1	In situ single particle classification reveals distinct 60S maturation
2	intermediates in cells
3	
4	Bronwyn A. Lucas ^{1,2,*} , Kexin Zhang ^{1,2} , Sarah Loerch ^{2,‡} , and Nikolaus Grigorieff ^{1,2,*}
5	
6	1. RNA Therapeutics Institute, University of Massachusetts Chan Medical School,
7	Worcester, MA, USA
8	2. Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
9	*Correspondence: bronwyn.lucas@umassmed.edu, niko@grigorieff.org
10	[‡] Current address: Department of Chemistry and Biochemistry, University of California, Santa
11	Cruz, CA, USA
12	
13	Electron cryo-microscopy (cryo-EM) can generate high-resolution views of cells with
14	faithful preservation of molecular structure. In situ cryo-EM, therefore, has enormous potential
15	to reveal the atomic details of biological processes in their native context. However, in practice,
16	the utility of in situ cryo-EM is limited by the difficulty of reliably locating and confidently
17	identifying molecular targets (particles) and their conformational states in the crowded cellular
18	environment. We recently showed that 2DTM, a fine-grained template-based search applied to
19	cryo-EM micrographs, can localize particles in two-dimensional views of cells with high
20	precision. Here we demonstrate that the signal-to-noise ratio (SNR) observed with 2DTM can be
21	used to differentiate related complexes in focused ion beam (FIB)-milled cell sections. We apply
22	this method in two contexts to locate and classify related intermediate states of 60S ribosome
23	biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-
24	60S population from the cytoplasmic mature 60S population, using the subcellular localization to
25	validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate
26	mixed populations of nuclear pre-60S that are not visually separable. We use a maximum
27	likelihood approach to define the probability of each particle belonging to each class, thereby
28	establishing a statistic to describe the confidence of our classification. Without the need to
29	generate 3D reconstructions, 2DTM can be applied even when only a few target particles exist in
30	a cell.
31	

33 Introduction:

34 Locating and characterizing molecules in cells is an important goal of molecular, 35 structural, and cell biology. Cryogenic electron microscopy (cryo-EM) enables simultaneous 36 visualization of all cellular molecules in their native cellular environment while preserving high-37 resolution molecular architecture. Therefore, cryo-EM holds the promise of delivering an 38 atomistic view of the cell. However, realizing this promise is limited by the high density of 39 molecules in a cell, making it difficult to identify molecules of interest (Lučić et al., 2013). As 40 one way to address this, electron cryo-tomography (cryo-ET) can be used to build 3D maps of 41 cellular structures in their native context (in situ) by constructing tomograms from a series of 42 tilted 2D images (Kürner et al., 2005; Lučić et al., 2013; Mahamid et al., 2016). In a tomogram, 43 molecules overlapping in any given view can be separated and large molecular assemblies 44 (particles) with distinctive shapes can be identified. Once identified, subtomogram averaging can 45 yield *in situ* molecular structures at <4 Å resolution (Himes and Zhang, 2018; Tegunov et al., 2021). However, since the effective resolution of a raw tomogram is below 15-20 Å (Vilas et al., 46 47 2020), identification of specific targets in tomograms is limited to abundant particles that are 48 sufficiently distinct at this resolution to be identified.

49 Many potential cell biological applications require accurate categorization of individual 50 molecule identity at a specific subcellular localization. Examples are the characterization of the 51 spatial organization of a biosynthetic process such as ribosome biogenesis, and the assignment of 52 molecular identities in small volumes such as synapses and vesicles. 3D classification of 53 subtomograms can differentiate between structural states (Himes and Zhang, 2018; Xue et al., 54 2021). However, the assignment of states is unreliable for similar structures that can only be 55 distinguished using high-resolution detail, and statistical approaches to quantitatively assess 56 classification results are lacking. Machine learning has been employed for particle classification 57 in tomograms, but currently only performs as well as a human operator (Moebel et al., 2021). 58 While machine learning algorithms performed better than 3D template matching at molecule 59 localization in tomograms, classification remained challenging for all algorithms (Gubins et al., 60 2020). In situ molecule classification, therefore, remains a major challenge.

We recently described an alternate method to locate particles that may improve structural
 classification in cells. By using 2D cryo-EM images, rather than tomograms, and fine-grained,
 high-resolution template matching (2DTM), specific particles can be located in cells with high

64 precision using their atomic structures (Lucas et al., 2021; Rickgauer et al., 2020, 2017). 2DTM 65 uses molecular models, from *in vitro* structure determination or *in silico* structure prediction 66 (e.g., Alphafold2 (Jumper et al., 2021)) to generate a 3D density. This 3D density (hereafter 67 referred to as the template) is then projected in 2D along millions of orientations. A pixel-wise 68 cross-correlation of the 2D projections with a high-resolution 2D cryo-EM image is performed, 69 yielding a 2DTM signal-to-noise ratio (SNR) at every pixel location (Rickgauer et al., 2017). 70 The 2DTM SNR values are subjected to a significance test, which identifies peaks with a desired 71 level of confidence (Lucas et al., 2021; Rickgauer et al., 2017). In the following, we refer to 72 targets passing this test as significant targets (Lucas et al., 2021; Rickgauer et al., 2017). 73 The 2DTM SNR is proportional to template mass and negatively affected by non-74 matching elements between template and target (Lucas et al., 2021; Rickgauer et al., 2020, 75 2017). We have shown that a template generated from a *Bacillus subtilis* 50S large ribosomal 76 subunit was able to detect 50S in 2D cryo-EM images of Mycoplasma pneumoniae cells, but 77 with a lower average 2DTM SNR compared to a *M. pneumoniae* 50S template (Lucas et al., 78 2021). This demonstrated that (1) 2DTM using partially matching templates can be sufficiently 79 sensitive to yield significant targets and (2) the mean 2DTM SNR of detected targets provides a 80 read-out of the relative similarity between different templates and populations of particle species. 81 In this study, we investigate whether the ratio of 2DTM SNRs obtained using different 82 templates can be used to identify the template that more closely resembles the cellular target, and 83 thereby classify particles in cells. As a model system, we chose to examine the late stages of 60S 84 ribosomal subunit biogenesis in the yeast Saccharomyces cerevisiae because (1) intermediates 85 are of a similar size and share significant structure with one another, making them difficult to 86 separate at low resolution, (2) molecular models spanning multiple late intermediate states have 87 recently been described, and (3) the maturation events that occur before and after nuclear export 88 have been characterized. Subcellular localization can thereby validate the assignment of 89 intermediate and mature states.

We show that 2DTM can locate and distinguish nuclear intermediates of 60S maturation
in 2D cryo-EM images of FIB-milled yeast cells. We confirm that 2DTM can distinguish
predefined 60S populations separated by subcellular localization and identify compositional
differences between them. We then applied a maximum likelihood-based approach to identify
two sub-populations of nuclear intermediates that were not otherwise separable and provide a

95 confidence of single particle classification. We show that using this approach, we can observe a

96 shift in the nuclear pre-60S intermediate population to a more mature intermediate after

97 inhibiting Crm1-mediated nuclear export. This study demonstrates that relative 2DTM SNR

98 ratios effectively distinguish related complexes and can identify changes to particle populations

- 99 in cells.
- 100

101 **Results:**

102 2DTM identifies 60S in biologically relevant locations and orientations in FIB-milled lamellae

2DTM has been used to detect mammalian ribosomes in thin extensions of adherent cells (Rickgauer et al., 2020), and bacterial ribosomes in *Mycoplasma pneumoniae* cells (Lucas et al., 2021), both of which are sufficiently thin to permit imaging by transmission EM (TEM). Since most eukaryotic cells are too thick to image by TEM, focused ion beam (FIB)-milling is used to generate thin, electron transparent lamellae of cryogenically frozen cells (Marko et al., 2007; Rigort et al., 2012; Villa et al., 2013).

To evaluate the utility of 2DTM to locate molecules in FIB-milled lamellae, we collected 28 2D cryo-EM images of the nuclear periphery of lamellae generated from actively growing *Sacchromyces cerevisiae* cells (**Figure 1, Figure 1-figure supplement 1A-B**). We identified 4363 large ribosomal subunits by 2DTM using a template generated from a model representing the mature 60S (PDB: 6Q8Y) (Tesina et al., 2019) (**Figure 1A-C**). The peaks corresponding to significant detections were clearly distinguishable from background (**Figure 1E, Figure 1-figure supplement 1C**), enabling precise localization of mature 60S in the cell.

116 To assess the specificity of 60S detection, we identified regions of the images 117 corresponding to the cytoplasm, nucleus and vacuole by visual inspection. Consistent with the 118 expected high specificity of 2DTM, we did not observe any significant mature 60S-detected 119 targets in regions of the image corresponding to the vacuole (Figure 1C-D). In contrast, 229 120 mature 60S-detected targets localized to the nucleus, representing $\sim 5\%$ of all mature 60S 121 identified targets in these images (Figure 1C-D). In regions of the images corresponding to the 122 cytoplasm we observe a median density of $\sim 6500 60 \text{S}/\mu\text{m}^3$, which, assuming an average cell 123 volume of ~42 μ m³ of which ~65% is cytoplasm, corresponds to a total of ~180,000 60S/cell 124 (Figure 1G). This is consistent with prior estimates of $187,000 \pm 56,000$ ribosomes per yeast 125 cell based on rRNA concentration (von der Haar, 2008).

126 Beyond the subcellular distribution of mature 60S-detected targets, we also confirmed 127 that 2DTM identified specific 60S in biologically relevant locations and orientations. The 128 nuclear envelope (NE) is contiguous with the endoplasmic reticulum and a known site for co-129 translational transport of transmembrane and secretory proteins, while the vacuole is not known 130 to be a site of translation. We found that mature 60S-detected targets were oriented with their 131 polypeptide exit tunnels facing the cytoplasmic surface of the NE but were depleted from within ~ 20 nm of the vacuole (Figure 1C.F). This indicates that the orientation of 60S identified by 132 133 2DTM is unlikely to be an artefact introduced by features of the membrane in the image. To 134 confirm that the targets identified with the mature 60S template reflect ribosomes, we generated 135 a 3D reconstruction using the locations and orientations of 3991 significant mature 60S-detected 136 targets using standard single particle approaches as described previously (Lucas et al., 2021). In 137 addition to the 60S the 10 Å-filtered reconstruction showed density consistent with the 40S small 138 ribosomal subunit (Figure 1H). This is consistent with many of the mature 60S detected targets 139 representing a population of 80S ribosomes. We conclude that 2DTM-identified locations and 140 orientations in 2D cryo-EM images of FIB-milled lamellae reflect biologically relevant locations 141 and orientations of ribosomes in the cell.

142

143 Relative 2DTM SNRs enable single particle classification in situ

144 The nuclear envelope (NE) creates a physical barrier that separates premature 60S in the 145 nucleus from mature 60S in the cytoplasm and is easily distinguishable in many 2D images by its 146 characteristic double membrane and by the more granular appearance of the cytoplasm vs the 147 nucleus (e.g., Figure 1B). Our observation of a substantial population of mature 60S-detected 148 targets in the nucleus, but not in the vacuole (Figure 1C-D), suggests that the nuclear 60S may 149 result from cross-detection of nuclear precursors, which share part of their structure with mature 150 60S and therefore also produce significant correlations (Figure 2A). As a first step to 151 differentiate between related 60S intermediates, we located precursor 60S by 2DTM searches 152 using a template generated from a late nuclear intermediate (LN 60S, PDB: 6N8J) (Zhou et al., 153 2019) (Figure 2A,B), and annotated each target by its subcellular localization. The LN 60S was 154 chosen because it represents the most mature nuclear intermediate for which there is a structure, 155 and which retains ribosome biogenesis factors (RBFs) that are removed during nuclear and early 156 cytoplasmic processing (Figure 2A). Thus, we expect that (1) the similarities between the

157 mature 60S and LN 60S structures will result in cross-detection of the respective other complex 158 and (2) the cytoplasmic population will more closely resemble the mature 60S and nuclear 159 population will more closely resemble the LN 60S resulting in a higher mature 60S / LN 60S 160 2DTM SNR ratio in the cytoplasm than the nucleus. In the 28 images of the nucleus and nuclear 161 periphery we located 1651 significant LN 60S-detected targets of which 1382 (~84%) of the LN 162 60S-detected targets were cytoplasmic and 268 (16%) were nuclear (Figure 2-figure 163 supplement 1A). We identified more cytoplasmic than nuclear targets in 2DTM searches with 164 both mature and LN 60S templates because (1) the cytoplasm represented a larger area of our 165 images and (2) the concentration of 60S is expected to be higher in the cytoplasm relative to the 166 nucleus (e.g., (Delavoie et al., 2019)). Only one of the significant LN 60S-detected targets 167 localized to the vacuole, which is below the expected false positive rate and further indicates the 168 specificity of 2DTM. 169 As expected from the similarity between the mature and LN 60S templates, the locations 170 of many of the targets identified in the two searches overlap (Figure 2B,C). We aligned the two 171 sets of coordinates using the program *align coordinates* (Lucas et al., 2021). Approximately one 172 third of the mature 60S-detected targets overlapped with LN 60S-detected targets while 92% of 173 the LN 60S-detected targets overlapped with mature 60S-detected targets (Figure 2H). 174 Combining the results of both searches, only 0.5% of the cytoplasmic targets were LN 60S-175 detected only, compared to 30% of the nuclear targets (Figure 2I). 176 Consistent with their expected localizations, the median log₂(mature 60S / LN 60S 177 2DTM SNR) values 178 of targets identified with both templates were significantly higher for the cytoplasmic 179 population than the nuclear population (p < 0.0001, K-S. test) (Figure 2D-G,J). We classified 180 each target as LN or mature 60S according to the highest 2DTM SNR (Figure 1K). Of the 181 population detected with both mature and LN 60S templates. 94% of the 1361 cytoplasmic 182 targets have a closer match (higher SNR) with the mature 60S and 88% of the 171 nuclear 183 targets have a closer match with the LN 60S (Figure 1J). Combining all 60S-detected targets, 184 the nuclear 60S targets are now more clearly distinguished from the cytoplasmic population with

185 98% of the cytoplasmic targets annotated as mature 60S, and 60% of the nuclear targets

annotated as pre-60S (Figure 1K,L). The ~40% of nuclear targets that more closely resemble the

187 mature 60S likely reflect nuclear intermediates different from the LN 60S (see below) and thus

do not perfectly match either template. We conclude that comparing 2DTM SNRs can effectively
 differentiate populations of related particles *in situ*.

190

191 Defining a confidence metric for single particle classification in situ

To gain an understanding of cell biology at molecular resolution it is necessary to be able to confidently assign particle identity to individual targets. We show above that the nuclear and cytoplasmic 60S populations were significantly different with respect to their relative similarity to the LN and mature 60S (**Figure 2**). We also show that classifying targets by their highest 2DTM SNR effectively separates the nuclear from the cytoplasmic population (**Figure 2**). However, a single threshold does not fully capture the differences between the nuclear and cytoplasmic populations and for an individual particle the confidence of classification is unclear.

199 To assign a confidence in the class assignments of detected particles we developed a 200 maximum likelihood-based approach to infer the probability of a particle deriving from one of a 201 given number of populations. We sought to classify each of the 1531 LN and mature 60S-202 detected targets by their relative similarity to the LN 60S or mature 60S templates. We restricted 203 our analysis to the targets that were detected by both templates to limit the contribution from 204 noise. We made the initial simplifying assumption that: 1) each 60S identified more closely 205 reflects either LN or mature 60S, i.e., the number of classes needed to describe all detected 206 targets is two; 2) the nuclear targets more closely resemble the LN 60S and the cytoplasmic 207 targets more closely resemble the mature 60S. We therefore define the prior probability that a 208 randomly selected detected target belongs to a specific population according to the number of 209 targets detected in the nucleus and cytoplasm, respectively (Figure 2J, Figure 2-figure

210 supplement 1A).:

211

P(targets being LN 60S) = P(Nucleus) = 0.11 and

212

P(targets being mature 60S) = p(Cytoplasm)= 0.89.

We used a maximum likelihood-based approach to model the log_2 (mature / LN 60S 2DTM SNR) values as a mixture of two Gaussians (**Figure 3A**, R²= 0.993). The fit suggests a 215 major population that more closely reflected the mature 60S and a smaller population that more 216 closely reflected the LN 60S (**Figure 3A**). Using the Gaussian distribution model (see Materials 217 and Methods), we calculate the probability that a LN and mature 60S-detected target with a 218 given log_2 (mature / LN 60S SNR) value more closely resembles the LN 60S than the mature 60S

via Bayes rule (Figure 3B-C). This analysis could easily be extended to cases where more than

two templates are used in the search (see Materials and Methods). A confidence threshold of
95% assigns 27% of the nuclear targets and only ~0.2% of the cytoplasmic targets to the LN 60S
population (Figure 3C). Defining a threshold at 50% classifies ~75% of the nuclear targets as
LN 60S and 92% of the cytoplasmic targets as mature 60S (Figure 3C). The relative probability
of each detected 60S belonging either to the LN or mature 60S population can be readily

225 visualized (Figure 3D). This shows that the 2DTM SNR ratio can effectively delineate

226 populations of related particles in cells with a specified confidence for each particle assignment.

227

219

228 Ribosome biogenesis factors differentiate nuclear from cytoplasmic 60S

229 Most of the mass difference between the LN and mature 60S templates results from 230 proteins in the LN 60S that are absent in the mature 60S (Figure 4A-C). Notable exceptions are 231 the proteins on the P-stalk are present only on the mature 60S (Figure 4A-C, Figure 3A). 232 Additionally, several rRNA helices on the intersubunit interface are in different conformations, 233 specifically the L1 stalk, helix 38 and helix 89, which undergo conformational changes during maturation (Figure 4C). To identify which of these features distinguish nuclear from 234 235 cytoplasmic 60S, we investigated the relative dependence of the 2DTM SNRs on the rRNA and 236 proteins of the LN 60S template. We generated truncated LN 60S templates containing either 237 rRNA or protein only and calculated the change in the 2DTM SNR for each template at each 238 target relative to the full-length template (Figure 4D). The rRNA contributed 1.5 and 1.8-fold 239 more to the 2DTM SNR of the nuclear and cytoplasmic targets, respectively, despite comprising 240 only 1.25-fold more of the template mass (1004 and 800 kDa, respectively), than the proteins 241 (Figure 4D). Indeed, 60% of the cytoplasmic targets and 34% of the nuclear targets were no 242 longer significant when searching with the proteins alone. Comparing the nuclear and 243 cytoplasmic populations shows that the 2DTM SNR of the LN 60S-detected cytoplasmic targets 244 is less affected by the removal of the LN 60S proteins and more strongly affected by the removal 245 of the rRNA (Figure 4D). This shows that the LN 60S proteins contribute more to the SNR of 246 the nuclear targets than the cytoplasmic targets and are therefore more effective at differentiating 247 the nuclear from the cytoplasmic 60S population. 248 Since the LN 60S represents a late intermediate of 60S maturation in which the rRNA is

almost fully folded, RBF proteins on the LN 60S account for most of the difference with the

250 mature 60S by mass (Figure 4A-D). To confirm that the SNR difference of nuclear LN 60S-

251 detected targets and cytoplasmic mature 60S-detected targets is primarily due to the RBF

252 proteins, we removed the RBFs from the LN 60S template and recalculated the SNR for each

target. The removal increased the 2DTM SNR ratio of the cytoplasmic targets, while decreasing

the 2DTM SNR of the nuclear targets (Figure 4E), making the SNR values more similar. This is

255 consistent with the nuclear population having these RBFs and the cytoplasmic population lacking

the RBFs. We conclude that the differentiation of detected targets using the observed 2DTM

257 SNRs reflects biologically relevant differences between them.

258

259

Nog2 lacking intermediates accumulate after inhibition of nuclear export

260 The two largest RBFs on the LN 60S are Nog1 and Nog2, together accounting for ~50% 261 of the RBF mass (Figure 4F,G). During 60S maturation, Nog2 removal is required to permit 262 binding of the nuclear export adaptor Nmd3 and Crm1-dependent export, and therefore Nog2 263 removal precedes nuclear export (Ho et al., 2000; Matsuo et al., 2014). In contrast, Nog1 is 264 removed only upon export to the cytoplasm (Pertschy et al., 2007). In cells with active nuclear 265 export, we find that removal of either Nog1 or Nog2 differentiates the nuclear from the 266 cytoplasmic populations (Figure 4F,G, untreated cells). As a further test of differentiating 267 different targets by 2DTM, we inhibited Crm1 mediated export by treating Leptomycin B (LepB) 268 sensitive Crm1 (T539C) cells with LepB and located 60S targets with LN 60S and mature 60S 269 templates in eight images of FIB-milled lamellae. To assess the relative occupancy of Nog1 and 270 Nog2 after Crm1 inhibition, we measured the change in 2DTM SNR after removal of all RBFs, 271 and Nog1 or Nog2 alone. Consistent with LepB inhibiting export of pre-60S from the nucleus, 272 we detected a higher density of pre-60S in the nucleus than in cells with active Crm1 (Figure 4-273 figure supplement 1A). When nuclear export is inhibited, all RBFs (Figure 4E) and Nog1 alone 274 (Figure 4F) still differentiate the nuclear from the cytoplasmic populations. In contrast, the 275 occupancy of Nog2 is no longer significantly different between the nuclear and cytoplasmic 276 populations (Figure 4G). This is consistent with a model in which, when Crm1-mediated export 277 is active, nuclear intermediates are rapidly exported after removal of Nog2, depleting the Nog2-278 lacking population from the nucleus. In the presence of a Crm1-inhibitor, the late, export 279 competent nuclear intermediate lacking Nog2 can no longer be exported and therefore 280 accumulates. Since Nog1 is only removed after export, inhibition of export did not change the

occupancy of Nog1 on the maturing 60S. This demonstrates that comparing 2DTM SNRs is
 sufficiently sensitive to assess the occupancy of individual proteins *in situ*.

283

284 Classification of nuclear pre-60S intermediates

285 Ribosome biogenesis is a highly efficient molecular assembly line, and multiple 286 intermediate states co-exist in the cell (Warner, 1999). Therefore, the nuclear population of pre-287 60S is unlikely to represent a single intermediate population. Accordingly, the distribution of the 288 mature 60S / LN 60S SNR ratios of nuclear mature and LN 60S-detected targets fits a single 289 Gaussian more poorly than the cytoplasmic targets (Figure 2J), suggesting that additional 290 nuclear populations were identified with both 60S templates. To test this prediction and 291 investigate the nuclear pre-60S population further, we generated a third template corresponding 292 to an earlier nuclear intermediate (EN 60S). EN 60S (PDB: 3JCT) retains internally transcribed 293 spacer RNA 2 (ITS2) and associated proteins and has 5S rRNP in a premature state rotated 180° 294 relative to the LN and mature 60S (Figure 5A) (Wu et al., 2016). We identified 679 significant 295 EN 60S-detected targets of which 545 (~80%) were also identified with the LN 60S template, 296 and 489 (72%) were also identified with the mature 60S. All of the 489 EN 60S-detected targets 297 identified with the mature 60S were also identified with the LN 60S (Figure 5A). 289 (43%) of 298 the EN 60S-detected targets localized to regions of the images corresponding to the nucleus, 299 similar to the 268 nuclear LN 60S-detected targets, while only 390 were cytoplasmic, >3-fold 300 fewer than located with the LN 60S template, consistent with the EN 60S representing a less 301 mature nuclear intermediate (Figure 5B). The number and localization of targets identified with 302 2DTM is consistent with their sequence in the maturation pathway, progressing from EN 60S to 303 LN 60S in the nucleus to mature 60S in the cytoplasm.

304 Cross-detection of targets by different templates can be used to detect heterogeneity in 305 target populations. When examining the SNR ratios of targets identified by both EN and LN 60S, 306 the cytoplasmic targets display a distribution that is consistent with a single population that more 307 closely resemble the LN 60S template (Figure 5-figure supplement 1B, red). The distribution 308 of nuclear targets, however, was consistent with at least two populations (Figure 5-figure 309 supplement 1B, blue), each of which is distinct from the cytoplasmic population. This indicated 310 the presence of at least two nuclear populations that differ with respect to their relative similarity 311 to the EN and LN 60S templates.

312 We next sought to classify the EN, LN and mature 60S-detected targets based on their 313 relative similarity to the three 60S templates. For each target we calculated the log2(mature 60S / 314 LN 60S SNR) and log₂(EN 60S / LN 60S SNR) values. We used these values to classify each 315 target based on the relative similarity to the three templates using the maximum-likelihood 316 approach discussed above (Figure 5C). We found that, consistent with their expected subcellular 317 distributions, targets assigned to the mature 60S population represented 315 (85%) of the 318 cytoplasmic targets and only 1 (<1%) of the nuclear targets detected by all three templates 319 (Figure 5D). In contrast, the EN 60S population represents 83 (70%) of the nuclear population 320 and only 4 (\sim 1%) of the cytoplasmic population detected with all three templates (Figure 5D). 321 The LN 60S population was roughly evenly distributed between the nucleus and the cytoplasm, 322 consistent with this structure representing a late maturation intermediate (Figure 5D). 323 The NE provides a convenient visual control for the classification of targets as LN / EN 324 60S or mature 60S (e.g., Figure 1). However, there are no clear features in the nucleoplasm that 325 would enable visual separation of different populations of nuclear intermediates and thereby

326 confirm their classification. To validate our classification of the nuclear pre-60S populations, we

327 identified conditions wherein the relative occupancy of the two states would be expected to

328 change. We show above that inhibiting Crm1-mediated export results in accumulation of nuclear

intermediates that lack Nog2 (Figure 4). In cells with active Crm1, 57% of the nuclear 60S

targets are assigned to the EN 60S population (Figure 5E). After inhibition of Crm1-mediated

export, the EN 60S population is mostly depleted, and >90% of targets are assigned to the LN

33260S population (Figure 5E). This confirms that 2DTM SNR ratios can be used to effectively

333 classify mixed populations of particles in cells.

334

335 **Discussion:**

The immense potential for cryo-EM to reveal the molecular detail of biological processes in cells is currently largely unrealized. One of the major bottlenecks is the lack of reliable, quantitative methods to locate and characterize molecules in cells. Here we describe the application of 2DTM to *in situ* particle classification. By considering the relative 2DTM SNRs of alternate templates at a single location and orientation, we separate 60S precursors in the nucleus from mature 60S in the cytoplasm. We also show that a maximum likelihood approach effectively classifies a mixed population of nuclear pre-60S into at least two maturation states

with a specified confidence for each particle. We show that 2DTM can be used to probe the composition of complexes *in situ* by modifying 2DTM templates. In this study we extend the utility of 2DTM beyond a binary indicator of detection to provide a quantitative assessment of particle identity.

347

348 2DTM enables specific molecule localization in the dense interior of cells

349 Cryo-FIB milled eukaryotic cells are sufficiently well preserved to allow imaging with 350 cryo-ET (Mahamid et al., 2016) and subtomogram averaging to yield 3D reconstructions at 351 resolutions of $>\sim$ 12Å, e.g., (Schaffer et al., 2019). However, before the present work it was 352 unclear if the milling preserves the high-resolution signal in these samples sufficiently well to 353 allow for particle detection with 2DTM. Our results clearly show that FIB-milling is compatible 354 with molecule localization by 2DTM. This expands the application of 2DTM to previously 355 inaccessible cell types and further demonstrates the utility of 2DTM for *in situ* structural biology. 356 In many images, 60S subunits detected by 2DTM also generate low-resolution contrast in 357 the cytoplasm that is readily visible (Figure 1B, yellow arrows). In the nucleoplasm, the similar 358 density of RNA and DNA impedes the visual identification of all but a few pre-60S (Figure 1B, 359 blue arrows). However, the reduced low-resolution contrast does not preclude effective detection

360 of pre-60S with 2DTM. This is in contrast to particle localization in tomograms, wherein 361 detection depends more strongly on low-resolution contrast and recognizable shapes. The ability 362 to distinguish particles in crowded molecular environments is a major advantage of 2DTM 363 relative to cryo-ET, which currently suffers from strong attenuation of high-resolution signal 364 (large B-factors) in the raw tomogram (Schur et al., 2016). 2DTM may enable localization of 365 molecules in other dense environments such as liquid-liquid phase separated granules, which 366 remains challenging for cryo-ET despite success in some cases (Erdmann et al., 2021). Our 367 results confirm that 2DTM is an effective method to localize molecules in dense regions of the 368 cell even when the molecules cannot be distinguished by eye.

369

370 2DTM enables single particle classification in situ

In previous work we and others have demonstrated that, when comparing populations of molecules, the average 2DTM SNRs reflect the relative similarity of different templates to the target populations (Lucas et al., 2021; Rickgauer et al., 2020). In this study, we extend this

observation to show that the relative 2DTM SNRs of aligned templates *at a specific location and orientation* can be used to calculate the relative probabilities of a target belonging to a specific
 particle population.

377 Of the nuclear targets identified with the mature 60S, ~50% were also detected with the EN 60S, all of which were also detected with the LN 60S (Figure 5B). When calculating the relative 378 379 similarity to the three 60S templates, the EN 60S and mature 60S population were clearly 380 distinct, with mean 2DTM SNR ratios more than three standard deviations apart (Figure 5C). 381 The maximum likelihood estimation of Gaussian distributions enables quantitative classification 382 even when particle populations are less distinct, by yielding relative probabilities for each 383 detected target belonging to one of a given number of populations (e.g., Figures 3&5). 384 In this study, we effectively classify at least three populations of 60S maturation states from a 385 population of <500 molecules (Figure 5). This means that given sufficient abundance of the 386 target, it will be possible to distinguish populations based on data from a single image (Figure 2-387 figure supplement 1D). This contrasts with more traditional (reference-free) methods used to 388 classify subtomograms and single particles, which require hundreds to thousands of particles to 389 generate the class averages needed for particle assignment. 2DTM allows single molecule 390 classification from fewer images, and therefore enables more information to be extracted from 391 images collected from cells and purified samples (single-particle cryo-EM).

392

393 Confidence metric for single particle classification in situ

394 Calculating the confidence in class assignment of individual particles will aid interpretation 395 of the results of 2DTM in situ. One major difference between in situ cryo-EM and single-particle 396 cryo-EM is the type of biological information that is obtained. In single-particle cryo-EM, the 397 goal is to generate high-resolution maps and establish the arrangement of atoms within a 398 complex in different functional states, and to use this information to discern its molecular 399 mechanism. In this case, B-factors and other metrics can be used to indicate uncertainty about an 400 atomic coordinate, which aids interpretation of the model built into the map. In the cell, each 401 individual instance of a complex may be in a different context relative to other similar molecules. 402 For example, particles might be in different subcellular compartments such as the nucleus or 403 cytoplasm or, as a more extreme example, a single particle within a nuclear pore exists in a very 404 different context than particles in the nucleoplasm. For structural cell biology applications,

405 therefore, it is useful to define a metric to establish the confidence of single particle

406 classification. In this study, we show that a maximum likelihood approach using Gaussian fits to

407 log₂ 2DTM SNR ratios of alternate templates at a specific subcellular location and orientation

408 can be used to calculate the relative probability of a single particle deriving from one of a given

409 number of classes. This provides a quantitative metric to establish confidence in the assignment

410 of single particles that will aid in the biological interpretation of cellular cryo-EM maps.

411

412 **2DTM** templates as computational molecular probes

413 A major challenge in biological cryo-EM the retrieval of detailed structural information of 414 inherently flexible and heterogeneous macromolecules from noisy images collected at low dose 415 to limit radiation damage. In single particle cryo-EM, this problem is addressed by averaging 416 images of thousands of purified molecules to identify different structural states at high 417 resolution. By averaging images of many identical copies of a particle, novel structures can be 418 discovered, and this is a clear strength of this approach. However, since most complexes have a 419 low abundance in the cell, the utility of this approach for *in situ* structural biology is limited to 420 all but the most abundant complexes.

2DTM presents an alternate approach to using the signal in noisy images to gain insight into the structural states of molecules. In this approach, a noise-free template represents a hypothesis that a particle of a given conformational and compositional state is present in the image, and this hypothesis can be tested by searching the image with the template, independent of how many particles the image contains. We demonstrate that by generating modified templates representing different hypotheses, we can directly assess the compositional and conformational states of ribosomal subunits in cells.

428 Provided the templates have similar molecular mass and shape and are aligned with each 429 other, probing with multiple templates requires only a single initial exhaustive search with one of 430 the templates. This can be followed by a simple evaluation of the cross-correlation coefficient for 431 each additional template at locations and orientations of the detected targets in the initial search 432 (Figure 4), thereby avoiding time-consuming searches for all templates. In future studies, this 433 approach could be extended to assess the relative similarity of a target with respect to a library of 434 alternate structures. Alternate templates could be generated in multiple ways, depending on the 435 biological hypothesis being tested. To reveal compositional heterogeneity in situ, alternate

436 structures could be generated that lack specific subunits of interest as shown in Figure 4.

437 Additionally, to interrogate *in situ* conformational heterogeneity, templates could be generated

438 from time points of molecular dynamics simulations.

- 439
- 440

Addressing potential sources of error

441 In our study, we used the physical separation of nuclear and cytoplasmic 60S populations 442 to develop and test *in situ* classification of targets by 2DTM. We found that there are several 443 requirements to permit classification of related molecules by 2DTM. First, the molecular models 444 must be aligned relative to one another resulting in a correlation peak at the same pixel in the 445 image. Comparing SNR values resulting from global searches with different templates may be 446 lowered by imperfect, off-grid rotational matches, potentially affecting 2DTM SNR ratios and 447 hence, target classification. Differences in model quality may also affect the 2DTM SNR ratios, 448 masking other differences of interest. In this study, the mature 60S template was generated using 449 the atomic coordinates of the large subunit of the ribosome built into a map with an overall 450 resolution of 3.1 Å (PDB: 6Q8Y) (Tesina et al., 2019). The large subunit of the ribosome is 451 structurally less variable than the small subunit and local resolution estimates suggest that parts of the LSU map extend to ~2.5 Å (Tesina et al., 2019). The maps used to build the EN 60S and 452 453 LN 60S subunits were reconstructed at 3.08 Å and at 3.5 Å resolution, respectively. The 454 accuracy of the atomic coordinates of a model will depend on the resolution of the underlying 455 density map. Moreover, the greater number of mature ribosome structures, relative to maturation 456 intermediate structures, may provide more confidence in the atomic coordinates of the mature 457 60S. We expect that more accurate coordinates will result in higher 2DTM SNR values, which 458 may affect target classification.

459 The dependence of 2DTM SNR values on the quality of the atomic model presents the 460 possibility to use 2DTM to refine atomic models directly against 2D images of purified samples, 461 and *in situ* against targets detected in images of cells. This approach may bypass some of the 462 difficulties associated with the use of intermediary 3D reconstructions in atomic model 463 refinement, such as inaccurate representation of the full extent of heterogeneity in a dataset and 464 loss of resolution in flexible parts of a molecule. Further development is required to address the 465 potential of overfitting when refining against noisy 2D images, and to detect and quantify errors 466 in the refined models.

467 The classification of structurally similar targets could be further improved by identifying 468 and controlling the factors that affect the distribution of observed 2DTM SNR ratios for a given 469 set of templates. Ideally, the mean ratio of SNR values for a set of templates and given target 470 depends only on the structural differences between the templates, while the distribution of 471 observed ratios is solely a function of the noise and background in the images. However, factors 472 that contribute to loss of signal such as sample thickness, radiation damage, beam induced 473 motion, charging and movie frame alignment errors due to sample deformation all result in loss 474 of high-resolution signal, making the 2DTM SNR ratios less sensitive to structural differences in 475 the templates and biasing their \log_2 values towards 0. Additionally, structural variability in the 476 targets that is not captured by the templates, as well as different degrees of overfitting during 477 2DTM (Lucas et al., 2021) and a target orientation dependence of the SNR values may lead to a 478 wider spread of observed 2DTM SNR ratios. Further research is required to account for these 479 factors and reduce the variance in 2DTM SNR ratios, thereby enabling classification of targets 480 with smaller structural differences.

481

482 Additional intermediate populations

483 In the present study, we only considered three alternate 60S templates. We note that the 484 Gaussian fits to the 2DTM SNRs of mature 60S and LN 60S-detected nuclear targets is 485 imperfect, potentially indicating additional pre-60S populations (Figure 2-figure supplement 486 1C). Further examination of the observed 2DTM SNR ratios revealed the presence of at least one 487 additional pre-60S population (Figure 5). We also observed a small population of cytoplasmic 488 60S targets with higher SNR values against the LN 60S template than against the mature 60S 489 (Figure 5D). 60S maturation intermediates exit the nucleus in an immature form and complete 490 maturation in the cytoplasm. Whether the cytoplasmic 60S with higher SNR values against the 491 LN 60S template represent cytoplasmic intermediates or reflect the limits of our classification 492 strategy requires further investigation. Future work using additional templates representing other 493 intermediates of 60S maturation will reveal further details about the spatiotemporal organization 494 of pre-60S intermediates in cells.

In this study, we identified an EN 60S population of nuclear 60S with the 5S rRNP in a
premature state rotated 180° relative to the mature 60S, consistent with *in vitro* determined
structures (Leidig et al., 2014). The presence of this complex during maturation *in vivo* has been

498 difficult to establish. Our observation that this population accounts for more than half of the 60S 499 identified in the nucleus argues that this is an on-pathway assembly intermediate. We also 500 identified a nuclear LN 60S population. This population reflects a late intermediate that has 501 already undergone 5S rotation and ITS2 removal, implying a temporal lag after 5S rotation 502 and/or ITS2 removal, and subsequent export from the nucleus. To test these possibilities more 503 thoroughly, future studies establishing the flux through the assembly pathway are needed. By 504 freezing cells at different time points after inhibition of specific maturation steps, 2DTM could 505 be used to study the kinetics of assembly and the flux through the assembly pathway.

506

507 Materials and Methods:

508 Yeast cell culture and plunge freezing

509 *Saccharomyces cerevisiae* strains BY4741 (ATCC), or MNY8 (a gift from Michael Rosbash)

510 colonies were inoculated in 20mL of YPD, diluted 1/5 and grown overnight to an OD_{600} of ~0.5

511 to 1. The cells were then diluted to 10,000 cells/mL and 3uL applied to a 2/1 or 2/2 Quantifoil

512 200 mesh Cu grid, allowed to rest for 15 seconds, back-side blotted for 8 seconds and plunged

513 into liquid ethane at -184°C using a Leica EM GP2 plunger. Frozen grids were stored in liquid

514 nitrogen until FIB-milled. When indicated Crm1(T539C) (MNY8 cells, a gift from Michael

515 Rosbash, Brandeis) were additionally incubated at 30°C with shaking in the presence of 200 nM

516 Leptomycin B (Cell Signaling Technologies) for 30 min before applying to grids and plunge

517 freezing.

518

519 FIB milling

520 Grids were transferred to an Aquilos cryo-FIB SEM, sputter coated with metallic Pt for 15s then

521 coated with organo-Pt for 10s and milled in a series of sequential milling steps using a 30kV Ga+

522 beam using the following protocol: rough milling 1: 0.1 nA rough milling 2: 50 pA lamella

523 polishing: 10 or 30 pA at a stage tilt of 15° (milling angle of 8°).

524

525 Cryo-EM data collection

526 Lamellae were imaged using a Titan Krios 300 keV cryo-TEM (Thermo Fisher) equipped with a

527 K3 direct detector (Gatan) and an energy filter (Gatan) at a sample pixel size of 1.06 Å. Movies

528 were collected at an exposure rate of 1 e^{-1}/A^2 to a total dose of 30 e^{-1}/A^2 .

529

530 Image processing

531 Images were processed using *cis*TEM (Grant et al., 2018) as described previously (Lucas et al.,

- 532 2021), and using sample tilt determination implemented in a modified version of CTFFIND4
- 533 (Rohou and Grigorieff, 2015) to estimate sample defocus to account for the $\sim 8^{\circ}$ tilt of the lamella
- 534 introduced during FIB-milling. Images of 3D densities and 2DTM results were prepared in
- 535 ChimeraX (Pettersen et al., 2021).
- 536

537 *2DTM*

538 The molecular models noted in the text were aligned to one another to have the same origin

- using their 28S rRNA using the MatchMaker function in UCSF Chimera (Meng et al., 2006;
- 540 Pettersen et al., 2004) and 2DTM templates were generated by simulating 3D densities (Himes

and Grigorieff, 2021). 2DTM was performed using the program *match template* in the *cis*TEM

542 GUI (Lucas et al., 2021) using the default parameters. The coordinates were refined using the

543 program *refine template* (Lucas et al., 2021) in rotational steps of 0.1° and a defocus range of

- 544 200Å with a 10Å step.
- 545

546 3D reconstruction using mature 60S 2DTM coordinates

547 We used the program *prepare* stack matchtemplate (Lucas et al., 2021) to generate a particle 548 stack using the locations and orientations of the significant mature 60S-detected targets after 549 refinement as described above. We then used *cis*TEM to generate a 3D reconstruction from 3991 550 mature 60S targets detected in 28 images of the nuclear periphery, only including targets with a 551 2DTM SNR of >8. The reconstruction had a nominal resolution of 3.5 Å using an Fourier Shell 552 Correlation (FSC) threshold of 0.143 (Figure 1-figure supplement 1D) (Rosenthal and 553 Henderson, 2003) that is expected to overestimate the resolution due to overfitting (Lucas et al., 554 2021). To limit the noise due to overfitting, we low-pass filtered the reconstruction to 10 Å, 555 representing an FSC of 0.9.

556

557 Calculating 2DTM SNR values and ratios of SNR values

558 Targets identified in two or more searches with aligned templates were identified using the

559 program *align_coordinates* (Lucas et al., 2021). The 2DTM SNRs of targets identified in two or

560 more searches were compared by taking the \log_2 of the SNR ratio. The \log_2 was used in place of 561 the direct ratio because, the shape of the distribution is independent of the order of comparison, 562 except for a mirror around 0, while the distribution of the direct ratios shows more complicated 563 behavior. Histograms of both the log₂ values and direct ratios of the cytoplasmic 60S population 564 have approximately Gaussian distributions with fits characterized by the coefficient of 565 determination R²=0.993 and R²=0.991 respectively. To calculate the change in the 2DTM SNR 566 with modified templates, the program refine template (Lucas et al., 2021) was used to calculate 567 2DTM SNRs for additional templates using the locations and orientations from a previous 568 exhaustive search with an initial template, without performing a rotational search by specifying 569 the rotational step as 360°. To obtain consistent ratios of 2DTM SNRs, the 2DTM SNR values

- 570 for both the initial template and the additional templates were calculated.
- 571

572 Calculating relative probabilities

Histograms were generated (bin 0.05) of the calculated $\log_2 2DTM$ SNR ratios and Gaussians were fitted using GaussianMixture in sklearn (Pedregosa et al., 2011). Based on the shape of the histogram, we model the $\log_2 2DTM$ SNR ratios as a mixture of *K*-component multivariate Gaussian distributions, when *K* templates are used in the search. We fit Gaussians to the \log_2 SNR ratios of any two selected templates. Each target *i* is then associated with *K* – 1 such SNR ratios x_i . For example, for K = 4, we can define the following:

579

580
$$X_{i} = \begin{bmatrix} log_{2}(SNR_{i,k=1}/SNR_{i,k=2}) \\ log_{2}(SNR_{i,k=1}/SNR_{i,k=3}) \\ log_{2}(SNR_{i,k=1}/SNR_{i,k=4}) \end{bmatrix}$$
(1)

581

For particles belonging to the same population (class), the log₂ SNR ratio can be described by the
multivariate Gaussian probability density function (PDF):

584

585
$$P(X_i|\Theta_k, z_i = k) \sim \mathbb{N}(\mathbb{M}_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_k|^{\frac{1}{2}}} \exp\left(-\frac{(X_i - \mathbb{M}_k)^T \Sigma_k^{-1} (X_i - \mathbb{M}_k)}{2}\right)$$
(2)

586

$$P(z_i = k) = \pi_k \tag{3}$$

588

589 where X_i is a vector of $K - 1 \log_2 SNR$ ratios, z_i indicates the identity of the target (k =1,2,..., K), and $\Theta_k = \{M_k, \Sigma_k, \pi_k\}$ is the set of parameters of the Gaussian PDF N and the prior 590 591 probability that a detected target belonging to class k. The total joint likelihood for N detected 592 targets is then 593 $L(\Theta; \mathbf{X}) = P(\mathbf{X}|\Theta) = \prod_{i=1}^{N} P(X_i|\Theta) = \prod_{i=1}^{N} \sum_{j=1}^{K} \pi_j \mathbb{N}(\mathbf{M}_j, \Sigma_j)$ 594 (4)595 with $\Theta = \{\Theta_1, \Theta_2 \dots \Theta_K\}$ and $X = \{X_1, X_2 \dots X_N\}$. We use an expectation-maximization (EM) 596 597 algorithm to iteratively calculate the maximum likelihood estimates of the model parameters 598 where the E-step calculates the posterior probability via Bayes rule, 599 $P(z_i = k | X_i, \Theta) = \frac{\pi_k \mathbb{N}(M_k, \Sigma_k)}{\sum_{i=1}^K \pi_i \mathbb{N}(M_i, \Sigma_i)}$ 600 (5)601 602 and the M-step updates the model parameters for each class, 603 $\pi_k = \frac{\sum_{i=1}^N P(z_i = k | X_i, \Theta)}{N}$ 604 (6)605 $M_{k} = \frac{\sum_{i=1}^{N} x_{i} \cdot P(z_{i} = k | X_{i}, \Theta)}{\sum_{i=1}^{N} P(z_{i} = k | X_{i}, \Theta)}$ 606 (7)607 $\Sigma_k = \frac{\sum_{i=1}^{N} P(z_i = k | X_i, \Theta) (x_i - M_k) (x_i - M_k)^T}{\sum_{i=1}^{N} P(z_i = k | X_i, \Theta)}$ 608 (8)609 Prior probabilities (π) can be set by subjective assessment based on the experiment, or set to 610 611 1/K where all classes have equal probability. For example, to determine the relative probability 612 that an LN 60S-detected nuclear target belongs to the LN 60S or EN 60S class, we assume that 613 their relative frequencies are the same and therefore the prior probability of the two intermediates in the nucleus is equal: $P(LN \ 60S) = P(EN \ 60S) = 0.5$. 614 615 616 **Data availability:** 617 Micrographs, templates and scaled maximum intensity projections (MIPs) in this study are

618 accessible with the following public access code: EMPIAR-10998

619

620 Acknowledgements:

- 621 We are grateful to Michael Rosbash (Brandeis) for providing MNY8 cells, Xiaowei Zhao for
- help trouble-shooting FIB-milling, and Peter Rickgauer, Tim Grant and Ben Himes for helpful
- 623 comments and suggestions. BL and NG acknowledge support from the Chan Zuckerberg
- 624 Initiative (VPI-0000000116).
- 625

626 **References:**

- Delavoie F, Soldan V, Rinaldi D, Dauxois JY, Gleizes PE. 2019. The path of pre-ribosomes
 through the nuclear pore complex revealed by electron tomography. *Nature Communications* 10:1–12. doi:10.1038/s41467-019-08342-7
- 630 Erdmann PS, Hou Z, Klumpe S, Khavnekar S, Beck F, Wilfling F, Plitzko JM, Baumeister W.
- 631 2021. In situ cryo-electron tomography reveals gradient organization of ribosome
 632 biogenesis in intact nucleoli. *Nature Communications* 12:1–9. doi:10.1038/s41467-021633 25413-w
- Grant T, Rohou A, Grigorieff N. 2018. CisTEM, user-friendly software for single-particle image
 processing. *Elife* 7:e35383. doi:10.7554/eLife.35383
- Gubins I, Chaillet ML, van der Schot G, Veltkamp RC, Förster F, Hao Y, Wan X, Cui X, Zhang
 F, Moebel E, Wang X, Kihara D, Zeng X, Xu M, Nguyen NP, White T, Bunyak F. 2020.
 SHREC 2020: Classification in cryo-electron tomograms. *Computers & Graphics* 91:279–
 289. doi:10.1016/J.CAG.2020.07.010
- Himes B, Grigorieff N. 2021. Cryo-TEM simulations of amorphous radiation-sensitive samples
 using multislice wave propagation. *urn:issn:2052-2525* 8:943–953.
 doi:10.1107/S2052252521008538
- Himes BA, Zhang P. 2018. emClarity: software for high-resolution cryo-electron tomography
 and subtomogram averaging. *Nature Methods* 15:955–961. doi:10.1038/s41592-018-0167-z
- Ho JHN, Kallstrom G, Johnson AW. 2000. Nmd3p Is a Crm1p-Dependent Adapter Protein for
 Nuclear Export of the Large Ribosomal Subunit. *The Journal of Cell Biology* 151:1057.
 doi:10.1083/JCB.151.5.1057
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates
 R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A,
 Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E,
- 651 Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals
- 652 O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein
- 653 structure prediction with AlphaFold. *Nature* 596:583–589. doi:10.1038/s41586-021-03819654 2
- Kürner J, Frangakis AS, Baumeister W. 2005. Cryo-electron tomography reveals the cytoskeletal
 structure of Spiroplasma melliferum. *Science* 307:436–438. doi:10.1126/science.1104031
- Leidig C, Thoms M, Holdermann I, Bradatsch B, Berninghausen O, Bange G, Sinning I, Hurt E,
 Beckmann R. 2014. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein
- 659 particle. *Nature Communications* **5**:3491. doi:10.1038/ncomms4491

660 661	Lucas BA, Himes BA, Xue L, Grant T, Mahamid J, Grigorieff N. 2021. Locating macromolecular assemblies in cells by 2D template matching with cisTEM. <i>Elife</i> 10 .
662	doi:10.7554/elife.68946
663	Lučić V, Rigort A, Baumeister W. 2013. Cryo-electron tomography: The challenge of doing
664	structural biology in situ. <i>Journal of Cell Biology</i> 202 :407–419.
665	doi:10.1083/JCB.201304193
666 667	Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Cuellar LK, Förster F, Hyman AA, Plitzko JM, Baumeister W. 2016. Visualizing the molecular sociology at the HeLa cell nuclear
668	periphery. Science $351:969-9/2$. doi:10.1126/science.aad885/
669	Marko M, Hsieh C, Schalek R, Frank J, Mannella C. 2007. Focused-ion-beam thinning of
6/0	trozen-hydrated biological specimens for cryo-electron microscopy. <i>Nature Methods</i> 4:215–
6/1	21/. doi:10.1038/nmeth1014
672	Matsuo Y, Granneman S, Thoms M, Manikas RG, Tollervey D, Hurt E. 2014. Coupled GTPase
6/3	and remodelling A l Pase activities form a checkpoint for ribosome export. <i>Nature</i> 505:112–
6/4	116. doi: 10.1038/nature 12/31
6/5	Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE. 2006. Tools for integrated sequence-
6/6	structure analysis with UCSF Chimera. BMC Bioinformatics 7:339. doi:10.1186/14/1-
6//	2105-7-339
6/8	Moebel E, Martinez-Sanchez A, Lamm L, Righetto RD, Wietrzynski W, Albert S, Lariviere D,
6/9	Fourmentin E, Pfeffer S, Ortiz J, Baumeister W, Peng I, Engel BD, Kervrann C. 2021.
680	Deep learning improves macromolecule identification in 3D cellular cryo-electron
681	tomograms. Nature Methods $1-9$. doi:10.1038/s41592-021-01275-4
682	Pedregosa F, Varoquaux G, Gramfort A, Michel V, Inirion B, Grisel O, Blondel M, Prettenhofer
683	P, weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchagney E, 2011, Scilit Joam, Machine Learning in Puthen, Journal of Machine
004	Learning Desearch 12:2825 2820
005	Learning Research 12:2623–2650.
000 697	Vennel L. ven der Klei I. Hägenever G. Frement Regins M. Dergler H. 2007. Cutenlagnia
600/	Rapper L, van der Kier I, Hogenauer G, Fromont-Racine M, Bergier H. 2007. Cytoplasmic Requeling of 60S Provides and Easters Depends on the AAA Protoin Drol. Molecular and
680	Cellular Biology 27:6581, 6502, doi:10.1128/mab.00668.07
600	Dettersen EF, Goddard TD, Huang CC, Couch CS, Greenblatt DM, Mang EC, Ferrin TE, 2004
690 601	UCSE Chimera A visualization system for exploratory research and analysis <i>Journal of</i>
602	Computational Chamistry 25:1605, 1612, doi:10.1002/ICC.20084
692	Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TL, Morris IH, Ferrin TE
694	2021 LICSE ChimeraX: Structure visualization for researchers, educators, and developers
695	Protein Science · 4 Publication of the Protein Society 30 :70 doi:10.1002/PRO 3943
696	Rickgauer IP Choi H Lippincott-Schwartz L Denk W 2020 Label-free single-instance protein
697	detection in vitrified cells <i>bioRriv</i> 2020 04 22 053868 doi:10 1101/2020 04 22 053868
698	Rickgauer IP Grigorieff N Denk W 2017 Single-protein detection in crowded molecular
699	environments in cryo-FM images <i>Elife</i> 6:e25648 doi:10.7554/elife.25648
700	Rigort A Bäuerlein FIB Villa E Eibauer M Laugks T Baumeister W Plitzko IM 2012
701	Focused ion beam micromachining of eukarvotic cells for crvoelectron tomography <i>Proc</i>
702	Natl Acad Sci U S A 109:4449–4454. doi:10.1073/pnas.1201333109
703	Rohou A. Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron
704	micrographs. Journal of Structural Biology 192 :216–221. doi:10.1016/LISB.2015.08.008

- Rosenthal PB, Henderson R. 2003. Optimal Determination of Particle Orientation, Absolute
 Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. *Journal of Molecular Biology* 333:721–745. doi:10.1016/J.JMB.2003.07.013
- Schaffer M, Pfeffer S, Mahamid J, Kleindiek S, Laugks T, Albert S, Engel BD, Rummel A,
 Smith AJ, Baumeister W, Plitzko JM. 2019. A cryo-FIB lift-out technique enables
 molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. *Nature Methods*
- 711 **16**:757–762. doi:10.1038/s41592-019-0497-5
- Schur FKM, Obr M, Hagen WJH, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Kräusslich HG,
 Briggs JAG. 2016. An atomic model of HIV-1 capsid-SP1 reveals structures regulating
 assembly and maturation. *Science* 353:506–508. doi:10.1126/science.aaf9620
- 715 Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J. 2021. Multi-particle cryo-EM
 716 refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. *Nature Methods*717 18:186–193. doi:10.1038/s41592-020-01054-7
- 718 Tesina P, Heckel E, Cheng J, Fromont-Racine M, Buschauer R, Kater L, Beatrix B,
- Berninghausen O, Jacquier A, Becker T, Beckmann R. 2019. Structure of the 80S
 ribosome–Xrn1 nuclease complex. *Nature Structural & Molecular Biology* 26:275–280.
 doi:10.1038/s41594-019-0202-5
- Vilas JL, Oton J, Messaoudi C, Melero R, Conesa P, Ramirez-Aportela E, Mota J, Martinez M,
 Jimenez A, Marabini R, Carazo JM, Vargas J, Sorzano COS. 2020. Measurement of local
 resolution in electron tomography. *Journal of Structural Biology* 4:100016.
 doi:10.1016/J.YJSBX.2019.100016
- Villa E, Schaffer M, Plitzko JM, Baumeister W. 2013. Opening windows into the cell: focused ion-beam milling for cryo-electron tomography. *Current Opinion in Structural Biology* 23:771–777. doi:10.1016/J.SBI.2013.08.006
- von der Haar T. 2008. A quantitative estimation of the global translational activity in
 logarithmically growing yeast cells. *BMC Systems Biology* 2:87. doi:10.1186/1752-0509-287
- Warner JR. 1999. The economics of ribosome biosynthesis in yeast. *Trends Biochem Sci* 24:437–440. doi:10.1016/S0968-0004(99)01460-7
- Wu S, Tutuncuoglu B, Yan K, Brown H, Zhang Y, Tan D, Gamalinda M, Yuan Y, Li Z,
 Jakovljevic J, Ma C, Lei J, Dong MQ, Woolford JL, Gao N. 2016. Diverse roles of
 assembly factors revealed by structures of late nuclear pre-60S ribosomes. *Nature* 534:133–
- 737 137. doi:10.1038/nature17942
- Xue L, Lenz S, Zimmermann-Kogadeeva M, Tegunov D, Cramer P, Bork P, Rappsilber J,
 Mahamid J. 2021. Visualizing translation dynamics at atomic detail inside a bacterial cell.
 bioRxiv 2021.12.18.473270. doi:10.1101/2021.12.18.473270
- Zhou Y, Musalgaonkar S, Johnson AW, Taylor DW. 2019. Tightly-orchestrated rearrangements
 govern catalytic center assembly of the ribosome. *Nature Communications* 10.
- 743 doi:10.1038/s41467-019-08880-0
- 744

745

746 **Figure Legends**:

747

748 Figure 1: Detection of cytoplasmic mature 60S and mitochondrial ribosomes in 2D images 749 of FIB-milled yeast lamella. A) Cryo-EM like density generated using the atomic coordinates of 750 PDB:6Q8Y that correspond with the mature 60S. B) TEM image of the nuclear periphery from a 751 FIB-milled yeast lamella. Yellow arrows indicate low-resolution features in the cytoplasm that 752 may indicate the presence of ribosomes. Blue arrows indicate regions of similar size and contrast 753 in the nucleoplasm. NE: nuclear envelope; NPC: nuclear pore complex. C) Cryo-EM micrograph 754 of yeast nuclear periphery from FIB-milled lamella with the results from a 2DTM search using 755 the mature 60S template. Significant targets are indicated by mapping the template in the best 756 matching locations and orientations (shown in yellow). The red box indicates the regions 757 highlighted in E) and F). Scale bar = 50 nm. D) Bar chart indicating the number of mature 60S-758 detected targets identified in the indicated subcellular compartments in 28 images of the nuclear 759 periphery. E) Scaled maximum intensity projection (MIP) showing the results of 2DTM using 760 the template in A) in the region of C) indicated in red. F) 3D slab indicating the locations and 761 orientations of mature 60S-detected targets in the indicated region of C). The red polypeptide 762 indicates the location of the polypeptide exit tunnel on each 60S. G) Plot showing the density of 763 mature 60S in the regions of the images corresponding to the cytoplasm. Each dot represents a 764 different image. The solid black bar indicates the median. H) 10 Å filtered 3D reconstruction 765 calculated from 3991 60S subunits at the locations and orientations detected in 28 images, 766 showing clear density for the 40S small subunit. The molecular model of the 60S used to 767 generate the template in A) is shown in yellow.

768

769 Figure 2: 2DTM SNRs differentiate cytoplasmic mature 60S from nuclear pre-60S in 2D

770 **images of FIB-milled yeast lamella.** A) Diagram showing the compositional changes that

accompany the maturation from the late nuclear (LN) 60S (PDB: 6N8J), shown in blue, to the

mature 60S (PDB: 6Q8Y), shown in yellow, in the cytoplasm. B) Cryo-EM micrograph of yeast

- nuclear periphery from FIB-milled lamella with the results from a 2DTM search using the LN
- 60S template. Significant targets are indicated by mapping a projection of the template in the
- best matching locations and orientations (shown in blue). Scale bar = 50 nm. C) As in B),
- showing the results from a 2DTM search of the indicated image using the mature 60S as a

777 template (yellow). D) Maximum intensity projection showing the results of a 2DTM search with 778 the LN 60S template in the region of the image in B) highlighted in orange. Orange circles 779 indicate two targets identified by both LN 60S and mature 60S. E) As in D) showing the results 780 of a 2DTM search with the mature 60S template in the region of the image in C) highlighted in 781 orange. F) As in D) corresponding to the region of B) highlighted in blue and circles indicating 782 two LN 60S-detected targets. G) As in D) showing the results of a 2DTM search with the mature 783 60S template in the region of the image in C) highlighted in blue. H) Diagram indicating the 784 number of mature 60S (yellow) and LN 60S (blue)-detected targets identified in 2DTM searches 785 of 28 images of the nuclear periphery. The overlap of the Venn diagram indicates the number of 786 targets identified in both searches. I) Bar chart indicating the number of targets detected by the 787 mature 60S (yellow), the LN 60S (blue), and by both (black) in regions of the images 788 corresponding to the nucleus or cytoplasm. J) Plot showing the log₂ 2DTM SNR ratios for LN 789 and mature 60S-detected targets grouped by subcellular compartment. Each dot indicates a 60S 790 detected in both searches. ****: p<0.0001. K) Image showing the identified targets color-coded 791 by the best-matching template (blue: LN 60S, yellow: mature 60S) as determined by the higher 792 2DTM SNR at each overlapping location. Scale bar = 50 nm. L) Pie chart indicating the 793 proportion of all nuclear (left) and cytoplasmic (right) 60S targets that more closely resemble the 794 mature 60S (yellow) or LN 60S (blue) template, respectively, as determined by the highest 795 2DTM SNR at each identified location and orientation.

796

797 Figure 3: Relative probability of detecting mature or LN 60S. A) Histogram showing the 798 distribution of the mature 60S / LN 60S 2DTM SNR ratios for each LN and mature 60S-detected 799 target fit with two Gaussians indicating populations 1 (blue dashed line) and 2 (red dashed line). 800 The black line indicates the sum of the two Gaussians, $R^2 = 0.993$. B) Line graph showing the 801 probability that a given target belongs to the LN 60S population (blue) line, or mature 60S 802 population (red), as a function of log₂ 2DTM SNR ratio. C) Line graph showing the fraction of 803 nuclear (blue) and cytoplasmic (red) targets classified as LN 60S, at the indicated confidence 804 intervals determined using Eq (5). D) Heat map showing the probability of each LN and mature 805 60S-detected target belonging to either the LN or mature 60S populations. Each row indicates a 806 detected target, and the rows are sorted by their subcellular distribution. The targets assigned to

the mature 60S population are indicated in yellow and the targets assigned to the LN 60S
population are indicated in blue.

809

810 Figure 4: Classification of cytoplasmic mature 60S and nuclear pre-60S by 2DTM

811 corresponds with biologically relevant differences in the templates. A) The LN 60S (blue) 812 and mature 60S (yellow) 2DTM templates aligned in UCSF Chimera. B) LN 60S with difference 813 map calculated using UCSF Chimera showing the density in the LN 60S template that is not 814 present in the mature 60S template (red, transparent). C) As in B), showing the mature 60S with 815 density that is not in common with the LN 60S template (red, transparent). D) Boxplots showing 816 the change in 2DTM SNR when only RNA (left) or protein (right) components of the LN 60S 817 template are included, relative to the full-length template for each significant target. The targets 818 are grouped by their subcellular localization. E) Upper: LN 60S template with all ribosome 819 biogenesis factors (RBFs) indicated in red. Lower: Boxplot showing the change in the 2DTM 820 SNR of the nuclear (blue) and cytoplasmic (red) targets when all RBFs are removed, relative to 821 the full-length LN 60S template in untreated cells, and when Crm1-mediated nuclear export is 822 inhibited by treating Crm1(T539C) cells with Leptomycin B (LepB). Box width indicates the 823 interquartile range, the central line indicates the median and the whiskers indicate the range of 95% of the targets. F) As in E), for RBF Nog1. G) As in E), for RBF Nog2. ****: p<0.0001, ns: 824 825 not significant (p>0.05).

826

827 Figure 5: Classification of nuclear targets by relative similarity to early or late nuclear

828 intermediates. A) Venn diagram showing the number of significant targets detected in 2DTM

829 searches with the indicated templates. Overlap indicates targets identified in two or more

830 searches. B) Venn diagrams showing the number of significant targets detected in 2DTM

831 searches with the indicated templates in the nucleus (left) and cytoplasm (right). C) Scatterplot

showing the EN 60S / LN 60S 2DTM SNR ratios relative to the mature 60S / LN 60S 2DTM

833 SNR ratios for each EN, LN and mature 60S-detected target. Ellipses indicate the fits of three

- 834 Gaussians and each concentric ellipse indicates one standard deviation from the mean. Each
- target is colored according to its most likely class membership. D) Heat map showing the
- 836 probability of each of the targets examined in C) belonging to one of the populations, EN, LN or
- 837 mature 60S. Targets are grouped by their subcellular localization, followed by their classification

as EN 60S (purple), LN 60S (light blue), or mature 60S (yellow). E) Bar chart showing the

- 839 proportion of the LN 60S-detected targets in the indicated cells that are classified as LN 60S
- 840 (blue), mature 60S (yellow) or EN 60S (purple). F) Cryo-EM micrograph of the yeast nuclear
- periphery from a FIB-milled lamella shown in in **Figure 1**, displaying the results of 2DTM
- searches, colored by their classification as mature 60S (yellow), LN 60S (blue) or EN 60S
- 843 (purple) based on their relative 2DTM SNRs.
- 844

Figure 1 — figure supplement 1: A) FIB-image of two yeast cells frozen on a cryo-EM grid. B)
FIB image of the lamella after milling the cells shown in A). C) Survival histogram showing the
number of search locations with 2DTM SNR values above a given threshold from a 2DTM
search using the mature 60S template in Figure 1A. D) FSC obtained for the 3D reconstruction
shown in Figure 1H calculated using the targets identified by 2DTM.

851 **Figure 2**— figure supplement 1: A) Venn diagrams showing the number of mature (yellow) 852 and LN 60S (blue) detected targets in the indicated subcellular compartments. The overlap 853 indicates targets detected in searches with both templates. B) Violin plot showing the kernelled 854 distribution of 2DTM SNRs of mature 60S-detected targets (left) and LN 60S-detected targets 855 (right) in the indicated subcellular compartments. ****: p<0.0001, ns: not significant, p>0.05. C) 856 Histogram showing the relative frequency of mature 60S / LN 60S 2DTM SNR ratios grouped 857 by subcellular localization. Gaussian fits are indicated by a solid line. D) Boxplot showing the 858 mature 60S / LN 60S 2DTM SNR ratios of the nuclear (blue) and cytoplasmic (red) populations 859 from each of the 28 images analyzed, indicating that the nuclear and cytoplasmic populations are 860 distinct, even within single images.

861

Figure 3 — figure supplement 1: A) Scatterplot showing the 2DTM SNRs for nuclear (blue)
and cytoplasmic (red) targets detected in searches with the LN and mature 60S templates. B)
Scatterplot showing P(LN 60S) for nuclear (blue) or cytoplasmic (red) LN 60S-detected target as
a function of the 2DTM SNR. Dotted line indicates the 2DTM threshold.

866

Figure 4 — figure supplement 1: A) TEM image of the nuclear periphery and vacuole in Crm1
(T539C) cells treated with Leptomycin B, overlaid with LN 60S-detected targets in blue. Scale
bar: 50 nm. B) Bar chart showing the number of LN and mature 60S-detected targets in the
indicated subcellular compartments. C) Violin plot showing the kernelled distribution of 2DTM
SNRs for LN 60S-detected targets in the indicated subcellular compartment. ****: p<0.0001. D)
As in C), showing mature 60S-detected targets. ns: not significant, p>0.05. E) Violin plot
showing the kernelled distribution of 2DTM SNR ratios of targets identified as both LN and

mature 60S-detected targets in the indicated subcellular compartment. ****: p<0.0001.

875

Figure 5 — figure supplement 1: A) Violin plots showing the kernelled distribution of 2DTM
SNRs for EN 60S-detected targets in the indicated subcellular compartment. ****: p<0.0001. B)

878 Histogram showing the distribution of EN 60S / LN 60S SNR ratios of EN and LN 60S-detected

- targets in untreated cells. Targets are grouped by their subcellular distribution. Gaussian fits are indicated in solid colors. C) TEM image of the nuclear periphery shown in **Figure 1**, overlaid
 - 27

- with EN 60S detected targets in purple. D) TEM image of the nuclear periphery. Scale bar
- indicates 50 nm. E) The image in D) is shown overlaid with EN 60S-detected targets in purple,
- F) LN 60S-detected targets in blue or G) mature 60S-detected targets in yellow. H) As in E)
- showing the results of 2DTM searches, colored by their classification as mature 60S (yellow),
- 885 LN 60S (blue) or EN 60S (purple) based on their relative 2DTM SNRs

886

887

Figure 1 - figure supplement 1

Figure 2 - figure supplement 1

Figure 3 - figure supplement 1

Figure 4 - figure supplement 1

Figure 5

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.10.487797; this version posted April 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 5 - figure supplement 1