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Electron cryo-microscopy (cryo-EM) can generate high-resolution views of cells with 13 

faithful preservation of molecular structure. In situ cryo-EM, therefore, has enormous potential 14 

to reveal the atomic details of biological processes in their native context. However, in practice, 15 

the utility of in situ cryo-EM is limited by the difficulty of reliably locating and confidently 16 

identifying molecular targets (particles) and their conformational states in the crowded cellular 17 

environment. We recently showed that 2DTM, a fine-grained template-based search applied to 18 

cryo-EM micrographs, can localize particles in two-dimensional views of cells with high 19 

precision. Here we demonstrate that the signal-to-noise ratio (SNR) observed with 2DTM can be 20 

used to differentiate related complexes in focused ion beam (FIB)-milled cell sections. We apply 21 

this method in two contexts to locate and classify related intermediate states of 60S ribosome 22 

biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-23 

60S population from the cytoplasmic mature 60S population, using the subcellular localization to 24 

validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate 25 

mixed populations of nuclear pre-60S that are not visually separable. We use a maximum 26 

likelihood approach to define the probability of each particle belonging to each class, thereby 27 

establishing a statistic to describe the confidence of our classification. Without the need to 28 

generate 3D reconstructions, 2DTM can be applied even when only a few target particles exist in 29 

a cell. 30 

 31 

32 
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Introduction: 33 

Locating and characterizing molecules in cells is an important goal of molecular, 34 

structural, and cell biology. Cryogenic electron microscopy (cryo-EM) enables simultaneous 35 

visualization of all cellular molecules in their native cellular environment while preserving high-36 

resolution molecular architecture. Therefore, cryo-EM holds the promise of delivering an 37 

atomistic view of the cell. However, realizing this promise is limited by the high density of 38 

molecules in a cell, making it difficult to identify molecules of interest (Lučić et al., 2013). As 39 

one way to address this, electron cryo-tomography (cryo-ET) can be used to build 3D maps of 40 

cellular structures in their native context (in situ) by constructing tomograms from a series of 41 

tilted 2D images (Kürner et al., 2005; Lučić et al., 2013; Mahamid et al., 2016). In a tomogram, 42 

molecules overlapping in any given view can be separated and large molecular assemblies 43 

(particles) with distinctive shapes can be identified. Once identified, subtomogram averaging can 44 

yield in situ molecular structures at <4 Å resolution (Himes and Zhang, 2018; Tegunov et al., 45 

2021). However, since the effective resolution of a raw tomogram is below 15-20 Å (Vilas et al., 46 

2020), identification of specific targets in tomograms is limited to abundant particles that are 47 

sufficiently distinct at this resolution to be identified. 48 

Many potential cell biological applications require accurate categorization of individual 49 

molecule identity at a specific subcellular localization. Examples are the characterization of the 50 

spatial organization of a biosynthetic process such as ribosome biogenesis, and the assignment of 51 

molecular identities in small volumes such as synapses and vesicles. 3D classification of 52 

subtomograms can differentiate between structural states (Himes and Zhang, 2018; Xue et al., 53 

2021). However, the assignment of states is unreliable for similar structures that can only be 54 

distinguished using high-resolution detail, and statistical approaches to quantitatively assess 55 

classification results are lacking. Machine learning has been employed for particle classification 56 

in tomograms, but currently only performs as well as a human operator (Moebel et al., 2021). 57 

While machine learning algorithms performed better than 3D template matching at molecule 58 

localization in tomograms, classification remained challenging for all algorithms (Gubins et al., 59 

2020). In situ molecule classification, therefore, remains a major challenge. 60 

We recently described an alternate method to locate particles that may improve structural 61 

classification in cells. By using 2D cryo-EM images, rather than tomograms, and fine-grained, 62 

high-resolution template matching (2DTM), specific particles can be located in cells with high 63 
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precision using their atomic structures (Lucas et al., 2021; Rickgauer et al., 2020, 2017). 2DTM 64 

uses molecular models, from in vitro structure determination or in silico structure prediction 65 

(e.g., Alphafold2 (Jumper et al., 2021)) to generate a 3D density. This 3D density (hereafter 66 

referred to as the template) is then projected in 2D along millions of orientations. A pixel-wise 67 

cross-correlation of the 2D projections with a high-resolution 2D cryo-EM image is performed, 68 

yielding a 2DTM signal-to-noise ratio (SNR) at every pixel location (Rickgauer et al., 2017). 69 

The 2DTM SNR values are subjected to a significance test, which identifies peaks with a desired 70 

level of confidence (Lucas et al., 2021; Rickgauer et al., 2017). In the following, we refer to 71 

targets passing this test as significant targets (Lucas et al., 2021; Rickgauer et al., 2017). 72 

The 2DTM SNR is proportional to template mass and negatively affected by non-73 

matching elements between template and target (Lucas et al., 2021; Rickgauer et al., 2020, 74 

2017). We have shown that a template generated from a Bacillus subtilis 50S large ribosomal 75 

subunit was able to detect 50S in 2D cryo-EM images of Mycoplasma pneumoniae cells, but 76 

with a lower average 2DTM SNR compared to a M. pneumoniae 50S template (Lucas et al., 77 

2021). This demonstrated that (1) 2DTM using partially matching templates can be sufficiently 78 

sensitive to yield significant targets and (2) the mean 2DTM SNR of detected targets provides a 79 

read-out of the relative similarity between different templates and populations of particle species. 80 

In this study, we investigate whether the ratio of 2DTM SNRs obtained using different 81 

templates can be used to identify the template that more closely resembles the cellular target, and 82 

thereby classify particles in cells. As a model system, we chose to examine the late stages of 60S 83 

ribosomal subunit biogenesis in the yeast Saccharomyces cerevisiae because (1) intermediates 84 

are of a similar size and share significant structure with one another, making them difficult to 85 

separate at low resolution, (2) molecular models spanning multiple late intermediate states have 86 

recently been described, and (3) the maturation events that occur before and after nuclear export 87 

have been characterized. Subcellular localization can thereby validate the assignment of 88 

intermediate and mature states. 89 

We show that 2DTM can locate and distinguish nuclear intermediates of 60S maturation 90 

in 2D cryo-EM images of FIB-milled yeast cells. We confirm that 2DTM can distinguish 91 

predefined 60S populations separated by subcellular localization and identify compositional 92 

differences between them. We then applied a maximum likelihood-based approach to identify 93 

two sub-populations of nuclear intermediates that were not otherwise separable and provide a 94 
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confidence of single particle classification. We show that using this approach, we can observe a 95 

shift in the nuclear pre-60S intermediate population to a more mature intermediate after 96 

inhibiting Crm1-mediated nuclear export. This study demonstrates that relative 2DTM SNR 97 

ratios effectively distinguish related complexes and can identify changes to particle populations 98 

in cells. 99 

 100 

Results: 101 

2DTM identifies 60S in biologically relevant locations and orientations in FIB-milled lamellae  102 

2DTM has been used to detect mammalian ribosomes in thin extensions of adherent cells 103 

(Rickgauer et al., 2020), and bacterial ribosomes in Mycoplasma pneumoniae cells (Lucas et al., 104 

2021), both of which are sufficiently thin to permit imaging by transmission EM (TEM). Since 105 

most eukaryotic cells are too thick to image by TEM, focused ion beam (FIB)-milling is used to 106 

generate thin, electron transparent lamellae of cryogenically frozen cells (Marko et al., 2007; 107 

Rigort et al., 2012; Villa et al., 2013). 108 

To evaluate the utility of 2DTM to locate molecules in FIB-milled lamellae, we collected 109 

28 2D cryo-EM images of the nuclear periphery of lamellae generated from actively growing 110 

Sacchromyces cerevisiae cells (Figure 1, Figure 1-figure supplement 1A-B). We identified 111 

4363 large ribosomal subunits by 2DTM using a template generated from a model representing 112 

the mature 60S (PDB: 6Q8Y) (Tesina et al., 2019) (Figure 1A-C). The peaks corresponding to 113 

significant detections were clearly distinguishable from background (Figure 1E, Figure 1-figure 114 

supplement 1C), enabling precise localization of mature 60S in the cell. 115 

To assess the specificity of 60S detection, we identified regions of the images 116 

corresponding to the cytoplasm, nucleus and vacuole by visual inspection. Consistent with the 117 

expected high specificity of 2DTM, we did not observe any significant mature 60S-detected 118 

targets in regions of the image corresponding to the vacuole (Figure 1C-D). In contrast, 229 119 

mature 60S-detected targets localized to the nucleus, representing ~5% of all mature 60S 120 

identified targets in these images (Figure 1C-D). In regions of the images corresponding to the 121 

cytoplasm we observe a median density of ~6500 60S/𝜇m3, which, assuming an average cell 122 

volume of ~42 𝜇m3 of which ~65% is cytoplasm, corresponds to a total of ~180,000 60S/cell 123 

(Figure 1G). This is consistent with prior estimates of 187,000 ± 56,000 ribosomes per yeast 124 

cell based on rRNA concentration (von der Haar, 2008). 125 
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Beyond the subcellular distribution of mature 60S-detected targets, we also confirmed 126 

that 2DTM identified specific 60S in biologically relevant locations and orientations. The 127 

nuclear envelope (NE) is contiguous with the endoplasmic reticulum and a known site for co-128 

translational transport of transmembrane and secretory proteins, while the vacuole is not known 129 

to be a site of translation. We found that mature 60S-detected targets were oriented with their 130 

polypeptide exit tunnels facing the cytoplasmic surface of the NE but were depleted from within 131 

~20 nm of the vacuole (Figure 1C,F). This indicates that the orientation of 60S identified by 132 

2DTM is unlikely to be an artefact introduced by features of the membrane in the image. To 133 

confirm that the targets identified with the mature 60S template reflect ribosomes, we generated 134 

a 3D reconstruction using the locations and orientations of 3991 significant mature 60S-detected 135 

targets using standard single particle approaches as described previously (Lucas et al., 2021). In 136 

addition to the 60S the 10 Å-filtered reconstruction showed density consistent with the 40S small 137 

ribosomal subunit (Figure 1H). This is consistent with many of the mature 60S detected targets 138 

representing a population of 80S ribosomes. We conclude that 2DTM-identified locations and 139 

orientations in 2D cryo-EM images of FIB-milled lamellae reflect biologically relevant locations 140 

and orientations of ribosomes in the cell. 141 

 142 

Relative 2DTM SNRs enable single particle classification in situ 143 

The nuclear envelope (NE) creates a physical barrier that separates premature 60S in the 144 

nucleus from mature 60S in the cytoplasm and is easily distinguishable in many 2D images by its 145 

characteristic double membrane and by the more granular appearance of the cytoplasm vs the 146 

nucleus (e.g., Figure 1B). Our observation of a substantial population of mature 60S-detected 147 

targets in the nucleus, but not in the vacuole (Figure 1C-D), suggests that the nuclear 60S may 148 

result from cross-detection of nuclear precursors, which share part of their structure with mature 149 

60S and therefore also produce significant correlations (Figure 2A). As a first step to 150 

differentiate between related 60S intermediates, we located precursor 60S by 2DTM searches 151 

using a template generated from a late nuclear intermediate (LN 60S, PDB: 6N8J) (Zhou et al., 152 

2019) (Figure 2A,B), and annotated each target by its subcellular localization. The LN 60S was 153 

chosen because it represents the most mature nuclear intermediate for which there is a structure, 154 

and which retains ribosome biogenesis factors (RBFs) that are removed during nuclear and early 155 

cytoplasmic processing (Figure 2A). Thus, we expect that (1) the similarities between the 156 
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mature 60S and LN 60S structures will result in cross-detection of the respective other complex 157 

and (2) the cytoplasmic population will more closely resemble the mature 60S and nuclear 158 

population will more closely resemble the LN 60S resulting in a higher mature 60S / LN 60S 159 

2DTM SNR ratio in the cytoplasm than the nucleus. In the 28 images of the nucleus and nuclear 160 

periphery we located 1651 significant LN 60S-detected targets of which 1382 (~84%) of the LN 161 

60S-detected targets were cytoplasmic and 268 (16%) were nuclear (Figure 2-figure 162 

supplement 1A). We identified more cytoplasmic than nuclear targets in 2DTM searches with 163 

both mature and LN 60S templates because (1) the cytoplasm represented a larger area of our 164 

images and (2) the concentration of 60S is expected to be higher in the cytoplasm relative to the 165 

nucleus (e.g., (Delavoie et al., 2019)). Only one of the significant LN 60S-detected targets 166 

localized to the vacuole, which is below the expected false positive rate and further indicates the 167 

specificity of 2DTM. 168 

As expected from the similarity between the mature and LN 60S templates, the locations 169 

of many of the targets identified in the two searches overlap (Figure 2B,C). We aligned the two 170 

sets of coordinates using the program align_coordinates (Lucas et al., 2021). Approximately one 171 

third of the mature 60S-detected targets overlapped with LN 60S-detected targets while 92% of 172 

the LN 60S-detected targets overlapped with mature 60S-detected targets (Figure 2H). 173 

Combining the results of both searches, only 0.5% of the cytoplasmic targets were LN 60S-174 

detected only, compared to 30% of the nuclear targets (Figure 2I). 175 

Consistent with their expected localizations, the median log2(mature 60S / LN 60S 176 

2DTM SNR) values 177 

 of targets identified with both templates were significantly higher for the cytoplasmic 178 

population than the nuclear population (p < 0.0001, K-S. test) (Figure 2D-G,J). We classified 179 

each target as LN or mature 60S according to the highest 2DTM SNR (Figure 1K). Of the 180 

population detected with both mature and LN 60S templates. 94% of the 1361 cytoplasmic 181 

targets have a closer match (higher SNR) with the mature 60S and 88% of the 171 nuclear 182 

targets have a closer match with the LN 60S (Figure 1J). Combining all 60S-detected targets, 183 

the nuclear 60S targets are now more clearly distinguished from the cytoplasmic population with 184 

98% of the cytoplasmic targets annotated as mature 60S, and 60% of the nuclear targets 185 

annotated as pre-60S (Figure 1K,L). The ~40% of nuclear targets that more closely resemble the 186 

mature 60S likely reflect nuclear intermediates different from the LN 60S (see below) and thus 187 
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do not perfectly match either template. We conclude that comparing 2DTM SNRs can effectively 188 

differentiate populations of related particles in situ. 189 

 190 

Defining a confidence metric for single particle classification in situ 191 

 To gain an understanding of cell biology at molecular resolution it is necessary to be able 192 

to confidently assign particle identity to individual targets. We show above that the nuclear and 193 

cytoplasmic 60S populations were significantly different with respect to their relative similarity 194 

to the LN and mature 60S (Figure 2). We also show that classifying targets by their highest 195 

2DTM SNR effectively separates the nuclear from the cytoplasmic population (Figure 2). 196 

However, a single threshold does not fully capture the differences between the nuclear and 197 

cytoplasmic populations and for an individual particle the confidence of classification is unclear. 198 

To assign a confidence in the class assignments of detected particles we developed a 199 

maximum likelihood-based approach to infer the probability of a particle deriving from one of a 200 

given number of populations. We sought to classify each of the 1531 LN and mature 60S-201 

detected targets by their relative similarity to the LN 60S or mature 60S templates. We restricted 202 

our analysis to the targets that were detected by both templates to limit the contribution from 203 

noise. We made the initial simplifying assumption that: 1) each 60S identified more closely 204 

reflects either LN or mature 60S, i.e., the number of classes needed to describe all detected 205 

targets is two; 2) the nuclear targets more closely resemble the LN 60S and the cytoplasmic 206 

targets more closely resemble the mature 60S. We therefore define the prior probability that a 207 

randomly selected detected target belongs to a specific population according to the number of 208 

targets detected in the nucleus and cytoplasm, respectively (Figure 2J, Figure 2-figure 209 

supplement 1A).: 210 

P(targets being LN 60S) = 𝑃(𝑁𝑢𝑐𝑙𝑒𝑢𝑠)= 0.11 and 211 

P(targets being mature 60S) = 𝑝(𝐶𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚)= 0.89. 212 

We used a maximum likelihood-based approach to model the log2(mature / LN 60S 213 

2DTM SNR) values as a mixture of two Gaussians (Figure 3A, R2= 0.993). The fit suggests a 214 

major population that more closely reflected the mature 60S and a smaller population that more 215 

closely reflected the LN 60S (Figure 3A). Using the Gaussian distribution model (see Materials 216 

and Methods), we calculate the probability that a LN and mature 60S-detected target with a 217 

given log2(mature / LN 60S SNR) value more closely resembles the LN 60S than the mature 60S 218 
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via Bayes rule (Figure 3B-C). This analysis could easily be extended to cases where more than 219 

two templates are used in the search (see Materials and Methods). A confidence threshold of 220 

95% assigns 27% of the nuclear targets and only ~0.2% of the cytoplasmic targets to the LN 60S 221 

population (Figure 3C). Defining a threshold at 50% classifies ~75% of the nuclear targets as 222 

LN 60S and 92% of the cytoplasmic targets as mature 60S (Figure 3C). The relative probability 223 

of each detected 60S belonging either to the LN or mature 60S population can be readily 224 

visualized (Figure 3D). This shows that the 2DTM SNR ratio can effectively delineate 225 

populations of related particles in cells with a specified confidence for each particle assignment. 226 

 227 

Ribosome biogenesis factors differentiate nuclear from cytoplasmic 60S 228 

 Most of the mass difference between the LN and mature 60S templates results from 229 

proteins in the LN 60S that are absent in the mature 60S (Figure 4A-C). Notable exceptions are 230 

the proteins on the P-stalk are present only on the mature 60S (Figure 4A-C, Figure 3A). 231 

Additionally, several rRNA helices on the intersubunit interface are in different conformations, 232 

specifically the L1 stalk, helix 38 and helix 89, which undergo conformational changes during 233 

maturation (Figure 4C). To identify which of these features distinguish nuclear from 234 

cytoplasmic 60S, we investigated the relative dependence of the 2DTM SNRs on the rRNA and 235 

proteins of the LN 60S template. We generated truncated LN 60S templates containing either 236 

rRNA or protein only and calculated the change in the 2DTM SNR for each template at each 237 

target relative to the full-length template (Figure 4D). The rRNA contributed 1.5 and 1.8-fold 238 

more to the 2DTM SNR of the nuclear and cytoplasmic targets, respectively, despite comprising 239 

only 1.25-fold more of the template mass (1004 and 800 kDa, respectively), than the proteins 240 

(Figure 4D). Indeed, 60% of the cytoplasmic targets and 34% of the nuclear targets were no 241 

longer significant when searching with the proteins alone. Comparing the nuclear and 242 

cytoplasmic populations shows that the 2DTM SNR of the LN 60S-detected cytoplasmic targets 243 

is less affected by the removal of the LN 60S proteins and more strongly affected by the removal 244 

of the rRNA (Figure 4D). This shows that the LN 60S proteins contribute more to the SNR of 245 

the nuclear targets than the cytoplasmic targets and are therefore more effective at differentiating 246 

the nuclear from the cytoplasmic 60S population. 247 

Since the LN 60S represents a late intermediate of 60S maturation in which the rRNA is 248 

almost fully folded, RBF proteins on the LN 60S account for most of the difference with the 249 
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mature 60S by mass (Figure 4A-D). To confirm that the SNR difference of nuclear LN 60S-250 

detected targets and cytoplasmic mature 60S-detected targets is primarily due to the RBF 251 

proteins, we removed the RBFs from the LN 60S template and recalculated the SNR for each 252 

target. The removal increased the 2DTM SNR ratio of the cytoplasmic targets, while decreasing 253 

the 2DTM SNR of the nuclear targets (Figure 4E), making the SNR values more similar. This is 254 

consistent with the nuclear population having these RBFs and the cytoplasmic population lacking 255 

the RBFs. We conclude that the differentiation of detected targets using the observed 2DTM 256 

SNRs reflects biologically relevant differences between them. 257 

 258 

Nog2 lacking intermediates accumulate after inhibition of nuclear export 259 

The two largest RBFs on the LN 60S are Nog1 and Nog2, together accounting for ~50% 260 

of the RBF mass (Figure 4F,G). During 60S maturation, Nog2 removal is required to permit 261 

binding of the nuclear export adaptor Nmd3 and Crm1-dependent export, and therefore Nog2 262 

removal precedes nuclear export (Ho et al., 2000; Matsuo et al., 2014). In contrast, Nog1 is 263 

removed only upon export to the cytoplasm (Pertschy et al., 2007). In cells with active nuclear 264 

export, we find that removal of either Nog1 or Nog2 differentiates the nuclear from the 265 

cytoplasmic populations (Figure 4F,G, untreated cells). As a further test of differentiating 266 

different targets by 2DTM, we inhibited Crm1 mediated export by treating Leptomycin B (LepB) 267 

sensitive Crm1 (T539C) cells with LepB and located 60S targets with LN 60S and mature 60S 268 

templates in eight images of FIB-milled lamellae. To assess the relative occupancy of Nog1 and 269 

Nog2 after Crm1 inhibition, we measured the change in 2DTM SNR after removal of all RBFs, 270 

and Nog1 or Nog2 alone. Consistent with LepB inhibiting export of pre-60S from the nucleus, 271 

we detected a higher density of pre-60S in the nucleus than in cells with active Crm1 (Figure 4-272 

figure supplement 1A). When nuclear export is inhibited, all RBFs (Figure 4E) and Nog1 alone 273 

(Figure 4F) still differentiate the nuclear from the cytoplasmic populations. In contrast, the 274 

occupancy of Nog2 is no longer significantly different between the nuclear and cytoplasmic 275 

populations (Figure 4G). This is consistent with a model in which, when Crm1-mediated export 276 

is active, nuclear intermediates are rapidly exported after removal of Nog2, depleting the Nog2-277 

lacking population from the nucleus. In the presence of a Crm1-inhibitor, the late, export 278 

competent nuclear intermediate lacking Nog2 can no longer be exported and therefore 279 

accumulates. Since Nog1 is only removed after export, inhibition of export did not change the 280 
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occupancy of Nog1 on the maturing 60S. This demonstrates that comparing 2DTM SNRs is 281 

sufficiently sensitive to assess the occupancy of individual proteins in situ. 282 

 283 

Classification of nuclear pre-60S intermediates 284 

Ribosome biogenesis is a highly efficient molecular assembly line, and multiple 285 

intermediate states co-exist in the cell (Warner, 1999). Therefore, the nuclear population of pre-286 

60S is unlikely to represent a single intermediate population. Accordingly, the distribution of the 287 

mature 60S / LN 60S SNR ratios of nuclear mature and LN 60S-detected targets fits a single 288 

Gaussian more poorly than the cytoplasmic targets (Figure 2J), suggesting that additional 289 

nuclear populations were identified with both 60S templates. To test this prediction and 290 

investigate the nuclear pre-60S population further, we generated a third template corresponding 291 

to an earlier nuclear intermediate (EN 60S). EN 60S (PDB: 3JCT) retains internally transcribed 292 

spacer RNA 2 (ITS2) and associated proteins and has 5S rRNP in a premature state rotated 180° 293 

relative to the LN and mature 60S (Figure 5A) (Wu et al., 2016). We identified 679 significant 294 

EN 60S-detected targets of which 545 (~80%) were also identified with the LN 60S template, 295 

and 489 (72%) were also identified with the mature 60S. All of the 489 EN 60S-detected targets 296 

identified with the mature 60S were also identified with the LN 60S (Figure 5A). 289 (43%) of 297 

the EN 60S-detected targets localized to regions of the images corresponding to the nucleus, 298 

similar to the 268 nuclear LN 60S-detected targets, while only 390 were cytoplasmic, >3-fold 299 

fewer than located with the LN 60S template, consistent with the EN 60S representing a less 300 

mature nuclear intermediate (Figure 5B). The number and localization of targets identified with 301 

2DTM is consistent with their sequence in the maturation pathway, progressing from EN 60S to 302 

LN 60S in the nucleus to mature 60S in the cytoplasm. 303 

Cross-detection of targets by different templates can be used to detect heterogeneity in 304 

target populations. When examining the SNR ratios of targets identified by both EN and LN 60S, 305 

the cytoplasmic targets display a distribution that is consistent with a single population that more 306 

closely resemble the LN 60S template (Figure 5-figure supplement 1B, red). The distribution 307 

of nuclear targets, however, was consistent with at least two populations (Figure 5-figure 308 

supplement 1B, blue), each of which is distinct from the cytoplasmic population. This indicated 309 

the presence of at least two nuclear populations that differ with respect to their relative similarity 310 

to the EN and LN 60S templates. 311 
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We next sought to classify the EN, LN and mature 60S-detected targets based on their 312 

relative similarity to the three 60S templates. For each target we calculated the log2(mature 60S / 313 

LN 60S SNR) and log2(EN 60S / LN 60S SNR) values. We used these values to classify each 314 

target based on the relative similarity to the three templates using the maximum-likelihood 315 

approach discussed above (Figure 5C). We found that, consistent with their expected subcellular 316 

distributions, targets assigned to the mature 60S population represented 315 (85%) of the 317 

cytoplasmic targets and only 1 (<1%) of the nuclear targets detected by all three templates 318 

(Figure 5D). In contrast, the EN 60S population represents 83 (70%) of the nuclear population 319 

and only 4 (~1%) of the cytoplasmic population detected with all three templates (Figure 5D). 320 

The LN 60S population was roughly evenly distributed between the nucleus and the cytoplasm, 321 

consistent with this structure representing a late maturation intermediate (Figure 5D). 322 

 The NE provides a convenient visual control for the classification of targets as LN / EN 323 

60S or mature 60S (e.g., Figure 1). However, there are no clear features in the nucleoplasm that 324 

would enable visual separation of different populations of nuclear intermediates and thereby 325 

confirm their classification. To validate our classification of the nuclear pre-60S populations, we 326 

identified conditions wherein the relative occupancy of the two states would be expected to 327 

change. We show above that inhibiting Crm1-mediated export results in accumulation of nuclear 328 

intermediates that lack Nog2 (Figure 4). In cells with active Crm1, 57% of the nuclear 60S 329 

targets are assigned to the EN 60S population (Figure 5E). After inhibition of Crm1-mediated 330 

export, the EN 60S population is mostly depleted, and >90% of targets are assigned to the LN 331 

60S population (Figure 5E). This confirms that 2DTM SNR ratios can be used to effectively 332 

classify mixed populations of particles in cells. 333 

  334 

Discussion: 335 

 The immense potential for cryo-EM to reveal the molecular detail of biological processes 336 

in cells is currently largely unrealized. One of the major bottlenecks is the lack of reliable, 337 

quantitative methods to locate and characterize molecules in cells. Here we describe the 338 

application of 2DTM to in situ particle classification. By considering the relative 2DTM SNRs of 339 

alternate templates at a single location and orientation, we separate 60S precursors in the nucleus 340 

from mature 60S in the cytoplasm. We also show that a maximum likelihood approach 341 

effectively classifies a mixed population of nuclear pre-60S into at least two maturation states 342 
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with a specified confidence for each particle. We show that 2DTM can be used to probe the 343 

composition of complexes in situ by modifying 2DTM templates. In this study we extend the 344 

utility of 2DTM beyond a binary indicator of detection to provide a quantitative assessment of 345 

particle identity. 346 

 347 

2DTM enables specific molecule localization in the dense interior of cells 348 

Cryo-FIB milled eukaryotic cells are sufficiently well preserved to allow imaging with 349 

cryo-ET (Mahamid et al., 2016) and subtomogram averaging to yield 3D reconstructions at 350 

resolutions of >~12Å, e.g., (Schaffer et al., 2019). However, before the present work it was 351 

unclear if the milling preserves the high-resolution signal in these samples sufficiently well to 352 

allow for particle detection with 2DTM. Our results clearly show that FIB-milling is compatible 353 

with molecule localization by 2DTM. This expands the application of 2DTM to previously 354 

inaccessible cell types and further demonstrates the utility of 2DTM for in situ structural biology. 355 

In many images, 60S subunits detected by 2DTM also generate low-resolution contrast in 356 

the cytoplasm that is readily visible (Figure 1B, yellow arrows). In the nucleoplasm, the similar 357 

density of RNA and DNA impedes the visual identification of all but a few pre-60S (Figure 1B, 358 

blue arrows). However, the reduced low-resolution contrast does not preclude effective detection 359 

of pre-60S with 2DTM. This is in contrast to particle localization in tomograms, wherein 360 

detection depends more strongly on low-resolution contrast and recognizable shapes. The ability 361 

to distinguish particles in crowded molecular environments is a major advantage of 2DTM 362 

relative to cryo-ET, which currently suffers from strong attenuation of high-resolution signal 363 

(large B-factors) in the raw tomogram (Schur et al., 2016). 2DTM may enable localization of 364 

molecules in other dense environments such as liquid-liquid phase separated granules, which 365 

remains challenging for cryo-ET despite success in some cases (Erdmann et al., 2021). Our 366 

results confirm that 2DTM is an effective method to localize molecules in dense regions of the 367 

cell even when the molecules cannot be distinguished by eye. 368 

 369 

2DTM enables single particle classification in situ 370 

In previous work we and others have demonstrated that, when comparing populations of 371 

molecules, the average 2DTM SNRs reflect the relative similarity of different templates to the 372 

target populations (Lucas et al., 2021; Rickgauer et al., 2020). In this study, we extend this 373 
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observation to show that the relative 2DTM SNRs of aligned templates at a specific location and 374 

orientation can be used to calculate the relative probabilities of a target belonging to a specific 375 

particle population. 376 

Of the nuclear targets identified with the mature 60S, ~50% were also detected with the EN 377 

60S, all of which were also detected with the LN 60S (Figure 5B). When calculating the relative 378 

similarity to the three 60S templates, the EN 60S and mature 60S population were clearly 379 

distinct, with mean 2DTM SNR ratios more than three standard deviations apart (Figure 5C). 380 

The maximum likelihood estimation of Gaussian distributions enables quantitative classification 381 

even when particle populations are less distinct, by yielding relative probabilities for each 382 

detected target belonging to one of a given number of populations (e.g., Figures 3&5).  383 

In this study, we effectively classify at least three populations of 60S maturation states from a 384 

population of <500 molecules (Figure 5). This means that given sufficient abundance of the 385 

target, it will be possible to distinguish populations based on data from a single image (Figure 2-386 

figure supplement 1D). This contrasts with more traditional (reference-free) methods used to 387 

classify subtomograms and single particles, which require hundreds to thousands of particles to 388 

generate the class averages needed for particle assignment. 2DTM allows single molecule 389 

classification from fewer images, and therefore enables more information to be extracted from 390 

images collected from cells and purified samples (single-particle cryo-EM). 391 

 392 

Confidence metric for single particle classification in situ 393 

Calculating the confidence in class assignment of individual particles will aid interpretation 394 

of the results of 2DTM in situ. One major difference between in situ cryo-EM and single-particle 395 

cryo-EM is the type of biological information that is obtained. In single-particle cryo-EM, the 396 

goal is to generate high-resolution maps and establish the arrangement of atoms within a 397 

complex in different functional states, and to use this information to discern its molecular 398 

mechanism. In this case, B-factors and other metrics can be used to indicate uncertainty about an 399 

atomic coordinate, which aids interpretation of the model built into the map. In the cell, each 400 

individual instance of a complex may be in a different context relative to other similar molecules. 401 

For example, particles might be in different subcellular compartments such as the nucleus or 402 

cytoplasm or, as a more extreme example, a single particle within a nuclear pore exists in a very 403 

different context than particles in the nucleoplasm. For structural cell biology applications, 404 
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therefore, it is useful to define a metric to establish the confidence of single particle 405 

classification. In this study, we show that a maximum likelihood approach using Gaussian fits to 406 

log2 2DTM SNR ratios of alternate templates at a specific subcellular location and orientation 407 

can be used to calculate the relative probability of a single particle deriving from one of a given 408 

number of classes. This provides a quantitative metric to establish confidence in the assignment 409 

of single particles that will aid in the biological interpretation of cellular cryo-EM maps. 410 

 411 

2DTM templates as computational molecular probes 412 

A major challenge in biological cryo-EM the retrieval of detailed structural information of 413 

inherently flexible and heterogeneous macromolecules from noisy images collected at low dose 414 

to limit radiation damage. In single particle cryo-EM, this problem is addressed by averaging 415 

images of thousands of purified molecules to identify different structural states at high 416 

resolution. By averaging images of many identical copies of a particle, novel structures can be 417 

discovered, and this is a clear strength of this approach. However, since most complexes have a 418 

low abundance in the cell, the utility of this approach for in situ structural biology is limited to 419 

all but the most abundant complexes.  420 

2DTM presents an alternate approach to using the signal in noisy images to gain insight into 421 

the structural states of molecules. In this approach, a noise-free template represents a hypothesis 422 

that a particle of a given conformational and compositional state is present in the image, and this 423 

hypothesis can be tested by searching the image with the template, independent of how many 424 

particles the image contains. We demonstrate that by generating modified templates representing 425 

different hypotheses, we can directly assess the compositional and conformational states of 426 

ribosomal subunits in cells. 427 

Provided the templates have similar molecular mass and shape and are aligned with each 428 

other, probing with multiple templates requires only a single initial exhaustive search with one of 429 

the templates. This can be followed by a simple evaluation of the cross-correlation coefficient for 430 

each additional template at locations and orientations of the detected targets in the initial search 431 

(Figure 4), thereby avoiding time-consuming searches for all templates. In future studies, this 432 

approach could be extended to assess the relative similarity of a target with respect to a library of 433 

alternate structures. Alternate templates could be generated in multiple ways, depending on the 434 

biological hypothesis being tested. To reveal compositional heterogeneity in situ, alternate 435 
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structures could be generated that lack specific subunits of interest as shown in Figure 4. 436 

Additionally, to interrogate in situ conformational heterogeneity, templates could be generated 437 

from time points of molecular dynamics simulations. 438 

 439 

Addressing potential sources of error 440 

In our study, we used the physical separation of nuclear and cytoplasmic 60S populations 441 

to develop and test in situ classification of targets by 2DTM. We found that there are several 442 

requirements to permit classification of related molecules by 2DTM. First, the molecular models 443 

must be aligned relative to one another resulting in a correlation peak at the same pixel in the 444 

image. Comparing SNR values resulting from global searches with different templates may be 445 

lowered by imperfect, off-grid rotational matches, potentially affecting 2DTM SNR ratios and 446 

hence, target classification. Differences in model quality may also affect the 2DTM SNR ratios, 447 

masking other differences of interest. In this study, the mature 60S template was generated using 448 

the atomic coordinates of the large subunit of the ribosome built into a map with an overall 449 

resolution of 3.1 Å (PDB: 6Q8Y) (Tesina et al., 2019). The large subunit of the ribosome is 450 

structurally less variable than the small subunit and local resolution estimates suggest that parts 451 

of the LSU map extend to ~2.5 Å (Tesina et al., 2019). The maps used to build the EN 60S and 452 

LN 60S subunits were reconstructed at 3.08 Å and at 3.5 Å resolution, respectively. The 453 

accuracy of the atomic coordinates of a model will depend on the resolution of the underlying 454 

density map. Moreover, the greater number of mature ribosome structures, relative to maturation 455 

intermediate structures, may provide more confidence in the atomic coordinates of the mature 456 

60S. We expect that more accurate coordinates will result in higher 2DTM SNR values, which 457 

may affect target classification. 458 

The dependence of 2DTM SNR values on the quality of the atomic model presents the 459 

possibility to use 2DTM to refine atomic models directly against 2D images of purified samples, 460 

and in situ against targets detected in images of cells. This approach may bypass some of the 461 

difficulties associated with the use of intermediary 3D reconstructions in atomic model 462 

refinement, such as inaccurate representation of the full extent of heterogeneity in a dataset and 463 

loss of resolution in flexible parts of a molecule. Further development is required to address the 464 

potential of overfitting when refining against noisy 2D images, and to detect and quantify errors 465 

in the refined models. 466 
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The classification of structurally similar targets could be further improved by identifying 467 

and controlling the factors that affect the distribution of observed 2DTM SNR ratios for a given 468 

set of templates. Ideally, the mean ratio of SNR values for a set of templates and given target 469 

depends only on the structural differences between the templates, while the distribution of 470 

observed ratios is solely a function of the noise and background in the images. However, factors 471 

that contribute to loss of signal such as sample thickness, radiation damage, beam induced 472 

motion, charging and movie frame alignment errors due to sample deformation all result in loss 473 

of high-resolution signal, making the 2DTM SNR ratios less sensitive to structural differences in 474 

the templates and biasing their log2 values towards 0. Additionally, structural variability in the 475 

targets that is not captured by the templates, as well as different degrees of overfitting during 476 

2DTM (Lucas et al., 2021) and a target orientation dependence of the SNR values may lead to a 477 

wider spread of observed 2DTM SNR ratios. Further research is required to account for these 478 

factors and reduce the variance in 2DTM SNR ratios, thereby enabling classification of targets 479 

with smaller structural differences. 480 

 481 

Additional intermediate populations 482 

In the present study, we only considered three alternate 60S templates. We note that the 483 

Gaussian fits to the 2DTM SNRs of mature 60S and LN 60S-detected nuclear targets is 484 

imperfect, potentially indicating additional pre-60S populations (Figure 2-figure supplement 485 

1C). Further examination of the observed 2DTM SNR ratios revealed the presence of at least one 486 

additional pre-60S population (Figure 5). We also observed a small population of cytoplasmic 487 

60S targets with higher SNR values against the LN 60S template than against the mature 60S 488 

(Figure 5D). 60S maturation intermediates exit the nucleus in an immature form and complete 489 

maturation in the cytoplasm. Whether the cytoplasmic 60S with higher SNR values against the 490 

LN 60S template represent cytoplasmic intermediates or reflect the limits of our classification 491 

strategy requires further investigation. Future work using additional templates representing other 492 

intermediates of 60S maturation will reveal further details about the spatiotemporal organization 493 

of pre-60S intermediates in cells. 494 

In this study, we identified an EN 60S population of nuclear 60S with the 5S rRNP in a 495 

premature state rotated 180° relative to the mature 60S, consistent with in vitro determined 496 

structures (Leidig et al., 2014). The presence of this complex during maturation in vivo has been 497 
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difficult to establish. Our observation that this population accounts for more than half of the 60S 498 

identified in the nucleus argues that this is an on-pathway assembly intermediate. We also 499 

identified a nuclear LN 60S population. This population reflects a late intermediate that has 500 

already undergone 5S rotation and ITS2 removal, implying a temporal lag after 5S rotation 501 

and/or ITS2 removal, and subsequent export from the nucleus. To test these possibilities more 502 

thoroughly, future studies establishing the flux through the assembly pathway are needed. By 503 

freezing cells at different time points after inhibition of specific maturation steps, 2DTM could 504 

be used to study the kinetics of assembly and the flux through the assembly pathway. 505 

 506 

Materials and Methods: 507 

Yeast cell culture and plunge freezing 508 

Saccharomyces cerevisiae strains BY4741 (ATCC), or MNY8 (a gift from Michael Rosbash) 509 

colonies were inoculated in 20mL of YPD, diluted 1/5 and grown overnight to an OD600 of ~0.5 510 

to 1. The cells were then diluted to 10,000 cells/mL and 3uL applied to a 2/1 or 2/2 Quantifoil 511 

200 mesh Cu grid, allowed to rest for 15 seconds, back-side blotted for 8 seconds and plunged 512 

into liquid ethane at -184°C using a Leica EM GP2 plunger. Frozen grids were stored in liquid 513 

nitrogen until FIB-milled. When indicated Crm1(T539C) (MNY8 cells, a gift from Michael 514 

Rosbash, Brandeis) were additionally incubated at 30°C with shaking in the presence of 200 nM 515 

Leptomycin B (Cell Signaling Technologies) for 30 min before applying to grids and plunge 516 

freezing. 517 

 518 

FIB milling 519 

Grids were transferred to an Aquilos cryo-FIB SEM, sputter coated with metallic Pt for 15s then 520 

coated with organo-Pt for 10s and milled in a series of sequential milling steps using a 30kV Ga+ 521 

beam using the following protocol: rough milling 1: 0.1 nA rough milling 2:  50 pA lamella 522 

polishing: 10 or 30 pA at a stage tilt of 15° (milling angle of 8°). 523 

 524 

Cryo-EM data collection 525 

Lamellae were imaged using a Titan Krios 300 keV cryo-TEM (Thermo Fisher) equipped with a 526 

K3 direct detector (Gatan) and an energy filter (Gatan) at a sample pixel size of 1.06 Å. Movies 527 

were collected at an exposure rate of 1 e-/Å2 to a total dose of 30 e-/Å2. 528 
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 529 

Image processing 530 

Images were processed using cisTEM (Grant et al., 2018) as described previously (Lucas et al., 531 

2021), and using sample tilt determination implemented in a modified version of CTFFIND4 532 

(Rohou and Grigorieff, 2015) to estimate sample defocus to account for the ~8° tilt of the lamella 533 

introduced during FIB-milling. Images of 3D densities and 2DTM results were prepared in 534 

ChimeraX (Pettersen et al., 2021). 535 

 536 

2DTM 537 

The molecular models noted in the text were aligned to one another to have the same origin 538 

using their 28S rRNA using the MatchMaker function in UCSF Chimera (Meng et al., 2006; 539 

Pettersen et al., 2004) and 2DTM templates were generated by simulating 3D densities (Himes 540 

and Grigorieff, 2021). 2DTM was performed using the program match_template in the cisTEM 541 

GUI (Lucas et al., 2021) using the default parameters. The coordinates were refined using the 542 

program refine_template (Lucas et al., 2021) in rotational steps of 0.1° and a defocus range of 543 

200Å with a 10Å step. 544 

 545 

3D reconstruction using mature 60S 2DTM coordinates 546 

We used the program prepare_stack_matchtemplate (Lucas et al., 2021) to generate a particle 547 

stack using the locations and orientations of the significant mature 60S-detected targets after 548 

refinement as described above. We then used cisTEM to generate a 3D reconstruction from 3991 549 

mature 60S targets detected in 28 images of the nuclear periphery, only including targets with a 550 

2DTM SNR of >8. The reconstruction had a nominal resolution of 3.5 Å using an Fourier Shell 551 

Correlation (FSC) threshold of 0.143 (Figure 1-figure supplement 1D) (Rosenthal and 552 

Henderson, 2003) that is expected to overestimate the resolution due to overfitting (Lucas et al., 553 

2021). To limit the noise due to overfitting, we low-pass filtered the reconstruction to 10 Å, 554 

representing an FSC of 0.9. 555 

 556 

Calculating 2DTM SNR values and ratios of SNR values 557 

Targets identified in two or more searches with aligned templates were identified using the 558 

program align_coordinates (Lucas et al., 2021). The 2DTM SNRs of targets identified in two or 559 
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more searches were compared by taking the log2 of the SNR ratio. The log2 was used in place of 560 

the direct ratio because, the shape of the distribution is independent of the order of comparison, 561 

except for a mirror around 0, while the distribution of the direct ratios shows more complicated 562 

behavior. Histograms of both the log2 values and direct ratios of the cytoplasmic 60S population 563 

have approximately Gaussian distributions with fits characterized by the coefficient of 564 

determination R2=0.993 and R2=0.991 respectively. To calculate the change in the 2DTM SNR 565 

with modified templates, the program refine_template (Lucas et al., 2021) was used to calculate 566 

2DTM SNRs for additional templates using the locations and orientations from a previous 567 

exhaustive search with an initial template, without performing a rotational search by specifying 568 

the rotational step as 360°. To obtain consistent ratios of 2DTM SNRs, the 2DTM SNR values 569 

for both the initial template and the additional templates were calculated. 570 

 571 

Calculating relative probabilities 572 

Histograms were generated (bin 0.05) of the calculated log2 2DTM SNR ratios and Gaussians 573 

were fitted using GaussianMixture in sklearn (Pedregosa et al., 2011). Based on the shape of the 574 

histogram, we model the log2 2DTM SNR ratios as a mixture of 𝐾-component multivariate 575 

Gaussian distributions, when 𝐾 templates are used in the search. We fit Gaussians to the log2 576 

SNR ratios of any two selected templates. Each target 𝑖 is then associated with 𝐾 − 1 such SNR 577 

ratios 𝑥!. For example, for 𝐾 = 4, we can define the following: 578 

 579 

 𝑋! = ;
𝑙𝑜𝑔"(𝑆𝑁𝑅!,$%& 𝑆𝑁𝑅!,$%")⁄
𝑙𝑜𝑔"(𝑆𝑁𝑅!,$%& 𝑆𝑁𝑅!,$%')⁄
𝑙𝑜𝑔"(𝑆𝑁𝑅!,$%& 𝑆𝑁𝑅!,$%(⁄ )

@ (1) 580 

 581 

For particles belonging to the same population (class), the log2 SNR ratio can be described by the 582 

multivariate Gaussian probability density function (PDF): 583 

 584 

 𝑃(𝑋!|Θ$ , 𝑧! = 𝑘)~	ℕ(Μ$ , Σ$) =
&

("*)
!
"|-#|

$
"
exp N− (.%/0#)&-#'$(.%/0#)

"
O (2) 585 

 586 

 𝑃(𝑧! = 𝑘) = 𝜋$ (3) 587 

 588 
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where 𝑋! is a vector of 𝐾 − 1 log2 SNR ratios, 𝑧! indicates the identity of the target (𝑘 =589 

1,2, … , 𝐾), and  Θ$ = {Μ$ , Σ$ , 𝜋$} is the set of parameters of the Gaussian PDF ℕ and the prior 590 

probability that a detected target belonging to class 𝑘. The total joint likelihood for	𝑁 detected 591 

targets is then 592 

 593 

 𝐿(Θ; X	) = 𝑃(X|Θ) = ∏ 𝑃(𝑋!|Θ) = ∏ ∑ 𝜋1ℕ(Μ1 , Σ1)2
1%&

3
!%&

3
!%&  (4) 594 

 595 

with Θ = {Θ&, Θ"…Θ2}	and X = {𝑋&, 𝑋"…𝑋3}. We use an expectation-maximization (EM) 596 

algorithm to iteratively calculate the maximum likelihood estimates of the model parameters 597 

where the E-step calculates the posterior probability via Bayes rule, 598 

 599 

 𝑃(𝑧! = 𝑘|𝑋! , Θ) =
*#ℕ(0#,-#)

∑ *(ℕ(0(,-())
(*$

 (5) 600 

 601 

and the M-step updates the model parameters for each class, 602 

 603 

 𝜋$ =
∑ 67𝑧! = 𝑘8𝑋! , Θ9+
%*$

3
 (6) 604 

 605 

 Μ$ =
∑ .%∙67𝑧! = 𝑘8𝑋! , Θ9+
%*$
∑ 67𝑧! = 𝑘8𝑋! , Θ9+
%*$

 (7) 606 

 607 

 Σ$ =
∑ 67𝑧! = 𝑘8𝑋! , Θ9(.%/0#)(.%/0#)&+
%*$

∑ 67𝑧! = 𝑘8𝑋! , Θ9+
%*$

 (8) 608 

 609 
Prior probabilities (𝜋) can be set by subjective assessment based on the experiment, or set to 610 

1 𝐾⁄  where all classes have equal probability. For example, to determine the relative probability 611 

that an LN 60S-detected nuclear target belongs to the LN 60S or EN 60S class, we assume that 612 

their relative frequencies are the same and therefore the prior probability of the two intermediates 613 

in the nucleus is equal: 𝑃(𝐿𝑁	60𝑆) = 𝑃	(𝐸𝑁	60𝑆) = 0.5. 614 

 615 

Data availability: 616 

Micrographs, templates and scaled maximum intensity projections (MIPs) in this study are 617 

accessible with the following public access code: EMPIAR-10998 618 
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Figure Legends: 746 

 747 

Figure 1: Detection of cytoplasmic mature 60S and mitochondrial ribosomes in 2D images 748 

of FIB-milled yeast lamella. A) Cryo-EM like density generated using the atomic coordinates of 749 

PDB:6Q8Y that correspond with the mature 60S. B) TEM image of the nuclear periphery from a 750 

FIB-milled yeast lamella. Yellow arrows indicate low-resolution features in the cytoplasm that 751 

may indicate the presence of ribosomes. Blue arrows indicate regions of similar size and contrast 752 

in the nucleoplasm. NE: nuclear envelope; NPC: nuclear pore complex. C) Cryo-EM micrograph 753 

of yeast nuclear periphery from FIB-milled lamella with the results from a 2DTM search using 754 

the mature 60S template. Significant targets are indicated by mapping the template in the best 755 

matching locations and orientations (shown in yellow). The red box indicates the regions 756 

highlighted in E) and F). Scale bar = 50 nm. D) Bar chart indicating the number of mature 60S-757 

detected targets identified in the indicated subcellular compartments in 28 images of the nuclear 758 

periphery. E) Scaled maximum intensity projection (MIP) showing the results of 2DTM using 759 

the template in A) in the region of C) indicated in red. F) 3D slab indicating the locations and 760 

orientations of mature 60S-detected targets in the indicated region of C). The red polypeptide 761 

indicates the location of the polypeptide exit tunnel on each 60S. G) Plot showing the density of 762 

mature 60S in the regions of the images corresponding to the cytoplasm. Each dot represents a 763 

different image. The solid black bar indicates the median. H) 10 Å filtered 3D reconstruction 764 

calculated from 3991 60S subunits at the locations and orientations detected in 28 images, 765 

showing clear density for the 40S small subunit. The molecular model of the 60S used to 766 

generate the template in A) is shown in yellow. 767 

 768 

Figure 2: 2DTM SNRs differentiate cytoplasmic mature 60S from nuclear pre-60S in 2D 769 

images of FIB-milled yeast lamella. A) Diagram showing the compositional changes that 770 

accompany the maturation from the late nuclear (LN) 60S (PDB: 6N8J), shown in blue, to the 771 

mature 60S (PDB: 6Q8Y), shown in yellow, in the cytoplasm. B) Cryo-EM micrograph of yeast 772 

nuclear periphery from FIB-milled lamella with the results from a 2DTM search using the LN 773 

60S template. Significant targets are indicated by mapping a projection of the template in the 774 

best matching locations and orientations (shown in blue). Scale bar = 50 nm. C) As in B), 775 

showing the results from a 2DTM search of the indicated image using the mature 60S as a 776 
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template (yellow). D) Maximum intensity projection showing the results of a 2DTM search with 777 

the LN 60S template in the region of the image in B) highlighted in orange. Orange circles 778 

indicate two targets identified by both LN 60S and mature 60S. E) As in D) showing the results 779 

of a 2DTM search with the mature 60S template in the region of the image in C) highlighted in 780 

orange. F) As in D) corresponding to the region of B) highlighted in blue and circles indicating 781 

two LN 60S-detected targets. G) As in D) showing the results of a 2DTM search with the mature 782 

60S template in the region of the image in C) highlighted in blue. H) Diagram indicating the 783 

number of mature 60S (yellow) and LN 60S (blue)-detected targets identified in 2DTM searches 784 

of 28 images of the nuclear periphery. The overlap of the Venn diagram indicates the number of 785 

targets identified in both searches. I) Bar chart indicating the number of targets detected by the 786 

mature 60S (yellow), the LN 60S (blue), and by both (black) in regions of the images 787 

corresponding to the nucleus or cytoplasm. J) Plot showing the log2 2DTM SNR ratios for LN 788 

and mature 60S-detected targets grouped by subcellular compartment. Each dot indicates a 60S 789 

detected in both searches.  ****: p<0.0001. K) Image showing the identified targets color-coded 790 

by the best-matching template (blue: LN 60S, yellow: mature 60S) as determined by the higher 791 

2DTM SNR at each overlapping location. Scale bar = 50 nm. L) Pie chart indicating the 792 

proportion of all nuclear (left) and cytoplasmic (right) 60S targets that more closely resemble the 793 

mature 60S (yellow) or LN 60S (blue) template, respectively, as determined by the highest 794 

2DTM SNR at each identified location and orientation. 795 

 796 

Figure 3: Relative probability of detecting mature or LN 60S. A) Histogram showing the 797 

distribution of the mature 60S / LN 60S 2DTM SNR ratios for each LN and mature 60S-detected 798 

target fit with two Gaussians indicating populations 1 (blue dashed line) and 2 (red dashed line). 799 

The black line indicates the sum of the two Gaussians, R2= 0.993. B) Line graph showing the 800 

probability that a given target belongs to the LN 60S population (blue) line, or mature 60S 801 

population (red), as a function of log2 2DTM SNR ratio. C) Line graph showing the fraction of 802 

nuclear (blue) and cytoplasmic (red) targets classified as LN 60S, at the indicated confidence 803 

intervals determined using Eq (5). D) Heat map showing the probability of each LN and mature 804 

60S-detected target belonging to either the LN or mature 60S populations. Each row indicates a 805 

detected target, and the rows are sorted by their subcellular distribution. The targets assigned to 806 
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the mature 60S population are indicated in yellow and the targets assigned to the LN 60S 807 

population are indicated in blue. 808 

 809 

Figure 4: Classification of cytoplasmic mature 60S and nuclear pre-60S by 2DTM 810 

corresponds with biologically relevant differences in the templates. A) The LN 60S (blue) 811 

and mature 60S (yellow) 2DTM templates aligned in UCSF Chimera. B) LN 60S with difference 812 

map calculated using UCSF Chimera showing the density in the LN 60S template that is not 813 

present in the mature 60S template (red, transparent). C) As in B), showing the mature 60S with 814 

density that is not in common with the LN 60S template (red, transparent). D) Boxplots showing 815 

the change in 2DTM SNR when only RNA (left) or protein (right) components of the LN 60S 816 

template are included, relative to the full-length template for each significant target. The targets 817 

are grouped by their subcellular localization. E) Upper: LN 60S template with all ribosome 818 

biogenesis factors (RBFs) indicated in red. Lower: Boxplot showing the change in the 2DTM 819 

SNR of the nuclear (blue) and cytoplasmic (red) targets when all RBFs are removed, relative to 820 

the full-length LN 60S template in untreated cells, and when Crm1-mediated nuclear export is 821 

inhibited by treating Crm1(T539C) cells with Leptomycin B (LepB). Box width indicates the 822 

interquartile range, the central line indicates the median and the whiskers indicate the range of 823 

95% of the targets. F) As in E), for RBF Nog1. G) As in E), for RBF Nog2. ****: p<0.0001, ns: 824 

not significant (p>0.05). 825 

 826 

Figure 5: Classification of nuclear targets by relative similarity to early or late nuclear 827 

intermediates. A) Venn diagram showing the number of significant targets detected in 2DTM 828 

searches with the indicated templates. Overlap indicates targets identified in two or more 829 

searches. B) Venn diagrams showing the number of significant targets detected in 2DTM 830 

searches with the indicated templates in the nucleus (left) and cytoplasm (right). C) Scatterplot 831 

showing the EN 60S / LN 60S 2DTM SNR ratios relative to the mature 60S / LN 60S 2DTM 832 

SNR ratios for each EN, LN and mature 60S-detected target. Ellipses indicate the fits of three 833 

Gaussians and each concentric ellipse indicates one standard deviation from the mean. Each 834 

target is colored according to its most likely class membership. D) Heat map showing the 835 

probability of each of the targets examined in C) belonging to one of the populations, EN, LN or 836 

mature 60S. Targets are grouped by their subcellular localization, followed by their classification 837 
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as EN 60S (purple), LN 60S (light blue), or mature 60S (yellow). E) Bar chart showing the 838 

proportion of the LN 60S-detected targets in the indicated cells that are classified as LN 60S 839 

(blue), mature 60S (yellow) or EN 60S (purple). F) Cryo-EM micrograph of the yeast nuclear 840 

periphery from a FIB-milled lamella shown in in Figure 1, displaying the results of 2DTM 841 

searches, colored by their classification as mature 60S (yellow), LN 60S (blue) or EN 60S 842 

(purple) based on their relative 2DTM SNRs. 843 

 844 

Figure 1 — figure supplement 1: A) FIB-image of two yeast cells frozen on a cryo-EM grid. B) 845 
FIB image of the lamella after milling the cells shown in A). C) Survival histogram showing the 846 
number of search locations with 2DTM SNR values above a given threshold from a 2DTM 847 
search using the mature 60S template in Figure 1A. D) FSC obtained for the 3D reconstruction 848 
shown in Figure 1H calculated using the targets identified by 2DTM. 849 
 850 
Figure 2 — figure supplement 1: A) Venn diagrams showing the number of mature (yellow) 851 
and LN 60S (blue) detected targets in the indicated subcellular compartments. The overlap 852 
indicates targets detected in searches with both templates. B) Violin plot showing the kernelled 853 
distribution of 2DTM SNRs of mature 60S-detected targets (left) and LN 60S-detected targets 854 
(right) in the indicated subcellular compartments. ****: p<0.0001, ns: not significant, p>0.05. C) 855 
Histogram showing the relative frequency of mature 60S / LN 60S 2DTM SNR ratios grouped 856 
by subcellular localization. Gaussian fits are indicated by a solid line. D) Boxplot showing the 857 
mature 60S / LN 60S 2DTM SNR ratios of the nuclear (blue) and cytoplasmic (red) populations 858 
from each of the 28 images analyzed, indicating that the nuclear and cytoplasmic populations are 859 
distinct, even within single images. 860 
 861 
Figure 3 — figure supplement 1: A) Scatterplot showing the 2DTM SNRs for nuclear (blue) 862 
and cytoplasmic (red) targets detected in searches with the LN and mature 60S templates. B) 863 
Scatterplot showing P(LN 60S) for nuclear (blue) or cytoplasmic (red) LN 60S-detected target as 864 
a function of the 2DTM SNR. Dotted line indicates the 2DTM threshold.  865 
 866 
Figure 4 — figure supplement 1: A) TEM image of the nuclear periphery and vacuole in Crm1 867 
(T539C) cells treated with Leptomycin B, overlaid with LN 60S-detected targets in blue. Scale 868 
bar: 50 nm. B) Bar chart showing the number of LN and mature 60S-detected targets in the 869 
indicated subcellular compartments. C) Violin plot showing the kernelled distribution of 2DTM 870 
SNRs for LN 60S-detected targets in the indicated subcellular compartment. ****: p<0.0001. D) 871 
As in C), showing mature 60S-detected targets. ns: not significant, p>0.05. E) Violin plot 872 
showing the kernelled distribution of 2DTM SNR ratios of targets identified as both LN and 873 
mature 60S-detected targets in the indicated subcellular compartment. ****: p<0.0001. 874 
 875 
Figure 5 — figure supplement 1: A) Violin plots showing the kernelled distribution of 2DTM 876 
SNRs for EN 60S-detected targets in the indicated subcellular compartment. ****: p<0.0001. B) 877 
Histogram showing the distribution of EN 60S / LN 60S SNR ratios of EN and LN 60S-detected 878 
targets in untreated cells. Targets are grouped by their subcellular distribution. Gaussian fits are 879 
indicated in solid colors. C) TEM image of the nuclear periphery shown in Figure 1, overlaid 880 
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with EN 60S detected targets in purple. D) TEM image of the nuclear periphery. Scale bar 881 
indicates 50 nm. E) The image in D) is shown overlaid with EN 60S-detected targets in purple, 882 
F) LN 60S-detected targets in blue or G) mature 60S-detected targets in yellow. H) As in E) 883 
showing the results of 2DTM searches, colored by their classification as mature 60S (yellow), 884 
LN 60S (blue) or EN 60S (purple) based on their relative 2DTM SNRs 885 
 886 

 887 
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