in the line
nearest the diagonal) observed in Fig. 1a is about 0.28, dropping to
0.12 for the second nearest neighbor. In between the regularly
spaced diagonals the correlation is much smaller and fluctuates
around zero. Therefore, apart from a few off-diagonal lines, the ma-
trix approximates an identity matrix that would be expected for
white noise. The reduced determinant of the correlation matrix
in Fig. 1a is 0.924, close to 1, the value for an identity matrix. We
also calculated reduced determinants for images with an under-
focus of 2.1 lm and 3.5 lm, giving 0.928 and 0.916, respectively.
Therefore, the observed correlation matrix suggests that our
assumption of white noise is justified. Repeating the correlation
analysis with image patches that contained part of ribosomes (sig-
nal) reproduced essentially the same results as in Fig. 1a. This is ex-
pected as these images were not aligned with each other and,
therefore, the signal in different images is not correlated.

To show that the shot noise in the ribosome dataset is essen-
tially white, we also calculated an average power spectrum of
857 ribosome particle images with a defocus of 2.8 lm (Fig. 1b)
and plotted the rotational average in Fig. 1c. Except at very low res-
olution (below 100 Å) where image contrast is affected by inelastic
scattering, the noise power at the CTF zeros follows a slowly decay-
ing function, again justifying our assumption of white noise. Back-
ground noise added by the embedding ice is affected by the CTF
and has been estimated for this data to have about 70% of the var-
iance of the signal produced by the ribosomes. Except at very low
resolution, therefore, the CTF-modulated portion of the noise is
only a small fraction of the total noise, consistent with the small
effect the CTF modulations have on the correlation matrix (Fig. 1a).

The influence of the observed local correlations is further re-
duced in practical applications of our algorithm because they will
most strongly affect the small, high-resolution details in the
images. The SNR in a typical cryo-EM image of a single particle is
lowest at high resolution, obscuring the fine details of the signal
due to the particle. The correlations introduced by CTF and ampli-
tude envelope will therefore affect the likelihood function (12)
more or less independently of the signal. The small errors that re-
sult from these correlations will change the terms on the right side



Fig.2. Models used to generate simulated data. Simulated 2D images were generated from three previously determined EM maps that were deposited to the EMDB (Lawson,
2010; Lawson et al., 2011): (a–c) (top) views from the inter-subunit cleft of the complete starting maps and (bottom) from the top of the ribosome with the 30S subunit
computationally removed (a) EMD-1798 (50S subunit is blue, 30S subunit yellow, EF-G red, and P/E-site tRNA of the PRE state green), (b) EMD-1799 (50S subunit is blue, 30S
subunit yellow, EF-G red, and P/E-site tRNA of the POST state green), and (c) EMD-5030 (50S subunit is blue, 30S subunit yellow, EF-Tu orange, A/T tRNA pink, P-site tRNA
blue, and E-site tRNA green). (d) EMD-1798 (light grey) and EMD-1799 (dark grey) contain minor differences, the majority of which can be attributed to slight ratcheting of
the 30S subunit with respect to the 50S subunit, and swiveling of the head when aligned to the 30S body. Arrows indicate the differences that are evident in surface rendered
maps of the 30S subunit when the two are aligned to each other (top – view from the mRNA entry site; bottom – view from the 50S subunit). Density maps are represented as
isosurfaces by UCSF Chimera (Pettersen et al., 2004).
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on Eq. (24) in a similar way, cancelling out in the calculation of the
occupancies. The other equations (Eqs. (25)–(29)) used to update
the model H in each iteration are largely unaffected by the corre-
lations, since they do not directly depend on the likelihood
function.

4.2. Classification of a simulated 70S ribosome dataset

To quantitatively assess the performance of our new algorithm,
we used it to analyze computer-generated image data that mimic
experimental data of heterogeneous ribosome populations (Baxter
et al., 2009). We selected three previously determined maps of 70S
ribosomes – EMD-1798 (Ratje et al., 2010) (Fig. 2a), EMD-1799
(Ratje et al., 2010) (Fig. 2b), and EMD-5030 (Schuette et al.,
2009) (Fig. 2c). EMD-1798 and EMD-1799 both contain the elonga-
tion factor EF-G, but differ conformationally by a slight ratcheting
of the 30S body and swiveling of the head subunit, the extent of
which can be appreciated with their overlays in Fig. 2d. EMD-
5030 differs from the previous two compositionally by the pres-
ence of EF-Tu in place of EF-G, as well as both an A-site and P-site
tRNA. Detailed procedures for generating the simulated data are
described in Section 6. The general sequence of steps was de-
scribed previously (Baxter et al., 2009) and is shown in Fig. 3. It
is intended to simulate the effects of background noise (an image
noise component that is unrelated to the object, yet CTF-depen-
dent), shot noise, and digitization noise.

We analyzed five different datasets containing 10,000 particle
images each that differed in their SNR to assess the robustness of
the FREALIGN ML approach, including SNR values significantly be-
low those typically observed in an experiment. Previously, an SNR
of �0.05 was estimated for experimentally obtained 70S ribosomes
(Baxter et al., 2009). Thus, the final SNRs for the five analyzed data-
sets were 0.100, 0.050, 0.025, 0.013, and 0.006, respectively
(Fig. 3e–i). For each of the five datasets, three different classifica-
tion schemes were performed: (1) classification only, whereby
the Euler angles and shifts were fixed according to their true values
(the values used to generate the projections); (2) particle
alignment and classification, starting with the true Euler angles
and shifts, but allowing changes during refinement; and (3) parti-
cle alignment and classification starting with perturbed Euler an-
gles and shifts. The perturbations had a Gaussian distribution
with standard deviations of 2.5� and 4 Å for Euler angles and shifts,
respectively, and reduced the initial resolution of the starting 3D
maps (calculated using the perturbed parameters) to 15–20 Å. This
last test was intended to evaluate the ability of the algorithm to
simultaneously refine particle alignment and classification
(occupancy) parameters. This design enabled us to assess the per-
formance of the algorithm under conditions whereby an increas-
ingly large parameter space must be simultaneously searched
during 3D classification.

For each SNR (Fig. 3e–i) and for each of the three classification
schemes, 100 refinement iterations of FREALIGN were performed
(Fig. 4). To assess the convergence of each run, we monitored the
particle composition of the resulting classes after each iteration,
as well as the mean occupancy change per particle per class. Plots
depicting the variation of total particle compositions of the classes
and mean particle occupancy changes with consecutive iterations,
as well as values for the final particle composition of each output
model with respect to the EMDB map from which they originate,
are all displayed in Fig. 4. At an SNR of 0.100, the algorithm could
readily recover the true classification parameters and reconstruct
the correct starting maps with >99% accuracy, regardless of the
classification scheme employed (Fig. 4a–c). At an SNR of 0.050,
the algorithm accurately recovered the true classification parame-
ters for each map with >95% certainty when the alignment param-
eters started with the correct values (Fig. 4d and e). However,
starting from perturbed alignment parameters, the algorithm
failed to simultaneously refine Euler angles, shifts, and classifica-
tion parameters for the two smaller classes (Fig. 4f). When the
alignment parameters were correct and did not require large
adjustments, then even at a lower SNR of 0.025 it was possible to
recover true classification parameters with reasonable accuracy
(compare Fig. 4g and h with Fig. 4i), although the convergence
behavior was somewhat more complicated (e.g., Fig. 4g). At still



Fig.3. Generation of simulated data. (a) Projections were randomly calculated from
each of the three previously determined EM maps, then randomly shifted. (b) Noise
was added to the combined dataset such that the SNR was brought down to 1.400,
which was followed by (c) application of a CTF in the range of 2 – 4 lm underfocus,
and (d) an experimentally determined envelope. Finally, a last layer of noise was
added, bringing the final SNR down to (e) 0.100, (f) 0.050, (g) 0.025, (h) 0.013, and
(i) 0.006. The datasets used for 3D parameter refinement and classification are
outlined in red.
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lower SNRs, recovering all three classes became increasingly diffi-
cult using our particular dataset and refinement strategy (see Sec-
tion 6) (Fig. 4j–o). While the SNR values used in these last two
datasets were well below experimentally observed values (Baxter
et al., 2009), the structure with the biggest difference compared
with the other two structures (EMD-5030) could still be recovered
(Fig. 4j–m).

We repeated the simulation for all SNRs and refinement strate-
gies with initial particle Euler angles and shifts that were deter-
mined ab initio using a common lines approach applied to class
averages, followed by conventional refinement of the alignment
parameters (see Section 6). These simulations represent an exper-
imental situation in which nothing is known about the structure of
the particle or their alignments. Results are shown in Supplemen-
tary Fig. 1. Both the classification-only and alignment and classifi-
cation approaches performed as good (SNRs 0.100, 0.013, and
0.006) or better (SNRs 0.050 and 0.025) than in the case where per-
turbed Euler angles and shifts were supplied (Supplementary
Fig. 1, compare columns 1/2 with 3).

4.3. Classification of an experimental 70S ribosome dataset

As a second test, we used a publicly available dataset (Baxter
et al., 2009) consisting of 10,000 images of 70S E. coli ribosomes
with bound tRNAs and EF-G co-factor. This dataset was also used
to test RELION (Scheres, 2012a,b) which produced three distinct
classes - one class containing 70S bound to EF-G and a single tRNA
in the E site (about 20 Å resolution), the second class containing
70S bound to three tRNAs and no EF-G (again, about 20 Å resolu-
tion), and a small third class (about 7% of the particles) containing
the 50S large ribosomal subunit (about 30 Å resolution). The first
class (70S with tRNA and EF-G) was duplicated in the analysis
which used four classes (K = 4, Eq. (15)). Fig. 5 shows the corre-
sponding analysis using the new FREALIGN algorithm, again
assuming K = 4 classes. For the processing with FREALIGN, particles
were masked with a circular mask with a radius of 142 Å. We per-
formed 35 cycles of alignment including data out to 17 Å, followed
by 65 cycles of ML classification at 16 Å resolution.

Our analysis detected four distinct classes – three that are
equivalent to those detected by RELION and one additional class
containing 70S bound to two tRNAs (in the A and P sites) and a
weaker density in the E site. The partial presence of E-site density
suggests that this additional class is not entirely homogeneous but
still contains a mixture of particles. While the 70S-EF-G bound
class contains about 50% of the particles in agreement with the
previous analyses, the 70S-EF-G devoid class appears to contain
70S complexes with two and three tRNAs at roughly equal propor-
tion. The resolution of all classes except the small 50S class was
estimated to be about 15 Å which we confirmed by comparison
with an atomic model (Fig. 5). For the 50S class (10% of the parti-
cles), we obtained a resolution of only about 40 Å. The resolution
of this class is clearly limited by the number of member particles.
5. Discussion

Structural heterogeneity is found in most macromolecular com-
plexes, albeit at varying degrees. While dynamic machines such as
the spliceosome exhibit conformational and compositional vari-
ability that has prevented reconstruction of most of the splicing
intermediates at a resolution higher than about 15 Å (Luhrmann
and Stark, 2009), the variability in ribosomes is better understood
and can be controlled more easily through careful biochemistry
(Frank and Gonzalez, 2010). The highest resolution reconstructions
are currently being obtained for icosahedral viruses (Grigorieff and
Harrison, 2011), implying low variability compared with many
asymmetric particles. The reduced variability is presumably partly
the result of the viruses’ symmetrical architecture which must re-
strain the conformational freedom of the subunits within these
assemblies. To achieve similarly high resolution with asymmetrical
assemblies, computational classification has to be applied to
accommodate heterogeneity that cannot be reduced further
through biochemical means (Bai et al., 2013). In some cases, such
as the ribosome, analysis of the conformational variability may
also lead to a deeper mechanistic understanding (Fischer et al.,
2010; Mulder et al., 2010).

The presence of particles with multiple conformations or com-
positions increases the size of the dataset required to resolve each
particle class at a given resolution. Therefore, although near-atom-
ic resolution can now be achieved with only a few tens of thou-
sands of particle images (Bai et al., 2013), a mixture of four or
five different particle conformations would require four to five
times as many images. This number increases still further if some
of the classes are much smaller than others, and therefore, more
particles need to be imaged to obtain a sufficient number for the
smallest class to be reconstructed at the desired resolution. The
new algorithm implemented in FREALIGN combines computa-
tional speed with the superior convergence behavior of a maxi-
mum likelihood approach. Computational efficiency will help
make the processing of datasets containing hundreds of thousands
of particle images more feasible. FREALIGN is therefore ideally sui-
ted for refinement, classification and 3D reconstruction of large
heterogeneous datasets at high resolution. Its performance in our
test on a small ribosome dataset (10,000 particle images) is on
par with that of RELION (Scheres, 2012a,b), as demonstrated by
the results shown in Fig. 5.



Fig.4. Classification of the simulated 70S ribosome dataset using K = 3 classes. Tests were performed using different levels of noise (arranged vertically) and different
classification schemes (arranged horizontally). Each run was initiated with randomized classification parameters, producing three maps at iteration 0 that contained an
approximately equal and random particle occupancy distribution, such that any differences among them was essentially random. Five different levels of noise were tested,
corresponding to a final SNR of (a–c) 0.100, (d–f) 0.050, (g–i) 0.025, (j–l) 0.013, and (m–o) 0.006. For each SNR level, three independent runs of FREALIGN were performed
starting with (a, d, g, j, and m) the correct Euler angles and shifts and disabling their refinement, (b, e, h, k, and n) the correct Euler angles and shifts and enabling parameter
refinement, and (c, f, i, l, and o) perturbed Euler angles and shifts, such that the resolution of the starting models at iteration 0 was between 15–20 Å. For each plot, the solid
lines (left y-axis plotted against the x-axis) represent the total particle occupancy for each iteration within output model 1 (red), model 2 (green), and model 3 (blue). Dotted
lines (right y-axis plotted against the x-axis) represent the mean occupancy change per particle per model for each iteration with regard to output model 1 (red), model 2
(green), and model 3 (blue). Both sets of lines are plotted against 100 performed iterations. The tables above each plot describe the particle composition of each output model
at iteration 100 (expressed as a percentage) with respect to the original map in the EMDB. Thus, for example, at a SNR of 0.025 and for the perturbed alignment parameters
and classification run (panel i), final models 1 and 2 generated by FREALIGN are both primarily composed of particles that originated from EMD-5030 (>99%), whereas model
3 is composed of particles representing the remaining data, and this remainder is divided approximately in accordance with its original 60%/40% distribution within the full
10,000 particle dataset.
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In addition to the three classes obtained by RELION, a fourth
class was detected that contains no EF-G and only two tRNAs (in
the A and P sites). This fourth class is closely related to the class
containing three tRNAs as it still shows some weak density in the
third tRNA position. While our new algorithm was able to detect
this fourth class, it was not capable of completely separating the
particles between all the classes. This is presumably due to the rel-
atively small difference between the two- and three-tRNA contain-
ing classes. Our new algorithm did not perform as well as RELION
on the smallest class present in this dataset – the 50S subunit. The
quality of the 50S map at about 40 Å is clearly worse than the 30 Å
map obtained using RELION. In terms of its total signal in the data-
set, the 50S class is the weakest due to the smallest number of class
members and the lower molecular mass of 50S compared with the
70S particles. Therefore, in the limit of very low SNR, maximization
of the marginal likelihood as implemented in RELION shows supe-
rior convergence. RELION also performs a more comprehensive and
computationally expensive orientation search with each iteration



Fig.5. Classification of the experimental 70S ribosome dataset using K = 4 classes. Density for EF-G is shown in red, the 50S and 30S subunits are shown in blue and yellow,
respectively, and the tRNAs are shown in green. Views with transparent surfaces to show density due to the tRNAs and EF-G are shown in (a), and cut-way views at a higher
density threshold to highlight internal density features are shown in (b). Fourier Shell Correlation (FSC) curves for each class are shown in (c) to indicate the resolution of each
map. The first two classes represent 70S ribosomes with and without bound EF-G and were also obtained in previous analyses of this test dataset (Elad et al., 2008; Elmlund
et al., 2010; Liao and Frank, 2010; Scheres, 2012a; Shatsky et al., 2010). For the second class, a second FSC curve is shown in red, indicating the resolution as estimated using
atomic models (PDB codes 2gy9 and 2gya, see Section 6). The last class represents the 50S subunit and was also observed in a classification performed by RELION (Scheres,
2012a,b). The class shown in third position from the left was only observed in some of the previous studies (Elad et al., 2008; Elmlund et al., 2010) and represents a 70S
ribosome with tRNAs bound in the A and P sites. There is weaker density for a third tRNA in the E site, indicating that this class still contains some ‘‘contaminating’’ particles
from the second class from the left. Density maps are represented as isosurfaces by UCSF Chimera (Pettersen et al., 2004).
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that will further increase its success in correctly aligning 50S par-
ticles, which cannot be aligned correctly in the initial stages of the
refinement when the reference structures represent mostly 70S
particles.
6. Methods

6.1. Generation of simulated data

We selected three previously determined cryo-EM maps of 70S
ribosomes – EMD-1798 (Ratje et al., 2010) (Fig. 2a), EMD-1799
(Ratje et al., 2010) (Fig. 2b), and EMD-5030 (Schuette et al.,
2009) (Fig. 2c). To reduce noise in these maps, binary masks envel-
oping each volume were generated, then Gaussian low-pass fil-
tered to soften the edges, and multiplied by the corresponding
map using the IMAGIC-5 suite (van Heel et al., 1996). Map EMD-
1798 was low-pass filtered at 8 Å resolution using a Gaussian filter,
and the other two maps were amplitude scaled against the filtered
EMD-1798 map using DIFFMAP (http://grigoriefflab.janelia.org).
All subsequent procedures were automatically performed using
the ‘‘create synthetic dataset’’ functionality implemented within
Appion (Lander et al., 2009), the details of which are described be-
low. Projections using random Euler angles and shifts were gener-
ated using the project3d and proc2d functions of EMAN (Ludtke
et al., 1999). We selected a pixel size of 2.52 Å/pixel, a box size
of 160 � 160 pixels and assumed an acceleration voltage of
200 kV. 2000, 3000, and 5000 projections of EMD-1798, EMD-
1799, and EMD-5030, respectively were randomly distributed
within a 10,000 particle dataset (Fig. 3a). Gaussian distributed
noise was added using proc2d (Fig. 3b) to achieve an SNR (variance
ratio of signal and noise) of 1.400 (Baxter et al., 2009). The initial
addition of noise was then followed by a CTF that was randomly
applied to each particle in the range of 2–4 lm underfocus using
ace2correct (a variation of ACE1, (Mallick et al., 2005)) (Fig. 3c),
and an experimentally obtained (Voss et al., 2010) envelope func-
tion (Fig. 3d). Finally the noise was adjusted to five different levels
based on the adjusted mean and standard deviation values of the
dataset after CTF and envelope application, corresponding to a final
SNR of 0.100, 0.050, 0.025, 0.013, and 0.006, respectively (Fig. 3e–
i). All particles were normalized to mean and standard deviation
values of 0 and 1, respectively, prior to alignment parameter
refinement and classification.
6.2. Alignment parameter refinement and 3D classification of
simulated data using FREALIGN

For each final level of noise (Fig. 3e–i) and for each of the three
classification schemes, 100 iterations of FREALIGN were performed
(Fig. 4). Each run was initiated with randomized classification
parameters that were obtained with the RSAMPLE program (dis-
tributed with FREALIGN). This produced three maps at iteration 0
that contained an approximately equal and random particle occu-
pancy distribution, such that any differences between them were
random. The resolution during refinement and classification was
always limited to 20 Å. A mask, corresponding to a particle radius
of 160 Å was applied and changes in occupancy between iterations
were reduced to 50% to improve convergence. Otherwise, the
refinement followed standard procedures in FREALIGN (Grigorieff,
1998, 2007).

http://www.emlab.rose2.brandeis.edu/diffmap
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6.3. Determination of ab initio Euler angle and shifts for 3D
classification of the synthetic 70S ribosome dataset

To determine the Euler angles from scratch we utilized the fol-
lowing strategy. First, we used the 0.025 SNR dataset (due to its
intermediate level of noise) that contains a mixture of
EMD-1798, EMD-1799, and EMD-5030 particles in randomized
order to generate reference-free class averages using the ISAC
method (Yang et al., 2012). This resulted in 265 ‘‘accounted’’ class
averages that were further processed using an automated
procedure based on the angular reconstitution (common-lines)
algorithm implemented in IMAGIC (van Heel et al., 1996). An initial
model was obtained that was then used as a reference for projec-
tion-matching using Xmipp (Scheres et al., 2008). The Euler angles
from the last iteration of projection-matching were converted to
Frealign, followed by 5 cycles of alignment parameter refinement.
The final angles from this procedure were used as starting points
for iterative classification as described above.

6.4. Estimating the resolution of a 3D reconstruction using atomic
models

To obtain an unbiased resolution estimate of one of the 3D
reconstructions obtained from the experimental 70S dataset (Bax-
ter et al., 2009), we modeled the reconstruction using atomic mod-
els for the 30S subunit and three tRNAs (PDB code 2gy9), and 50S
subunit (PDB code 2gya). The models were aligned with the 3D
reconstruction from the test dataset using UCSF Chimera (Pettersen
et al., 2004), converted into a single density map using Bsoft (Hey-
mann and Belnap, 2007). The 3D reconstruction was masked using
an envelope derived from a 60-Å low-pass filtered version of the
map to remove noise from the solvent surrounding the particle.
An FSC curve (FSCfull) was then calculated between the masked
map and map generated by Bsoft using EMAN’s proc3d program
(Ludtke et al., 1999). To generate a curve that corresponds to an
FSC curve calculated between two half datasets (FSChalf ), we con-
verted the curve calculated between the model and the map using

FSChalf ¼
FSC2

full

2� FSC2
full

: ð31Þ
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Supplemental Figure 1: Comparison of 3D classification starting with ab initio assigned 

alignment parameters and with perturbed true parameters. 

All classification runs were performed as in Fig. 4; tables describe the particle composition of 

each output model at iteration 100, and graphs describe classification trajectories. (a,d,g,j,m) 

classification-only refinement with Frealign using ab initio assigned Euler angles. (b,e,h,k,n) 

alignment and classification refinement with Frealign using ab initio assigned Euler angles and 

shifts. (c,f,i,l,o) alignment and classification refinement with Frealign starting from alignment 

parameters that were slightly perturbed from their true values (these panels are identical to panels 

(c,f,i,l,o) in Fig. 4 and are shown for the purpose of direct comparison). 
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