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SUMMARY

The large (L) proteins of non-segmented, negative-
strand RNA viruses, a group that includes Ebola and
rabies viruses, catalyze RNA-dependent RNA poly-
merization with viral ribonucleoprotein as template, a
non-canonical sequence of capping and methylation
reactions, and polyadenylation of viral messages.
We have determined by electron cryomicroscopy
the structure of the vesicular stomatitis virus (VSV) L
protein. The density map, at a resolution of 3.8 A,
has led to an atomic model for nearly all of the
2109-residue polypeptide chain, which comprises
three enzymatic domains (RNA-dependent RNA
polymerase [RdRp], polyribonucleotidyl transferase
[PRNTase], and methyltransferase) and two structural
domains. The RdRp resembles the corresponding
enzymatic regions of dsRNA virus polymerases and
influenza virus polymerase. A loop from the PRNTase
(capping) domain projects into the catalytic site of the
RdRp, where it appears to have the role of a priming
loop and to couple product elongation to large-scale
conformational changes in L.

INTRODUCTION

The non-segmented negative-strand (NNS) RNA viruses include
some of the most lethal human and animal pathogens, including
Ebola virus and rabies virus. Their multifunctional, large (L)
polymerase proteins, carried within the virions (Baltimore et al.,
1970), have biochemical properties that distinguish them from
most other RNA polymerases of viruses or of their hosts. In
addition to their RdRp activity (Emerson and Wagner, 1973),
NNS RNA virus L proteins catalyze an unusual sequence of
mRNA capping reactions (Hercyk et al., 1988), and the RdRp
itself polyadenylates the viral message (Hunt et al., 1984).
A nucleocapsid (N) protein sheath coats the genomic RNA,
and the viral polymerase uses this N-RNA complex as template,
rather than uncoated RNA.
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Our understanding of RNA synthesis in NNS RNA viruses
comes principally from studies of vesicular stomatitis virus
(VSV)—an enveloped, bullet-shaped, rhabdovirus, closely
related to rabies virus. VSV causes an acute disease of livestock.
The VSV L protein does not bind the N-RNA template directly but
requires a cofactor, the viral phosphoprotein (P), as a bridge
(Green and Luo, 2009). Delivery of the N-RNA-L-P complex
into the cytoplasm when the virus enters a cell initiates infection.
Transcription starts at the 3’ end of the genome and produces
atriphosphate 47-nucleotide leader RNA, followed by sequential
transcription of five capped and polyadenylated mRNAs
(Abraham and Banerjee, 1976; Ball and White, 1976; Whelan
and Wertz, 2002). At each gene junction, L terminates synthesis
of the upstream gene, adding a polyadenylate (polyA) tail by
iterative transcription of a U7 tract (Barr and Wertz, 2001; Barr
et al., 1997; Stillman and Whitt, 1997). It then transcribes the
downstream gene. Approximately 30% attenuation occurs at
each successive gene, with dissociation of the template (lverson
and Rose, 1981). Replication also starts at the 3’ end of the
genome, but encapsidation by newly synthesized N accom-
panies synthesis of the nascent RNA strand, and in this mode,
L ignores all the cis-acting signals that dictate sequential tran-
scription of mRNAs (La Ferla and Peluso, 1989; Patton et al.,
1984; Peluso and Moyer, 1983).

The various enzymatic activities of L are tightly linked. A GDP
polyribonucleotidyl transferase (PRNTase) adds the cap struc-
ture (Ogino and Banerjee, 2007) when the nascent RNA chain
length has reached 31 nucleotides, as shown by artificially
stalling transcription at various chain lengths (Tekes et al.,
2011). The unconventional mechanism of cap addition proceeds
through a covalent adduct between a histidine residue on
L (H1227) and the monophosphate nascent RNA, which is trans-
ferred onto a GTP-derived GDP acceptor (Li et al., 2008; Ogino
and Banerjee, 2007). Failure to cap results in the premature
termination of transcription, which links cap addition to RdRp
processivity (Li et al., 2008; Stillman and Whitt, 1999; Wang
et al., 2007). Subsequent methylation is first at the 2’0 position
on the ribose of the first nucleotide and then on the N7 of
the capping guanylate—opposite to the typical order of
modification (Rahmeh et al., 2009). Failure to methylate, either
by exogenously manipulating the concentration of S-adenosyl
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homocysteine (SAH) to compete with the S-adenosyl methionine
methyl donor or by mutating critical catalytic residues in the
methylase domain, can result in hyper-polyadenylation of
mRNA transcripts, linking the methylation activity to the RdRp
(Galloway and Wertz, 2008; Li et al., 2009; Rose et al., 1977).
Both cap addition and subsequent methylation require specific
sequence elements within the first 10 nt of the mRNA (Wang
et al., 2007). The uncapped leader lacks those signals (Li et al.,
2008; Ogino and Banerjee, 2007).

During RNA synthesis, a few subunits of N dissociate from the
template RNA for access to the catalytic site of RdRp and then re-
associate as the process continues (Albertini et al., 2006; Green
et al., 2006). P may help coordinate these events (Green and
Luo, 2009). There are nine nucleotides associated with each N
subunit in the ribonucleoprotein (RNP), but we do not yet know
the number of transiently dissociated N subunits (and hence the
length of the RNA segment inserted into the polymerase). Full po-
lymerase processivity and correct recognition of the cis-acting
signals in the viral genome both require N (Morin et al., 2012).

Images from negative-stain electron microscopy (EM) of puri-
fied VSV-L show a ring-like “core” decorated by a set of three
variably oriented globular appendages (Rahmeh et al., 2010).
Truncations of L map the RdRp to the ring-like domain. Forma-
tion of a complex with P causes the globular appendages to reor-
ganize into a compact tail, wrapped onto one side of the ring
(Rahmeh et al., 2010). Complex formation with P enhances
RdRp initiation and processivity, but P itself has no enzymatic
activity. A fragment of P comprising residues 35-106 is sufficient
to induce the conformational rearrangement (Rahmeh et al.,
2012). Segments in the center and at the C-terminal end of the
P polypeptide chain mediate dimerization and N-RNA binding,
respectively (Ding et al., 2006; Green and Luo, 2009). Images
from negative-stain EM of purified L-P complexes are a mixture
of single and dimeric L species, in which the two L molecules
have variable relative orientation (Rahmeh et al., 2010).

We have determined the structure of a complex of L with
P(35-106) by electron cryomicroscopy (cryo-EM). Into a density
map at 3.8 A resolution, we have builta nearly complete model of
the 2109-residue polypeptide chain. The result shows that even
for a fully asymmetric structure with molecular mass <250 kDa,
the features in a density map from single-particle cryo-EM can
be well enough defined for a complete de novo chain trace.
We distinguish five domains: three—an RNA-dependent RNA
polymerase (RdRp), an mRNA capping domain, and a methyl-
transferase domain—with assigned enzymatic activity and
two—a connector between the capping and methyltransferase
domains and a C-terminal domain—that appear to have largely
organizational roles. We suggest that the conformation of the
protein in the complex we have examined corresponds to an
initiation state, ready to accept the 3’ end of a template. Elonga-
tion beyond one or two nucleotides will require a large-scale
domain reorganization.

RESULTS
Cryo-EM Structure Determination

We recorded images from VSV-L bound with P(35-106), from
grids prepared for cryo-EM as described in Experimental

Procedures. All data were taken on an FEI F20 microscope
with a Gatan K2 Summit detector. Following two-dimensional
classification with IMAGIC (van Heel et al., 1996) and TIGRIS
(http://tigris.sourceforge.net) and calculation of an initial three-
dimensional reference density with EMAN2 (Tang et al,
2007), we used FREALIGN (Lyumkis et al., 2013) for refinement
and three-dimensional classification (see Experimental Proce-
dures). Figure 1 shows images, summarizes stages of the anal-
ysis, and illustrates the final 3.8 A resolution density map.

Domain Organization of VSV-L

We traced the polypeptide chain from residue 35 to the
carboxy terminus, residue 2109, leaving out poorly ordered
linker segments 1335-1357 and 1558-1597 and a short, poorly
ordered loop 1840-1849. Some segments of ~10-15 residues
between 1100 and 1334 and between 1358 and 1557 are in
poor density, and the chain trace in those regions is approxi-
mate. Because the beginning and end of the segment
and “puddles” of density leave little uncertainty about the
overall course of the segment in question, we have kept
those residues in the model. We list the specific segments
in question in the Experimental Procedures. We paid consider-
able attention to correct stereochemistry during model
building, but to adjust both the fit and the stereochemistry
beyond the capacity of visual inspection, we carried out one
round of refinement, by calculating structure factors from the
map and using both amplitudes and phases in the target func-
tion, with secondary-structure hydrogen bonds imposed as
restraints. After some minor adjustments and one more cycle,
Rfree and Ryok Were 29.6 and 26.2, respectively (Figure S1;
Table S1).

We have assigned residues to domains and linkers as follows:
RdRp, 35-865; capping domain, 866-1334; linker 1 1335-1357;
connector domain, 1358-1557; linker 2, 1558-1597; methyl-
transferase, 1598-1892; C-terminal domain, 1893-2109 (Figures
2 and S2; Data S1). The boundaries between the capping
domain and the connector domain and between the latter
and the methyltransferase are evident from the disordered
linkers that intervene. The boundary between the RdRp and
the capping domain corresponds to a previously identified
tryptic cleavage site. Although the interface between the
two domains is relatively extensive and well packed, we have
shown that fragment 1-860 can be expressed independently
(Rahmeh et al., 2010). The boundary between the connector
domain and the methyltransferase domain also corresponds to
two independently stable fragments: 1-1593 and 1594-2109.
Between the methyltransferase domain and the C-terminal
domain is an extended but relatively polar interface. Negative-
stain electron microscopy of a fragment that includes residues
1594-2109 shows that stain can penetrate between the two
domains and that their connection might be flexible (Rahmeh
et al., 2010).

There are well defined secondary-structure features in the
density for each of the domains, leading us to believe that poor
density for certain segments reflects local disorder, rather than
failure of three-dimensional classification algorithms to detect
overall variation in position or orientation of any particular
domain with respect to the others.
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Figure 1. Electron Cryomicroscopic Reconstruction of VSV-L at 3.8 A Resolution

(A) Raw image of VSV-L particles in vitreous ice recorded at 1.8 um defocus. Scale bar, 10 nm.

(B) Power spectrum of the image shown in (A), with plot of the rotationally averaged intensity versus resolution. Arrow indicates the spatial frequency corre-
sponding to 3.8 A resolution.

(C) Representative class averages. Scale bar, 10 nm.

(D) Fourier shell correlation analysis: FSC, correlation between the half-set three-dimensional reconstructions (solid blue line); C,ef, estimated correlation between
the final map and a perfect reference map containing no errors, calculated from FSC (dotted blue line) (Rosenthal and Henderson, 2003); CCyork (solid red line)
and CCqee (dotted red line), correlation between the final map and refined model for working and test set of structure factors, respectively.

(E) Left: overview of VSV-L reconstruction. In the view shown, the particle (241 kDa) is ~110 A long and 80 Awide. Right: close-up view of a representative region
in the polymerase domain (RdRp). The volume shown in close-up is from the protein interior, not on the RdRp surface. Density is shown as gray mesh;
polypeptide-chain backbone of the refined model, as black ribbon; side-chain atoms, as sticks (carbons, black; nitrogen, blue; oxygen, red; sulfur, orange).
Note the continuous backbone density, a-helical grooves and resolution of bulky side chains—features that allowed building and stereochemical refinement of
the atomic model.

See also Figure S1 and Table S1.

RdRp of RNA and DNA polymerases (Figure 3). The catalytic site
The RdRp has at its core a right-hand, “fingers-palm-thumb” on the palm is in a deep channel between the fingers
structure (residues 360-865) common to a very large group and thumb subdomains (extended from the palm as if in a
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Figure 2. Structure of VSV-L

(A) Domain organization of VSV-L. The polymerase domain (RdRp) is in cyan; capping domain (Cap), green; connector domain (CD), yellow; methyltransferase
(MT), orange; C-terminal domain (CTD), red. Amino-acid residue numbers indicate functional domain boundaries. Flexible linkers 1 and 2 connect Cap to CD and
CD to MT domain, respectively. Conserved regions within L proteins of non-segmented negative-strand (NNS) RNA viruses are labeled CR |-VI. Asterisks indicate
the position of active site residues.

(B) Ribbon diagram of VSV-L polypeptide chain; domains colored as in (A).

(C) Substrate channels and internal cavities of VSV-L, depicted as white surface enclosed by the structure in ribbon representation. In this orientation, the
entrance to the template channel leading to the active site faces down; the channel runs between the RdRp and capping domains. Nucleotides can access the
RdRp active site through the channel in the foreground.

See also Figure S2.

loose hand grip). Appended to the core on the N-terminal From the appearance of VSV-L in negative-stain electron
side is a globular region (residues 1-359) that closes the chan-  microscopy, and in particular from the size and staining of a
nel on one end and reinforces the relatively slender thumb  “doughnut-like” part, we suggested that the RdRp might be
subdomain. similar in cage-like structure to the dsRNA virus polymerases
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Figure 3. Polymerase RdRp Domain

(A) Structure of the RdRp domain. Residues 35-865 are shown in ribbon representation in conventional orientation (viewed from inside the surrounding “cage”
and upside down with respect to the view in Figure 2). The palm subdomain is in red; the fingers, blue; the thumb, green. The N-terminal region is gray.

(B) Close-up view of the active site. Palm, fingers and thumb are colored as in (A). The GDN active site motif is at a -hairpin in the palm domain. A model for the
positions of the template RNA strand and two nucleotides is derived from the reovirus A3 initiation complex (PDB: 1n1h) after superposition on VSV-L RdRp. The
priming loop (residues 1157-1173) intruding from the capping domain (gray) positions the initial nucleotide of the transcript.

(C) Similarity of the VSV-L RdRp domain to those of other viral polymerases. Structures of influenza virus B polymerase (PDB: 4wrt; PA residues 248-716 and PB1
residues 1-616), reovirus A3 (PDB: 1muk; residues 2-890) and rotavirus VP1 (PDB: 2r7q; residues 2-778) are shown with the same orientation and coloring

scheme as the VSV-L RdRp in (A).

(Rahmeh et al., 2010). Those enzymes have their catalytic sites at
the center of an enclosed cavity, connected to the exterior by
four channels, for template entrance, template exit, transcript
exit, and NTP access (Lu et al., 2008; Tao et al., 2002). Compar-
ison of the chain trace with their structures shows that this sug-
gestion was correct, with one modification. The dsRNA virus
RdRps have a C-terminal “bracelet” domain that encircles the
exit path for the template and includes a site for binding the
methyl G cap on the non-template, plus-sense strand (Lu
et al., 2008; Tao et al., 2002). In VSV L, the capping domain,
which has no structural similarity to the bracelet domain of the
dsRNA virus RdRps, occupies the corresponding space. That
is, residue 865, which we have taken as the end of the RdRp,
is at the C terminus of the thumb.

318 Cell 162, 314-327, July 16, 2015 ©2015 Elsevier Inc.

We compared the positions of secondary structural elements
in VSV L, reovirus A3 (Tao et al., 2002), rotavirus VP1 (Lu et al.,
2008), and the heterotrimeric influenza virus polymerase (Pflug
et al., 2014; Reich et al., 2014). The secondary structural ele-
ments with correspondences in the three other polymerases
extend from about residue 107 in VSV-L to the end of the
RdRp domain (Figure 3). The analogous parts of reovirus A3
encompass residues 150-860 (approximately); those of rota-
virus VP1, residues 135-750; those of human influenza virus
B polymerase, residues 415 to the C terminus (714) of the
PA subunit, and residues 8-586 of the PB1 subunit. The homol-
ogy thus extends from the middle of PA into PB1. The region
in common between VSV-L and influenza virus PB1 corre-
sponds to the fingers-palm-thumb core structure, and the



Figure 4. Capping Domain

Template
5

(A) Structure of the capping domain. Residues 866-1334 are in ribbon representation. Motifs GxxT and HR are sites of guanosine nucleotide binding and of
covalent RNA attachment, respectively. Residues corresponding to positions of inhibitor-resistance mutations in human RSV polymerase (Liuzzi et al., 2005) are

shown as red spheres.
(B) Close-up of the active site.

(C) Configuration of the priming loop in VSV-L. Only the RdRp and capping domains are shown. The priming loop (residues 1157-1173) protrudes from the

capping domain into the active site of the RdRp domain.

(D) Proposed domain shifts to allow transcript elongation and eventual template release.

region shared with PA is a large part of the RdRp N-terminal
domain.

Capping Domain

Unlike the corresponding host-cell process, the capping reac-
tion of NNS RNA viruses proceeds from a covalent linkage be-
tween the 5’ end of the RNA and a histidine residue, with attack

on that linkage by a guanosine nucleotide. The enzyme is thus a
polyribonucleotidyl transferase (PRNTase) rather than a guanylyl
transferase. Two conserved motifs—GxxT and HR, separated
by ~70 residues—mark the catalytic site (Figures 4A and 4B).
The former participates in guanosine nucleotide binding; the
latter is the site of covalent RNA attachment. The domain has
no structural homologs that we could detect with standard
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search methods. The largely a-helical, N-terminal half (residues
866-1100), which abuts the polymerase domain, is well ordered.
The C-terminal half (1100-1334) has several poorly defined
segments, including the loop that bears the HR sequence.
Despite uncertain definition of side chains, the separation of
the two conserved sites is ~10 A, appropriate if a GTP bound
at the former is to attack the histidine-liganded 5’ phosphate of
the nascent RNA at the latter (Figure 4B). Positions correspond-
ing to sites in human respiratory syncytial virus (hRSV) of resis-
tance mutations to a small-molecule capping inhibitor (Liuzzi
et al., 2005) impinge on the active site from three sides (Fig-
ure 4A); their locations, and the relatively poor definition of the
active site in the map, suggest that activation of the domain,
perhaps by binding the 5’ end of the nascent message, induces
a conformational rearrangement, similar to the domain closures
seen in many enzymes when they bind their substrate. Two
candidate Zn sites, one with clear density where two Cys (resi-
dues 1120 and 1123) and two His (1294 and 1296) ligand the
likely Zn ion, and one with three Cys (residues 1081, 1299, and
1302) and a Glu (1108), contribute structural integrity to the
capping domain. The sites are close to each other and well
outside the catalytic center. In both cases, the liganding residues
are present as a conserved set in most NNS virus L proteins and
absent as a set in the others.

A loop between residues 1157 (the threonine of the GxxT
motif) and 1173 projects back into the cavity of the polymerase
domain (Figures 3B, 4C, and S3). The poorly ordered tip of this
loop occupies the same position as the priming loop in the
reovirus polymerase (Tao et al., 2002). The loop in VSV-L
polymerase domain that corresponds to the A3 priming loop is
shorter than its reovirus homolog, and the capping-domain
loop projects over it. Neither polymerase requires a polynucleo-
tide primer to initiate, and the priming loop in the reovirus
polymerase supports the initiating nucleoside triphosphate. As
elongation proceeds, the tip of the loop recedes to make room
for the dsRNA replication product or for the short double-
stranded region just upstream of the newly added nucleotide
during transcription (Tao et al., 2002). This loop, which contacts
the minor groove of the nascent product, may also enhance
fidelity, by retarding elongation of mismatches detected by
poor minor-groove geometry and allowing more time for ATP-
based pyrophosphorolysis of the mismatch. The position of the
likely priming loop of VSV-L on the capping domain, adjacent
to the GxxT residues, suggests coupling of capping to initiation
of polymerization.

Connector Domain

The connector domain is a bundle of eight helices (Figure 2B);
it appears to have largely an organizational role in positioning
or spacing the catalytic domains. Disordered linkers, 23 and 40
residues long, respectively, lead into and out of the connector
domain. The endpoints of these linkers in well-defined density
show that they must occupy an extended groove between the
capping and connector domains; the groove also extends into
the interface between the capping and methyltransferase do-
mains (Figure 5). Strong, low resolution density features fill this
groove, but they are not sharp enough to suggest particular
linker conformations (Figure 5B). The location of P indicated by
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negative-stain electron microscopy (Figures 5A and S4; Table
S2) leads us to suggest that the groove also holds some or all
of the P fragment present in the L-P complex we have imaged.
Because P(35-106) locks the smaller domains of L into a fixed
configuration, it is plausible that it might do so by stabilizing
folded structures for the two linker segments—gluing them
down, so to speak, alongside the connector domain (Figure 5B).

Methyltransferase Domain

The methyltransferase domain has the structure characteristic
of many other domains that catalyze transfer of a methyl group
from S-adenosyl methionine (Figures 6 and S5). It methylates
both the ribose 02" and the guanosine N7 (Rahmeh et al.,
2009). Most of the domain superposes extremely well on the
flavivirus methyltransferases, also dual specificity enzymes
(Egloff et al., 2002; Ray et al., 2006; Zhou et al., 2007). Evidence
for functional feedback from the VSV-L methyltransferase to the
RdRp comes from the observation that addition of S-adenosyl
homocysteine, which inhibits methylation, leads to hyper-
polyadenylation; mutations that prevent methyl transfer have a
similar effect (Galloway and Wertz, 2008; Li et al., 2009; Rose
et al,, 1977). The methyltransferase domain contacts both
the connector and the capping domains, but it has no direct
contact with the RdRp. Moreover, there is no obvious “tunnel”
that would allow the 5’ end of the transcript to move from the
catalytic site of the capping domain to the catalytic site of the
methyltransferase domain. We conclude, as we discuss in
greater detail below, that the L protein probably undergoes a
substantial conformation change following initiation of poly-
merization and that the inter-domain communication we see
in this structure is relevant to formation of the first one or two
phosphodiester bonds, but not to subsequent elongation and
5’-end modification.

C-Terminal Domain

Like the connector domain, the C-terminal domain, which
terminates in a ~25-residue long C-terminal “arm,” appears to
have an essentially organizational role (Figure 2B). It is largely
an a-helical bundle, but a projecting, almost beak-like, B-hairpin
supported by a second interhelical loop, imparts a noticeable
asymmetry. The C-terminal arm, a feature that appears
from sequence alignments to be conserved among NNS viral
polymerases, but variable in length, extends back against the
RdRp, augmenting the B-hairpin that bears the catalytic Asp-
Asn sequence at its tip, and terminates at the three-way junction
of the capping, connector, and methyltransferase domains,
where it has one or more contacts with each. The arm thus
contributes to closing the multi-domain structure we see in the
L-P complex, further stabilized by the phosphoprotein, P.

Template Channel

Superpositions of related positions in reovirus A3 (Tao et al.,
2002) and rotavirus VP1 (Lu et al., 2008) have allowed us to
model a bound template and a template-primer-NTP complex,
because A3 was catalytically active in the crystals studied used
to determine the structure and VP1 in its crystals incorporated
template in a sequence-specific register (Tao et al., 2002). The
template entrance channel is at the interface between the



VSV-L : P(1-106)

Linker1/2 + P (?)

C  vsv.L(1-860) VSV-L(1-1114)

JOEE
¢ €

VSV-L

CTD
Cap
RdRp

Figure 5. Domain Reorganization

(A) Projection angle matching between class averages of negatively stained complexes of VSV-L and P protein (top row) (Rahmeh et al., 2010, 2012) and
projections calculated from the model (middle row). The bottom row shows the model in the same orientation with the individual domains colored as in Figure 2.
Numbers are correlation coefficients between model and negative-stain class averages. VSV-L:P(1-106) corresponds to the structure determined here. In the
panel for VSV-L:P, an arrow indicates additional density observed in some class averages that we attribute to the bound P dimer. Scale bar, 10 nm.

(B) Difference density map (Mapopserved — MaPmodel) Calculated to 5 Aresolution and shown together with the model. The map shows density present in the image
reconstruction that could not be fit with a molecular model. Strong density — presumably from linkers 1 and 2, which enter and leave this density at defined points,
and with potential contribution from P (tentative assignment indicated by “?”)—lines the groove between the capping and connector domains. We have not
attempted to interpret the small, low-resolution feature at the upper right.

(C) Projection angle matching of VSV-L fragments. For VSV-L(1-1557), the negative-stain class averages suggest a conformationally variable connection be-
tween the connector domain (CD) and the polymerase (RdRp) and capping domain (Cap). We therefore selected only the “doughnut” part of the image and
aligned residues 35-1334.

(D) Full-length VSV-L without P. CD, MT, and CTD extend in variable orientation from the RdRp-Cap doughnut.

See also Figure S4 and Table S2.

VSV-L(1594-2109)

RdRp and the capping domain (Figure 2C). Polar and especially
basic residues project into the groove from both sides. As in all
polymerases of this family, the template runs across a “fingers
loop” (residues 523-545 in VSV-L) and twists sharply to present
the templating base to the catalytic center. A hydrophobic resi-
due in the loop (Phe541 in VSV-L) bears on the templating

base to enforce correct base pairing with the incoming nucleo-
side triphosphate. For initiation at the 3’ end of the viral RNA
(either for replication or for transcription of leader RNA), the
priming nucleoside triphosphate will rest against the loop from
the capping domain described above (Figure 3B). Any further
elongation, after forming the initial phosphodiester bond, will
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[ Dengue virus (1 I9k)]

Figure 6. Methyltransferase Domain

[Vaccinia virus (1 av6)]

(A) Structure of the methyltransferase: residues 1598-1892 in ribbon representation. The consensus fold of the S-adenosyl methionine-dependent methyl-
transferase subdomain is in orange. The N-terminal and C-terminal regions are in gray.

(B) Close-up of the active site. The SAM/SAH binding-site motif, GXGxG, is between p1 and «A. An SAH molecule (green) is derived from a superposition of its
complex with dengue virus NS5 MT (PDB: 119k). Residues that participate in the methyltransferase activity are in red.

(C) Comparison of VSV-L MT domain with other viral AdoMet-dependent methyltransferases. Structures of dengue virus NS5 MT (PDB: 119k; residues 7-267) and
vaccinia virus VP39 MT (PDB: 1av6; residues 3-297) are shown in the same orientation and color scheme as in (A).

See also Figure S5.

require this loop to move, and substantial elongation will almost
certainly require displacement of the entire capping domain
(Figure 4D). Indeed, we suggest that to accommodate tran-
scriptional elongation, the entire array of smaller domains may
reorganize.

Domain Reorganization

The configurations of VSV-L we have characterized in published
work by negative-stain electron microscopy illustrate the
potential for large-scale domain reorganization (Rahmeh et al.,
2010). Images of L alone show a core “doughnut,” which admits
stain at its center, three globular appendages, in apparently
variable positions and orientations with respect to each
other and to the core. Addition of P, or of the peptide, residues
35-106, that we have used to stabilize the complex studied
here, locks the appendages in place (Rahmeh et al., 2010,
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2012). Many of the projections of this locked structure resemble
a figure “6.” Class averages from these images agree extremely
well with projections of the structure we describe (Figure 5A),
as do class averages from images of four different L fragments
(Figure 5C). One of these (1-860) corresponds precisely to
the RdRp. Another, 1-1121, includes the RdRp and the largely
helical, N-terminal half of the capping domain. The tryptic
cleavage that initially generated that fragment is in a surface
loop. The last fragment previously imaged by negative staining
comprises the methyltransferase and C-terminal domains
(Figure 5C).

These comparisons show that we need to modify our initial
assignment of the three globular appendages to the capping
domain, the methyltransferase domain, and one unassigned
domain (Rahmeh et al., 2010). The capping domain is part
of the doughnut, and the appendages correspond to the



Initiation

CTD

CD

-

PRNT
(capping)

Figure 7. Model for Transcription of an RNP Complex by VSV-L

RdRp

Elongation

Left: initiation complex, with domains organized as in the structure described here. Viral genomic RNA is in blue, N protein is in beige, and domains of VSV-L are
in the colors used in Figure 2. Arrow shows direction of capping domain displacement required for the transition to an elongation complex. Right: elongation
requires both displacement of the capping domain (with likely accompanying reorganization of the CD, MT, and CTD) and displacement of two to three N subunits
from the template residues looped into the polymerase. The N subunits are shown linked as a continuous chain, as suggested by their structure (Green et al.,

2006). The emerging transcript is in red.

connector, methyltransferase, and C-terminal domains, respec-
tively (Figure 5D). The linkers between the capping domain and
the connector and between the connector and the methyltrans-
ferase clearly allow the latter two to move away from the rest
of the molecule; good definition in negative stain for the third
globular appendage suggests that in the unlocked structure,
the C-terminal arm also pulls away from the RdRp. Many of its
interactions, as it inserts back against the rest of the molecule
in the structure we have determined, are indeed with the
connector and methyltransferase domains.

Images of negatively stained complexes of L with inact,
dimeric P often show two, linked, figure-"6” L molecules, but
occasionally the P dimer does not recruit a second L and ap-
pears as a surface feature on the hook of the “6” (Figure 5A).
Comparison of the L structure with these projections is consis-
tent with our proposal that the interaction with P(35-106) that
stabilizes the “6” conformation is with the linker segments at
either end of the connector domain (Figure 5B).

DISCUSSION

Cryo-EM

High-resolution cryo-EM structure determination has until
recently relied on either high symmetry or large size—for
example, icosahedral viruses, which have both, or ribosomes,
which are large enough to produce reasonable contrast for get-
ting started with iterative determination of particle orientations
and centers (Grigorieff and Harrison, 2011). Developments in
cryo-EM during the past 5 years have now allowed us to deter-

mine the molecular structure of an asymmetric protein of total
mass <250 kDa. Dose fractionation (“movies”), enabled by use
of a direct electron detector, and refinement and maximum-like-
lihood classification procedures (Lyumkis et al., 2013), imple-
mented in FREALIGN, were crucial for achieving a resolution
adequate to build an atomic model.

Sequential Transcription

A de novo initiation event with ATP as initiating nucleotide ap-
pears to start synthesis of each mRNA transcript. We interpret
our structure as that of an early initiation state, representing an
L-P complex ready for loading onto the end of the template to
synthesize leader RNA. During the transition to elongation the
priming loop—contributed by the capping domain—must shift
out of the way to accommodate the product (Figure 7).
Inspection further suggests that after addition of only a few
more nucleotides, the capping domain as a whole must withdraw
from tight contact with the RdRp to allow further elongation, as
there do not appear to be clear exit channels for transcript and
template. Upon termination of a transcript, the polymerase
reinitiates on the next gene, but the efficiency of producing the
succeeding transcript is only ~70% (lverson and Rose, 1981).
The template entrance channel in VSV-L is at the interface
of the capping domain and the RdRp, and dissociation of the
template will be straightforward (when initiation or early elonga-
tion aborts) if that interface opens as suggested. Otherwise, the
entire template would have to thread through the active site and
emerge through another channel. Transcription of the down-
stream gene probably requires reestablishing the inter-domain
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contact seen in our structure, so that the priming loop can rein-
sert into the active site of the RdRp domain for subsequent de
novo initiation.

Coupling of Capping, Polymerase, and
Methyltransferase Activities

Displacement of the capping domain from the RdRp as elonga-
tion proceeds might have two consequences. First, the active
site of the PRNTase might reorganize (e.g., by “domain closure”)
into a better ordered configuration than the one we see in the
present structure. Second, because the capping domain faces
both the connector and methyltransferase domains, its displace-
ment might also induce rearrangement of the rest of the capping
machinery. A large-scale reorganization of this kind could ac-
count for some of the observed functional crosstalk between
the capping and polymerase activities.

A cap is added only when the length of a transcript has
reached 31 nucleotides (Tekes et al., 2011). In vitro, very short
(up to 5 nt) transcripts can be capped in trans by L, but this
process is inefficient and fails completely with longer transcripts
(Li et al., 2008; Ogino and Banerjee, 2007). Conversely, muta-
tions in L that disrupt cap addition cause premature termination
(Lietal., 2008, 2009). Mutations in the specific, cis-acting signals
at the 5’ end of the nascent strand, which are absent from the
leader RNA, also block cap addition and result in premature
termination of that transcript (Li et al., 2008; Ogino and Banerjee,
2007; Stillman and Whitt, 1997; Wang et al., 2007). The precision
of the 31-nt requirement suggests that the reorganized structure
that allows elongation is a well-defined state, rather than a
loosely ordered one.

Reorganization of the capping machinery can also account
for why mRNA cap methylation requires no additional chain
length (Tekes et al., 2011). In the configuration represented
by the structure we have determined, the catalytic sites for
capping and methylation are distant from each other. If the
smaller domains move away from the polymerase core, the cap-
ped, nascent RNA could probably release from the capping
enzyme and gain immediate access to the methylase domain.
Methylation in trans can occur under some circumstances, but
previous work has shown that transcripts stalled at a chain
length of 31 nt are fully methylated —presumably in cis—by the
stalled L (Tekes et al., 2011).

Inhibition of MRNA cap methylation by high concentrations of
S-adenosyl homocysteine can result in hyper-polyadenylation,
demonstrating a linkage between the methylase and RdRp
domains (Galloway and Wertz, 2008; Li et al., 2009; Rose
et al., 1977). The RdRp domain of L carries out polyadenylation
by iterative transcription of a gene-end U tract element. Some,
but not all, mutations that inhibit methylation result in the hy-
per-polyadenylation phenotype (Galloway and Wertz, 2008),
indicating that the crosstalk mechanism is not a readout of
cap modification but probably a consequence of interactions
between domains and between the protein and the nascent
transcript.

The cap methylase of VSV participates in both ribose 2’0 and
guanine-N7 methylation reactions. The preferred substrate for
all other ribose 2’0 methyltransferases is 7mGpppN and like
other proteins that recognize the mRNA cap structure—such
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as elF4E-2'0 methylases—those enzymes position the ribose
in the active site by =7 stacking interactions with the 7mG
RNA. The order of cap methylation in VSV is reversed. Methyl-
ation of 2’0 precedes and facilitates subsequent methylation
of guanine-N7. The absence of aromatic residues that could
participate in such interactions with a 7mGpppN RNA in the
VSV methyltransferase is consistent with this altered reaction
sequence.

The N Protein

The template for polymerase is not naked RNA, but a complex
in which the template RNA is encased within the nucleocapsid
protein sheath (Figure 7). In that complex the RNA bases are
not accessible to the RdRp of L, and the N protein must tran-
siently dissociate from the RNA for the RdRp to proceed (Green
etal., 2006). The structure of L allows us to estimate that 20-25 nt
of the template strand are threaded through the polymerase
domain. Accordingly, because each molecule of N covers 9 nt
of RNA, two or three molecules of N must be displaced from
the template strand at any one time. Adjacent N subunits in
the RNP interact stably, embracing each other through N- and
C-terminal extensions (Green et al., 2006). Thus, looping out of
template RNA need not entail dissociation of N from the RNP
coil. Indeed, if we consider the linked chain of N subunits as
the analog of a cRNA strand, then the displaced N is the counter-
part of a looped-out plus-sense strand during transcription by
the related polymerases of dsRNA viruses. This N-protein bridge
could account for the precision of the 31-nt length of nascent
transcript required for cap addition, perhaps by creating a
defined spacing between the RdRp and the popped-out capping
domain. The N protein influences L activity, as recognition of the
cis-acting signals in the genome requires it and as its presence
influences incorporation by L of substituted nucleotide analogs
(Morin and Whelan, 2014). It may also be necessary for capping.

The P Protein

P is an adaptor that engages both the N-RNA template complex
and the L protein. A small, globular domain at the C-terminal end
of P (residues 195-265) interacts with the N-RNA complex
(Green and Luo, 2009). This domain could in principle move
from one subunit to the next as polymerization proceeds. The
structure we describe here contains only part of the N-terminal
region of P. Although it is poorly ordered in our density map,
we suggest that P(35-106) may occupy some of the strong,
low resolution density features between the capping and
connector domains, locking in the linker segments at both
ends of the latter. Depending on the chain polarity and on the
flexibility of intervening segments, the C-terminal domain of
P could lie near the opening through which RNA enters the active
site of the RdRp and thus, through its interaction with N, be
part of the process that feeds template rapidly through the
polymerase channel.

Homologies and Comparisons

Homologous L proteins include those of rabies, Ebola, measles,
and respiratory syncytial viruses. Alignment of their sequences
(Data S1) shows the same overall arrangement of the various
domains, identifies the active site residues of the protein for



RdRp, PRNTase, and methyltransferase activities and suggests
domain boundaries for expressing various fragments of the
proteins from VSV and related viruses. All NNS RNA viruses
have a polymerase complex that comprises the enzymatic sub-
unit, L, and an equivalent of the VSV phosphoprotein, P. In some
cases, additional viral proteins (VP24 in the case of the filovi-
ruses, M2-1 in the case of respiratory syncytial virus) are neces-
sary for full polymerase processivity. The three-dimensional
interconnections among domains in the VSV polymerase sug-
gest that binding of these accessory proteins to any of the
smaller domains might influence large-scale rearrangements
and affect enzyme processivity.

Parts of L are structurally similar to the heterotrimeric polymer-
ase of influenza virus. The major differences are the capping
machineries, reflecting the distinction between influenza-virus
cap-shatching and NNS RNA-virus cap synthesis (Reich et al.,
2014). A structural feature of the influenza virus polymerase
that is also absent from the VSV polymerase is the long PB1
arm, which is probably required for a step of MRNA transcription
(Pflug et al., 2014; Reich et al., 2014).

The VSV-L structure allows preliminary interpretation of
mechanisms for inhibitors of its homologs. For measles virus,
resistance to a non-nucleoside analog inhibitor that blocks
gene expression maps to the polymerase domain (Krumm
et al.,, 2014). The positions of those mutations, mapped onto
VSV-L, flank the GDNQ motif at the RdRp catalytic site, suggest-
ing an allosteric mechanism, like that of the non-nucleoside
analog reverse transcriptase inhibitors for HIV. A compound
active against RSV targets the capping domain. The locations
of positions in VSV-L that correspond to sites of resistance mu-
tations in RSV-L are consistent with our proposal that a domain
closure accompanies activation of the capping activity after
polymerization has commenced (Liuzzi et al., 2005).

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

We expressed N-terminally 6xHis-tagged L protein from the Indiana strain
of VSV in Sf21 insect cells and purified the protein as described previously
(Li et al., 2008; Rahmeh et al., 2010). We expressed VSV-P(35-106) in
E. coli, purified the fragment, and combined it with VSV-L, as described in
the Supplemental Experimental Procedures.

Electron Microscopy

Images of VSV-L:P(35-106) were recorded with a Tecnai F20 electron micro-
scope (FEI) operated at 200 kV, using UCSF Image4 (courtesy Yuemin Li,
UCSF) to collect movies on a K2 Summit direct detector (Gatan), operated in
superresolution mode with dose fractionation. For each 6-s exposure, we
collected 30 frames of 200 ms each, with a total electron dose of 31 e/A2.
Full details are in the Supplemental Experimental Procedures.

Image Processing

From 1,272 movies, we picked 356,611 particles, carried out two-dimensional
classification with multivariate statistical analysis (MSA) in IMAGIC (van Heel
et al., 1996) and K-means classification in TIGRIS (http://tigris.sourceforge.
net), determined defocus with CTFFIND3 (Mindell and Grigorieff, 2003), calcu-
lated class averages with full contrast transfer function (CTF) correction, and
selected good class sums as references for particle alignment and subsequent
re-classification, iterating twice. An initial model, calculated with EMAN2
(e2initialmodel.py) (Tang et al., 2007) used 292 class averages. Refinement
and three-dimensional classification (three classes) in FREALIGN (Lyumkis

et al., 2013) of the 292 CTF-corrected class averages yielded one class with
~10 A resolution, which we used as an initial reference for refinement and
classification of the full particle stack.

We used FREALIGN to refine and 3D classify (three classes) the full-dose
particle stack, initially using 3x binned images (high resolution limit 10 A)
for 11 cycles of refinement and classification, followed by 160 cycles with
unbinned images. At this point, the resolution was ~7 A. We extracted the
best set of 155,443 particles and carried out 100 more cycles of refinement
and classification (three classes), extending the resolution to 6 A. We then ex-
tracted 74,940 particles with the best scores from the two best classes. A final
seven cycles of refinement of angles and shifts (using a 6 A reference model)
alternated between the full-dose (31 e/Az) stack and a low-dose (12 e/,&z)
stack. The final map (3.8 A resolution at FSC = 0.143 criterion) was calculated
from the low-dose images and a B-factor of -500 A2 was applied.

Model Building

We traced the polypeptide chain of the RdRp using the programs O (Jones
etal., 1991) and Coot (Emsley et al., 2010), with the reovirus and rotavirus poly-
merases (A3 and VP1, respectively) as connectivity guides, and traced the
methyltransferase domain, with the consensus fold of S-adenosylmethionine
(SAM)-dependent transferases as guide. For the capping domain, connector
domain, and C-terminal domain, with no known homologs, we built initial
models to fit the density, confirming and adjusting connectivity by reference
to the amino-acid sequence. Side-chain density was strong enough in second-
ary structure elements of each domain to establish sequence register. We
checked and corrected the entire structure with O. For the following segments
of the capping and connector domains, the density did not allow confident
assignment of backbone stereochemistry, and Ca positions will have larger
errors than in the rest of the model: 1159-1171; 1210-1226; 1308-1334;
1387-1395; 1512-1516; 1534-1541 (see Figure S6 and the Supplemental
Experimental Procedures for further details).

Structure Refinement

We refined the structure to improve the fit and to optimize stereochemistry, by
calculating structure factors from the final map (Figure S1) and using them as
input to standard crystallographic refinement procedures in PHENIX (Adams
et al., 2010). We flagged 4% of the structure factors for cross validation and
estimated figures of merit from the phase angle difference between the two
half-set reconstructions used to estimate FSC. We carried out several rounds
of individually restrained positional and B-factor refinement, including one
round of torsion-angle simulated annealing and real-space refinement.
We applied secondary structure restraints throughout the refinement and
Ramachandran restraints in the final round. We analyzed the final model
with MolProbity (Chen et al., 2010). Refinement and model statistics are in
Table S1, and a complete account of the refinement protocol is in the Supple-
mental Experimental Procedures.
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Figure S1. Preparation of Structure Factors for Refinement, Related to Figure 1

(A-D) Preparation of Fourier coefficients from the experimental reconstruction.

(A) A mask is generated around the model.

B) Density outside the mask is flattened, and density inside the mask is put on absolute scale.

C) Amplitudes and phases are calculated from the flattened map by Fourier transformation (FFT).

D) Scaling of amplitudes before refinement.

E) Estimation of figures of merits from phase-angle differences between the two half-set reconstructions.
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Figure S2. Secondary Structures, Related to Figure 2
Secondary structure diagram of VSV-L. Secondary structure elements along the VSV-L sequence are show as cylinders and arrows for o helices and B strands,

respectively. Domains are colored as in Figure 2, with the exception of the polymerase domain (RdRp), which is colored as in Figure 3, with the palm domainin red,
the fingers in blue and the thumb in green. Domain boundaries are indicated by the corresponding residue numbers.
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°

Contours from a 5 A resolution density map outline the flexible priming loop that projects from the capping domain. Heavy black lines show the Ca trace for the

Figure S3. Density around the Priming Loop, Related to Figure 4
loop and adjacent polypeptide chain.
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Figure S4. Correlation of Images of Negatively Stained VSV-L and Fragments with Projected Views of Model-Based Density, Related to

Figure 5

For each panel, an image from negative-stain electron microscopy (Rahmeh et al., 2012) was correlated with projections of a density map calculated from the
molecular model of VSV-L, using routines in SPIDER (Shaikh et al., 2008). The images for (A)—~(D) are those in the first, third, fifth and sixth panels, respectively, in
the top row of Figure 5A. For (A) and (C), which have a subsidiary maximum in the correlation plot, we show the projected views for both peaks. Angular co-

ordinates as defined in SPIDER.
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Figure S5. Secondary Structure Diagram of the Methyltransferase Domain, Related to Figure 6

(A) Diagram of the consensus fold for AdoMet-dependent methyl transferases; a helices, B strands, and termini are represented by circles, triangles and rect-
angles, respectively. The consensus AdoMet-dependent methyl transferase fold is in orange, other regions in gray (as in Figure 6). The positions of SAM/SAH and
the active site are in green and red, respectively.

(B) Diagram of VSV-L MTase, vaccinia virus VP39 MTase, and flavivirus NS5 MTase, in the same color scheme as (A). Insertions or deletions of a helices or B
strands are in blue.
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Figure S6. Correlation of Model and Density, Related to Experimental Procedures

Residue-by-residue correlation, with each panel corresponding to a domain, color coded as in Figure 2. Residue numbers above the plots for the capping and
connector domains indicate segments of poor density. The gap in the methyltrasferase plot corresponds to a short loop omitted from the model. Calculated with

CNS (Brunger, 2007).
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Supplemental Experimental Procedures

Protein expression and purification

For insect-cell expression of VSV-L, we used a baculovirus vector created with pFastBac Dual
(Invitrogen). We placed L under control of the polyhedrin promoter and green fluorescent
protein (GFP) under control of the P10 promoter (to visualize expression, which correlated well
with expression of L). Sf21 cells were infected, incubated at 27 °C for 60-72 hours, and
harvested as cell pellets by centrifugation followed by a phosphate buffered saline (PBS) wash.
Following lysis by sonication and removal of cell debris by centrifugation, the L protein was
purified by Ni-nitrilotriacetic acid (NTA) chromatography followed by Hi-Trap S and size-
exclusion chromatography, as described (Li et al., 2008; Rahmeh et al., 2010). VSV P, residues
35-106 with an N-terminal 6xHis-tag followed by a tobacco-etch virus (TEV) protease
recognition motif, was expressed in Rosetta BL21 (DE3) E. coli cells grown in LB medium
containing 100 ug/mL ampicillin. We induced protein expression with 0.8 mM IPTG at optical
density 0.8, and incubated overnight at 18 °C. The P(35-106) fragment was first purified by Ni-
NTA agarose chromatography followed by tag removal by incubating with TEV protease
overnight at 4 °C. A second round of Ni-NTA chromatography separated cleaved P(35-106)
from uncleaved product. The cleaved proteins were dialyzed against 25 mM Tris pH7.4, 250
mM NaCl, 1 mM DTT. Purified VSV-L and P(35-106) were incubated overnight at 4 °C in a
molar ratio of 1:4, and the complex was isolated on a Superdex 200 gel filtration column in 25
mM HEPES pH 7.4, 250 mM NaCl, 6 mM MgSQ,, 0.5 mM TCEP.

Electron microscopy

We screened the purified VSV-L:P complex for homogeneity by examining negatively-stained
samples on a Philips CM10 electron microscope (EM). For cryo preparation, we applied 3.5 uL
of protein at ~0.35 mg/mL to a Quantifoil R1.2/1.3 Cu grid (400 mesh) (Quantifoil, Germany)
that had been glow discharged at 40 mA for 30 s. Grids were plunge-frozen with an FEI
Vitrobot Mark |, with the following settings: 65 % humidity, offset -3, blot time 2 s, drain time 1 s.
Images were recorded with liquid-nitrogen cooling on a Tecnai F20 EM (FEI) with a CT3500
cryo-specimen holder (Gatan); the microscope was operated at 200 kV; the defocus range was
0.9-2.3 um. We used a semi-automated acquisition program, UCSFImage4 (courtesy Yueming
Li, UCSF) to record movies with a K2 Summit direct detector (Gatan), operated in super-
resolution mode with dose fractionation. The nominal magnification was 29,000x,
corresponding to a calibrated magnification of 40,410x on the sensor plane of the camera. The
beam intensity was set to 8 e/pixel/s. During a 6 s exposure, we collected 30 frames of 200 ms
each for a total electron dose of 31 e/A%. Frames were binned over 2x2 pixels, yielding a pixel
size of 1.24 A, and aligned to each other using the program dosefgpu_driftcorr (Li et al., 2013).

Image processing

From 1272 movies we picked a total of 356,611 particles by hand from 6x binned images. We
carried out two-dimensional classification with multivariate statistical analysis (MSA) in IMAGIC
(van Heel et al., 1996) and K-means classification in TIGRIS (http://tigris.sourceforge.net).
Image defocus was determined with CTFFIND3 (Mindell and Grigorieff, 2003), and class
averages were calculated with full contrast transfer function (CTF) correction. We selected
good class sums as references for particle alignment and subsequent re-classification, iterating
twice. An initial model, calculated with EMAN2 (e2initialmodel.py (Tang et al., 2007)) used 292
class averages. Refinement and three-dimensional classification (3 classes) in FREALIGN



(Lyumkis et al., 2013) of the 292 CTF-corrected class averages resulted in one class with about
10 A resolution, which we used as an initial reference for refinement and classification of the full
particle stack.

FREALIGN was also used for refinement and three-dimensional classification (3 classes) of the
full-dose particle stack, initially using 3x binned images (high resolution limit 10 A). After 11
cycles of refinement and classification, the computation switched to unbinned particles. After
160 cycles, the resolution had gradually extended to 7 A, at which point we extracted the best
set of 155,443 particles. A further 100 cycles of refinement and classification (3 classes)
extended the resolution to 6 A. We then extracted 74,940 particles with the best scores from
the two best classes. A final 7 cycles of refinement of angles and shifts (using a 6 A reference
model) alternated between the full-dose (31 e/A?) stack and a low-dose (12 e/A?) stack. The
final map (3.8 A resolution at FSC=0.143 criterion) was calculated from the low-dose images.

Model building

We traced the polypeptide chain of the RdRp, ring-like domain using the programs O (Jones et
al., 1991) and Coot (Emsley et al., 2010). We used Coot to place standard poly-alanine o-
helices into evident helical density features, which were usually well enough defined to
determine polarity, and connected the helices with poly-alanine loops, following strong density.
We used the reovirus and rotavirus polymerases (A3 and VP1, respectively) as connectivity
guides, having established correspondence of helical segments over a span of about 600 total
residues. We built the methyltransferase domain following a similar strategy, guided by the
consensus fold of S-adenosylmethionine (SAM)-dependent transferases. The capping domain,
connector domain, and C-terminal domain have no known homologs; we relied on the density to
build initial models, confirming and adjusting connectivity subsequently by reference to the
amino-acid sequence. Side-chain density was strong enough in secondary structure elements
of each domain to establish the sequence register. Secondary structure prediction
(www.predictprotein.org) helped locate principal helices and strands. We checked and
corrected the entire structure with O, using the lego-loop provision to rebuild many of inter-
secondary-structure loops and adjusting side-chain torsion angles to fit density. For the
following segments of the capping and connector domains, the density did not allow confident
assignment of backbone stereochemistry, and Ca positions will have larger errors than in the
rest of the model: 1159-1171; 1210-1226; 1308-1334; 1512-1518; 1534-1541 (see Fig. S6).

Structure refinement

We fine-sampled the density map on a grid with 0.72 A spacing and transferred the density (and
model) into a P1 cell (a=112 A, b=143 A, ¢=106 A, with 90° angles) using MAPROT (Stein et al.,
1994) from the CCP4 suite (Winn et al., 2011). We solvent flatted this map (Fig. S1) by
calculating a mask around the model with a probe radius of 3.9 A and setting grid points outside
the masked region to a constant value corresponding to 0.33 e/A*. Density within the mask was
the set to an absolute scale by determining a scale factor assuming 0.33 e/A® and 0.43 e/A®,
respectively for solvent and protein within the mask (determining the "dry" protein volume from
its mass and partial specific volume; the "hydration” calculated this way is about 0.3 w/w). Map
and mask operations were carried out with MAPMAN (Kleywegt and Jones, 1996).

We calculated amplitudes (FP) and phases (PHIO) from the solvent-flattened map. Although
we did not use amplitude standard deviations (SIGFP) in any of our calculations, we supplied
dummy values (SIGFP = 0.1 FP) to satisfy input requirements of certain programs. We flagged
4 % of the structure factors as a cross validation set for calculating Ry... We estimated figures



of merit (FOM) from the phase angle difference between the two half-set reconstructions and
calculated Hendrickson-Lattman coefficients from PHIO and FOM.

We refined the structure against amplitudes and phases, including data to a minimum Bragg
spacing of 3.8 A. We applied procedures in PHENIX (Adams et al., 2010), using a protocol with
several rounds of individually restrained positional and B-factor refinement, including one round
of torsion-angle simulated annealing and real-space refinement. We determined appropriate
weights for the experimental terms in the target function by monitoring Ry.ee, model geometry,
and B-factor statistics. We applied secondary structure restraints throughout the refinement and
Ramachandran restraints in the final round. We analyzed the final model with MolProbity (Chen
et al., 2010). Refinement and model statistics are in Table S1.

Figure preparation
Figures were prepared with PyMol (Schrodinger, LLC) and POV-Ray (www.povray.org).

Sequences were aligned with MAFFT (Katoh and Standley, 2013) and displayed with ESPript
(Robert and Gouet, 2014).



Table S1. Refinement and Model Statistics, Related to Figure 1.

Refinement
Space group P1
Cell dimensions [
a, b, c(A) 112.0, 143.0, 106.0
a,B,y(© 90.0, 90.0, 90.0
Asymmetric unit composition
Number of residues 2004
Non-hydrogen atoms 16077
Resolution (A) 143.1 — 3.80 (3.87 — 3.80)
Number of reflections (work / free) 62328 (2490) / 3570 (140)
Ruork / Riree (%0) 26.2/29.6 (85.6/78.3)
CCuork ! CCiree 0.88/0.86 (0.18/0.05)
Phase angle difference (°) 33.2(73.0)
Wilson B factor (A% 60.2
Model statistics
B factors
Average <B> (A?) 112.4
<B-B> (A% 25.3
R.m.s deviations
Bond lengths (A) 0.009
Bond angles (°) 1.547
Ramachandran angles 84.1%/13.9% /2.0 % (favored / allowed / outliers)
MolProbity clash score ° 13.05, 97" percentile (N = 37, 3.00 — 999.00 A)
MolProbity score ° 2.79, 93" percentile (N = 342, 3.25 — 4.20 A)

®Highest resolution shell is shown in parenthesis.

bcc= Z(Fmap F*modet) / {Z(|Fmap|*2) Z(|Fmogell*2)}(1/2), correlation between experimental and model
structure factors for working and test set, respectively.

c100™ percentile is the best among structures of comparable resolution; o™ percentile is the worst.



Table S2. Matching Statistics of VSV-L with Class Averages from Negative Stain
Data ® Related to Figures 5 and S4.

Cross correlation coefficient Z score” 3D-plot

Max Mean Min Sigma
VSV-L : P(41-106)
Class 1 0.88 0.78 0.65 0.05 1.89 Figure S4A
Class 2 1] 0.93 0.89 0.85 0.02 2.32
Class 3 0.89 0.80 0.67 0.06 1.67 Figure S4B
Class 4 0.88 0.83 0.78 0.02 2.50
VSV-L: P
Class 1 0.78 0.70 0.59 0.04 1.81 Figure S4C
Class 2 0.75 0.61 0.47 0.07 1.88 Figure S4D
VSV-L(35-860)
Class 1 0.87 0.80 0.73 0.03 2.59
Class 2 0.92 0.84 0.74 0.04 1.84
VSV-L(35-1114)
Class 1 0.90 0.86 0.82 0.02 2.59
Class 2 0.90 0.86 0.80 0.02 2.05
VSV-L(35-1557)
Class 1 0.73 0.67 0.60 0.02 2.46
Class 2 0.73 0.64 0.57 0.04 2.37
VSV-L(1598-2109)
Class 1 0.83 0.72 0.58 0.07 1.42
Class 2 0.72 0.62 0.52 0.05 1.95

% Cross correlation coefficients were calculated for all the class averages from negative stain data shown
in Figure 5, pairing each to 799 reference images (all possible orientations sampled at a 5° angular grid)
of 2D projections from the model 3D volume. Then the mean, maximum, minimum and standard deviation
were calculated.

®Z score is defined as number of standard deviations (Sigma) of Max above Mean.
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