
few particles. Removing them impairs the angular distribution, leading to aniso-
tropic map resolution in 3D. Thus, 2D classification is best used to get rid of obvious
non-protein particles, while leaving further cleaning to 3D classification.

3D classification, coupled with recent progress in ab initio 3D map generation
(Punjani et al 2017), refines several (up to 10–20, depending on computational
resources) 3D map classes by also adjusting the out-of-plane rotation of particles.
This can be more useful for improving the results of CNN-based selectors, where
most of the bad particles are dissociated-protein subunits rather than featureless
contaminants (figure 4.5(b)). Such particles often average well in 3D and can be
removed more reliably than in 2D. Furthermore, 3D classification initialized with
low-resolution copies of the protein of interest can help remove particles belonging
to the correct protein, but lacking high-resolution features, e.g. due to denaturation.

4.3 CTF estimation and image correction (restoration)
Benjamin A Himes and Nikolaus Grigorieff
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA

Images recorded in the electron microscope have contrast that is affected by lens
aberrations and imaging defocus (see section 1.2). These parameters may be manip-
ulated by the microscope operator to enhance the contrast, in turn enabling 3D
reconstruction of the object being imaged. Fortunately, lens aberrations and defocus
do not lead to significant information loss thanks to the high degree of coherence of the
electron beam. The relationship between lens aberrations and the contrast in the image
is defined by the contrast transfer function (CTF). To calculate a 3D reconstruction,
CTF effects will have to be accounted for. The more accurately the CTF is known, the
higher the potential resolution of the reconstruction.

The CTF was introduced in section 1.2 as a function producing sinusoidal
modulations of the elastic F s s( , )x y structure factors and the amplitude damping
factor μ{ }F . The general assumptions underlying the theory presented in section 1.2
and here are as follows:

i. The scattering is sufficiently weak that only interactions with the un-
scattered, incident beam must be considered, and further interactions of
the specimen with already-scattered electrons can be ignored. This is known
as kinematic scattering and leads to linear image formation.

ii. The Fourier transform of the specimen potential is assumed to have
Hermitian (Friedel) symmetry. This is only strictly true for a pure phase
object, and it is approximately correct when the amplitude contrast is small.

iii. A small amount of amplitude contrast, assumed to be 7%–10% for frozen-
hydrated specimens, which only arises when nonlinear terms are considered,
may be incorporated ad hoc in order to better match experimental data.

In the following description we will also ignore the frequency dependence of the
amplitude term, as well as the variable amplitude losses with atom type. Given these
simplifications, it is common practice to further assert that μ{ }F is proportional to
F s s( , )x y so that the amplitude-contrast ratio ‘w’ can be written as
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μ = − Fs s w w s s{ }( , ) / 1 ( , ). (4.1)x y x y
2F

The approximation that the amplitude contrast is a constant does not limit the
resolution in most cryo-EM experiments since amplitude contrast constitutes only a
small fraction of the total contrast. Additionally, any errors due to this assumption can
be partially compensated by adjusting the phase aberration function, γ(s), which we
discuss in the following section. Given equation (4.1) we write for the CTF (Wade 1992)

γ γ= − − −s w s w sCTF( ) 1 sin ( ) cos ( ). (4.2)2

The CTF is the Fourier transform of the objective lens point spread function, which
causes delocalization of the signal in real space. This can be observed in figure 4.6

Figure 4.6. (A) Image of Albert Einstein (from Wikimedia Commons) with pixel size scaled such that his head is
roughly the diameter of a ribosome. A particularly bright pixel is highlighted in the dashed orange box. Scale
bar = 50 Å. (B) Image after application of a CTF that corresponds to a defocus of 1 μm. Information in the bright
pixel is now delocalized by the point spread function, which displays alternating zones of positive and negative
contrast, i.e. positive and negative deviations from the average intensity value. (C) Image at Scherzer defocus
(∼0.07 μm), showing reduced low-frequency contrast. (D) One-dimensional plot of the CTF at 1 μm underfocus.
This image of Einstein has been included for illustrative purposes only; it has not been included for any
promotional purposes, or to indicate any link between this publication and the Einstein estate.
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where the strong point feature in the panel (A) call-out box is shown, in panel (B), to be
spread over many angstroms after application of the CTF. In addition to causing
delocalization, the CTF also acts as a filter defined by zones of contrast reversal
oscillating between −1 and 1. This means that some spatial frequencies in an image,
usually measured in Å−1, appear with unaltered contrast, others with inverted contrast,
and some not at all when they are near a zero crossing of the CTF (figure 4.6(D)).

Furthermore, experimentally observed contrast transfer is characterized by a
slowly varying attenuation toward higher spatial frequencies (larger values of s),
commonly referred to as an envelope (sections 1.2 and 4.7). The attenuation can be
the result of partial beam coherence as well as other systematic errors that will be
discussed in section 4.8.

For the purpose of this section, we will only consider the combined effects of
spherical aberration and defocus, including the presence of objective lens astigma-
tism, which leads to a dependence of the defocus on the two-dimensional (2D)
Fourier coordinates sx and sy. We can rewrite γ(s) as

γ π λ λ= −
Δ

s s
C

s
Z s s

s( , ) 2
4

( , )

2
, (4.3)x y

s x y3 4 2
⎡
⎣⎢

⎤
⎦⎥

where the astigmatism is parameterized according to the notion use in figure 4.7 and
folded into the regular defocus term by

α αΔ = Δ + Δ + ΔΔ −Z s s Z Z Z( , )
1
2

[ cos (2[ ])] (4.4)yx s1 2 ast

with α = − s stan /s y x
1 . In equations (4.3) and (4.4) ΔZ is the defocus at Fourier

coordinates sx and sy, ΔZ1 and ΔZ2 are the maximum and minimum defocus values
generated by the astigmatism, respectively, ΔΔ = Δ − ΔZ Z Z1 2, and λ the wave-
length of the electrons. The spherical aberration constant1 Cs is determined by the

Figure 4.7. (A) 2D Thon ring pattern showing the sinusoidal oscillations that characterize the CTF, in this case
with residual astigmatism resulting in an elliptical distortion. (B) Schematic showing the parameters describing
the distortion due to astigmatism (equation (4.4)).

1Cs can vary slightly with a change in the objective lens current, which changes the magnetic field inside the
lens, however, this is negligible in practice.
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design of the objective lens and, hence, the user can adjust the CTF primarily
through changing the defocus and the wavelength. Most cryo-EM images are
recorded at underfocus, which is achieved by weakening the objective lens, i.e.
reducing its current. The imaged plane at focus under these conditions lies further
from the objective lens and closer to the electron source in the microscope.

In equation (4.2) we see that the amplitude contrast term, −wcosγ, is always negative
for low spatial frequencies, which means imaging with overfocus would create an
additional zone of weak contrast at very low spatial frequency ( λ= Δs Z C2 / s

2 ). To
avoid this, cryo-EM data are commonly collected with an underfocused objective lens.
By examining equation (4.3) we also see that underfocus can serve to partially cancel
the effects of spherical aberration. A special focal condition that maximizes the width
of the band of spatial frequencies prior to the first zero crossing of the CTF is called the
Scherzer defocus (Scherzer 1949), λΔ = −Z Cs . The effect of using Scherzer defocus
for a weak phase object is illustrated in figure 4.6(C). While useful in material science
applications, this imaging condition weakens low spatial frequency features that are
important for particle alignment in cryo-EM. On the other hand, larger defocus
enhances low spatial-frequency contrast and therefore helps in recognizing and aligning
particles in an image. However, it also has the undesirable effect of reducing the spatial
frequency of the first CTF zero, increasing the number of phase reversals in a given
frequency interval, and leading to increased delocalization of the signal in real space
due to the point spread function (see above). The latter is discussed further in section
4.3.2. In a single-particle experiment, it is therefore necessary to find a defocus, usually
between 1 and 3 μm at 300 kV, that generates sufficient contrast while limiting
detrimental effects.

4.3.1 CTF estimation

A full treatment of the effects of the CTF usually proceeds in two stages: CTF
estimation and CTF correction. CTF estimation often makes use of the sinusoidal
modulations predicted by equation (4.2), which were experimentally verified by
Thon (1966, 1971) following theoretical work by Hanszen et al (Hanszen 1967,
Hanszen and Morgenstern 1965). The sinusoidal modulations, sometimes referred
to as Thon rings, form a characteristic pattern of rings or ellipses observed in
computer-generated power spectra. They can be used to determine the defocus and
astigmatism to within about 100 Å (Mindell and Grigorieff 2003), permitting 3D
reconstruction at about 2 Å resolution (Jensen 2001). Once a reconstruction has
been determined, the defocus parameters can be further refined and other, less
significant errors can be measured and corrected (section 4.8). A full correction is
therefore an iterative process that starts with an initial estimation of defocus and
astigmatism from the electron micrographs themselves, without reference to a 3D
reconstruction.

Figure 4.8(A) shows a typical power spectrum calculated from a cryo-EM image,
highlighting Thon rings. These rings appear on a smoothly varying background
(seen much more easily in a radial average of the 2D power spectrum), which
decreases toward high spatial frequencies and which prevents the oscillations from
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reaching zero. This background is primarily due to the noise associated with the
detection of a given number of electrons (shot and detector noise), as well as
contributions made by the usually ignored nonlinear terms to the image intensity,
including the inelastically scattered electrons. After subtraction of the background
term, which may be accomplished by a variety of approaches (Ludtke et al 1999,
Penczek et al 2014, Sander et al 2003, Zhang 2016b, Rohou and Grigorieff 2015),
the calculated CTF is compared to the observed power spectrum A s s( , )d x y between
spatial frequencies smin and smax (figure 4.8(B)) by computing their cross correlation,
given as

∑

∑ ∑
=

· ∣ ∣

· ∣ ∣
<∣ ∣⩽

<∣ ∣⩽ <∣ ∣⩽

A s s s s

A s s s s
CC

( , ) CTF( , )

( , ) CTF( , )
. (4.5)

s

s s s

y y

s s s

y

s s

y

d x x

d x x
2 2

min max

min max min max

A naïve approach to finding the best fit between the data and the model would
involve an exhaustive search of all three parameters shown in figure 4.7(B). Since

Figure 4.8. (A) Power spectrum calculated from an image of beta galactosidase (Bartesaghi et al 2015) after
averaging the aligned movie frames (38 frames per move at 1.2 electrons/Å2/frame). (B) Power spectrum after
background subtraction and fitted with a calculated CTF (inset) (Rohou and Grigorieff 2015). (C) Power
spectrum calculated as a sum of three-frame averages. The Thon rings are more clearly visible than in (A),
particularly around the water ring at 3.7 Å resolution, marked by the black arrow. (D) 1D plot generated by
CTFFIND4 (Rohou and Grigorieff 2015), showing the amplitude spectrum (green), the model fitted to the
data (yellow), and a correlation-based score function (blue), which can be used to assess the spatial-frequency
range that was fitted successfully (quality of fit > 0.5).
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this approach is computationally expensive, a ‘divide-and-conquer’ approach is
adopted in many algorithms. For example, in the presence of moderate astigmatism
an average defocus can be determined first by an exhaustive search of one
parameter, followed by a local search to refine all three parameters including
astigmatism (Zhang 2016b, Rohou and Grigorieff 2015). Some algorithms also
estimate the astigmatism angle, αast, (equation (4.4)) by mirroring the power
spectrum along the x- or y-axis and determining the rotation angle that aligns the
mirrored version with the original in a one-parameter search.

To obtain an accurate fit and limit the effect of systematic errors and noise, the low
spatial-frequency limit smin is usually set to a value between 1/40 and 1/50 Å−1. This will
exclude frequencies at which the contrast in cryo-EM images is affected by residual
inelastically scattered electrons, a term that is not modeled correctly by equation (4.2).
The optimal value for the high-frequency limit smax depends on the strength of the Thon
rings and background noise and it is usually set between 1/3 and 1/5 Å−1.

Apart from the envelopes that occur at higher resolution (section 1.2), the amplitude
of the Thon rings is also affected by a limited depth of field (DeRosier 2000) in the case
of thicker samples (section 4.8). Furthermore, Thon rings are attenuated by sample
drift occurring during image acquisition, which leads to blurring in the image and loss
of high-resolution signal in the direction of the drift. Thick samples (1000 Å and more)
will also reduce the visibility of Thon rings due to increased background and loss of
electrons to inelastic scattering. For this reason, the strength and visibility of Thon
rings often serves as a proxy to the overall quality of the data, an indicator that the data
have the potential to yield a high-resolution reconstruction. While this criterion is often
useful, weaker Thon rings may also simply be the result of fewer particles in the field of
view, thus limiting the overall signal in the image that could otherwise be suitable for
high-resolution reconstruction. The strength and visibility of the Thon rings can be
quantified by cross-correlation with a calculated CTF (equation (4.5), figure 4.8(C))
(Rohou and Grigorieff 2015).

When micrographs are recorded as movies (section 3.5), blurring due to sample
drift can be reduced by aligning the movie frames to each other to restore high-
resolution contrast. With perfectly aligned frames, the contrast in the image, as well
as the strength of the Thon rings, is maximized. However, movie alignment comes
with its own errors and limitations, and local movement cannot always be fully
corrected. It is therefore sometimes advantageous to calculate the power spectrum
directly from the movie frames, or from sub-averages of multiple frames. In this
case, the Thon ring pattern is the average of all calculated power spectra and,
because it is calculated from multiple shorter time intervals, it is less affected by
sample drift. For Thon rings generated by vitrified ice, an optimal interval for
averaging is given by the time it takes to accumulate about 3–4 electrons/Å2 (at 300 keV,
figure 4.8(D)). At that point, the water molecules will have moved on average by
about 1.5–2 Å, which is still small enough to maximize the intensity of the Thon
rings at a resolution of about 3–4 Å (McMullan et al 2015).

Finally, most samples are tilted to some degree with respect to the optical axis of
the microscope. This is done deliberately in a tomographic series, or it may be done
to overcome limitations of preferred particle orientation (section 4.6, Tan et al 2017).
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Even when sample tilt is not introduced intentionally, it is often present as a result of
residual stage tilt or local sample undulations (Booy and Pawley 1993, Vonck 2000).
Sample tilt leads to a variable defocus across the recorded image; to obtain a more
accurate defocus estimate for each location, sample tilt axis and angle have to be
determined in addition to the average defocus. This can be done, for example, by
modeling the defocus variation across the image along a tilted plane (Mindell and
Grigorieff 2003, Su 2019). More complex sample geometries may including tilt axis
direction, tilt angle and other geometry descriptors as search parameters to achieve
the best fit between locally calculated power spectra and corresponding CTF patterns
(Tegunov and Cramer 2019).

The need for sample-tilt estimation depends on the degree of tilt. Defocus
variation in images of nominally untilted samples can also be addressed on a per-
particle basis by performing a local refinement of the defocus parameters against
locally calculated power spectra (Zhang 2016b). When a 3D reference reconstruction
is available, per-particle defocus values can be estimated by maximizing the
correlation (or another similarity measure) between a particle image and a CTF-
treated matching projection (Grigorieff 2007, Punjani et al 2017, Grant et al 2018,
Zivanov et al 2018). This approach can also accommodate different particle heights
in the ice layer of the sample (Noble et al 2018a). In this case, the signal available for
per-particle CTF estimation is generated only by one particle and is therefore noisier
than the signal in a Thon ring pattern calculated from a local patch or the entire
micrograph. This increased level of noise imposes a lower molecular-mass limit on
the particle of about 300–400 kDa. It also requires images with strong signal at
spatial frequencies of at least 1/3–1/4 Å−1 and a good reference reconstruction with
corresponding resolution, below which errors in the estimation may be larger than
the potential gain in defocus accuracy from per-particle CTF estimation.

4.3.2 Image correction

After determining the defocus and astigmatism values for each particle image, as
well as particle orientations (Euler angles) and 2D coordinates within each image, a
3D reconstruction can be calculated (section 4.4). As discussed above, one of the
features of the CTF affecting cryo-EM images are zones of weak or zero contrast. It
is therefore impossible to fully restore the signal spectrum from a single image by
simply dividing by the CTF. A partial correction that will not restore image
amplitudes consists of restoring the phases of the spatial frequencies that were
inverted by the CTF (phase flipping, van Heel et al 2000). To calculate a fully
corrected reconstruction of the object, data from many images have to be merged
(section 4.4), i.e. CTF correction and 3D restoration are accomplished in a single
step. CTF correction can be illustrated by the simpler case of calculating 2D class
averages (section 2.2), which lacks the 3D reconstruction step. A 2D class average is
generated from a set of aligned cryo-EM images ∈x i M:i corresponding to the
same particle view. It is convenient to refer to the Fourier transform of these images
X s s( , )i x y , which may be defined by the structure factor F s s( , )x y , corrupted by wave
aberrations defined by the CTF and two additional noise terms (section 1.2):
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= · + +F N NX s s s s s s s s s s( , ) CTF( , ) [ ( , ) ( , )] ( , ). (4.6)i x y i x y x y s x y i x y

The noise terms N s s( , )i x y represent different realizations of the ‘shot’ and detector
noise in the particle images. In equation (4.6) ‘structural’ noise N s s( , )s x y added by
the embedding medium (ice), which is also affected by the CTF can also be
considered but is often ignored. For images represented by equation (4.6) with

=N 0s , Saxton (1978) derived a Wiener filter Ω s s( , )x y for TEM; optimal in the sense
that it minimizes the sum of squared differences between the CTF-corrected average,

ΩA s s( , )x y , and the underlying structure factor, F s s( , )x y . Defining the ratio of particle
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1/SNRF(sx, sy) was approximated by a constant in many early cryo-EM software
packages, however, more rigorous statistical approaches (Scheres 2012a, Sindelar
and Grigorieff 2012) now determine it as a function of the data. It can be seen that
this term’s magnitude relative to the sum of squared CTF values (the second term in
the denominator of equation (4.9)) is smaller the higher the ratio of structure factor
to noise (equation (4.7)) and the larger the dataset (large M). In the limit of very
large datasets, Ω =s s( , ) 1x y , and the CTF-corrected average will simply be a sum of
CTF-multiplied images, divided by the sum of squared CTF values. If the CTF-
corrected average, ΩA s s( , )x y , is estimated using a maximum likelihood approach,
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the terms in the sums in equation (4.9) are replaced by their probability-weighted
estimates (Scheres 2012a, section 4.4).

Another result of the CTF-related degradation of images is the displacement
(delocalization) of signal in real space, away from its location in a fully corrected
image (see above). The amount of displacement, visible as Fresnel fringes in the
images, is dependent on the spatial frequency of the signal, as well as the amount of
image defocus. To fully recover the signal in a CTF-corrected average at a given
resolution, d, it is therefore important that the window size used to extract particles
from the micrographs is sufficiently large to include the fringes corresponding to the
resolution d, as well as avoiding aliasing of the CTF oscillations in the Fourier
transform (Penczek et al 2014). As a rule of thumb, the displacement of signal from
the edge of a particle is given by the product of scattering angle, λ d/ , and the defocus
ΔZ (figure 4.9). To include these fringes for a particle with diameter DP, the size of
the window, DW , should be at least

λ= + ΔD D
d

Z2 . (4.10)W P

This means, for example, that 2 Å signal in an image of a particle of 200 Å diameter,
recorded at 1 μm defocus and 300 kV requires a particle box size of about 400 Å.

4.3.3 Magnification distortion

An additional source of image distortion that can limit the attainable resolution of a
3D reconstruction, and which therefore requires correction, is anisotropy in the image
magnification (Grant and Grigorieff 2015, Zhao et al 2015). This ‘magnification

Figure 4.9. (A) Diagram explaining the displacement of signal from the edge of a particle. Phase contrast from
the edge of the particle and corresponding to a spatial frequency d1/ , where d is the resolution, will be displaced
by Δr = ΔZΘ, where ΔZ is the defocus and the scattering angle Θ is given by λΘ ≈ d/ , with λ the wavelength of
the electrons (λ ≈ 1/50 Å at 300 keV). (B) Image of the edge of an InGaAs semiconductor crystal showing 3 Å
lattice fringes extending beyond the crystal edge due to an image defocus of about 1 μm.
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distortion’, which usually affects only certain magnifications, is due to sub-optimal
presets applied to the stigmators in the projector system of the microscope that require
a service engineer and/or software update to rectify. The distortion leads to particles
being stretched in one direction and compressed in the orthogonal direction compared
to its average dimensions (figure 4.10(A)). The effect of magnification distortion on the
final reconstruction depends upon the amount of stretching and compression, which
can be up to a few percent, as well as upon the average particle diameter. For example,
for a virus capsid with a 700 Å diameter, a 2% distortion (difference between most
stretched and most compressed dimension) would lead to a displacement of the particle
boundary from the particle center of 2% × 350 Å = 7 Å, or about 3.5 Å from the

Figure 4.10. (A) Similar to axial astigmatism, magnification distortion can be parameterized by an ellipse; in
this case an angle (alpha) and two scale factors along the major and minor axes. (B) Sum of the amplitude
spectra from ten images of polycrystalline gold. Rings corresponding to spatial frequencies of at 2.4 and 2.0 Å
are visible. (C) Top-half of the image shown in A, with the gold rings masked out and a path tracing the ∼2.4 Å
gold ring. Bottom-half of the rotational average of the image shown in (A), also with the gold rings masked out
and a path tracing the ∼2.4 Å gold ring. The dashed white box illustrates the area, which is shown zoomed in
and overlaid in panel (C). (D) Overlay of the section of the paths traced in (B) surrounded by the dashed white
box. A mismatch indicating a magnification distortion of about 2% is visible. Reproduced with permission
from Grant and Grigorieff (2015). Copyright 2015 Elsevier.
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average boundary position. An average 3.5 Å shift would eliminate signal beyond 7 Å
resolution at the particle periphery in 2D class averages and 3D reconstructions, and
severely attenuate signal at lower resolution.

The amount and direction of magnification distortion can be measured directly from
the distortions observed in the particles (Yu et al 2016, Zivanov et al 2018), or from an
image of a polycrystalline gold sample (figure 4.10(A)) (Grant and Grigorieff 2015).
Since the distortion present in a given instrument does not change significantly over
several months, it can be measured every few months, and images can be computa-
tionally corrected using the measured parameters by interpolation and resampling of
the micrographs before proceeding with other steps in the image processing pipeline
(Grant and Grigorieff 2015). The observed magnification distortion in instruments
installed since the problem was recognized in 2015 has become less severe and
correction may therefore not be required on newer instruments.

4.3.4 Concluding remarks

The steady improvement of algorithms has led to streamlined image processing of
cryo-EM data, and many of the correction steps discussed here are now routine and
fully automated. It also means that the demands on microscope hardware and
operator skills in aligning instruments have been lowered. Most image distortions
and misalignments can now be detected and corrected for by modern processing
packages. Nevertheless, further improvement may come from making corrections
for more complicated imaging errors, such as residual off-axis coma (Glaeser et al
2011) and for a small, defocus-dependent change in magnification when the electron
beam is not completely parallel. Another source of error comes from inelastic
scattering, which is currently not included in the correction of images, except for the
ad hoc removal of background in power spectra (see section 4.3.1 above). The
contribution of inelastically scattered electrons can be further reduced when an
energy-filter is available. Additional correctors in the electron microscope, such as
a chromatic aberration corrector, may convert some of the inelastically scattered
electrons into electrons that contribute useful phase contrast to the image. This may
then make additional algorithms necessary to accommodate this additional contrast.

4.4 Merging data from structurally homogeneous subsets
Basil J Greber
California Institute of Quantitative Biosciences (QB3), University of California,
Berkeley, CA 94720, USA
Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA
Present address: Institute of Cancer Research, Division of Structural Biology, Chester
Beatty Laboratories, London SW3 6JB, UK

In this subsection, we will cover different aspects relevant to the three-dimensional
(3D) reconstruction of a single cryo-EM map, preferably at high resolution, from a
structurally homogeneous set of particle images. The methods employed to obtain
homogeneous particle subsets from unclassified, heterogeneous cryo-EM datasets
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