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Characterizing the conformational ensemble of biomolecular systems is key to under-
stand their functions. Cryoelectron microscopy (cryo-EM) captures two-dimensional
snapshots of biomolecular ensembles, giving in principle access to thermodynamics.
However, these images are very noisy and show projections of the molecule in unknown
orientations, making it very difficult to identify the biomolecule’s conformation
in each individual image. Here, we introduce cryo-EM simulation-based inference
(cryoSBI) to infer the conformations of biomolecules and the uncertainties associated
with the inference from individual cryo-EM images. CryoSBI builds on simulation-
based inference, a merger of physics-based simulations and probabilistic deep learning,
allowing us to use Bayesian inference even when likelihoods are too expensive to
calculate. We begin with an ensemble of conformations, templates from experiments,
and molecular modeling, serving as structural hypotheses. We train a neural network
approximating the Bayesian posterior using simulated images from these templates
and then use it to accurately infer the conformation of the biomolecule from each
experimental image. Training is only done once on simulations, and after that, it
takes just a few milliseconds to make inference on an image, making cryoSBI suitable
for arbitrarily large datasets and direct analysis on micrographs. CryoSBI eliminates
the need to estimate particle pose and imaging parameters, significantly enhancing
the computational speed compared to explicit likelihood methods. Importantly, we
obtain interpretable machine learning models by integrating physics-based approaches
with deep neural networks, ensuring that our results are transparent and reliable.
We illustrate and benchmark cryoSBI on synthetic data and showcase its promise on
experimental single-particle cryo-EM data.

cryo-EM | biophysics | Bayesian inference | modeling | template matching

Biomolecules continuously reorganize between alternative conformations to perform
essential functions in the cell. Understanding the mechanisms of these biological
functions requires knowing the structure of the various conformations and the dynamics
of how one conformation reorganizes into another. Characterizing in experiments the
collection of all conformations—the conformational ensemble—is challenging. Most
techniques provide only ensemble averages, while single-molecule methods usually
lack the structural resolution to characterize different conformations precisely. While
molecular simulations provide trajectories at high temporal and spatial resolution,
sampling and accuracy issues limit their ability to explore conformational ensembles.
Integrative methods in structural biology combine experimental and computational
techniques with the promise to describe a complete picture of biomolecular structural
dynamics (1).

Cryoelectron microscopy (cryo-EM) is an experimental technique that captures
different conformations of a biomolecule at the single-molecule level. In cryo-EM, a
transmission electron microscope records two-dimensional projected images of a thin
sample containing many identical copies of the same molecule (micrographs). Particle-
picking software then identifies the two-dimensional images displaying a single copy of
the molecule (particle) (2). The sample is prepared by flash-freezing an aqueous solution
of randomly oriented biomolecules. Since freezing is very fast (3–5), the biomolecules
are trapped in different conformations. In other words, cryo-EM provides snapshots
(samples) from the entire conformational probability distribution.

In practice, reconstructing sparsely populated conformations with cryo-EM remains
an outstanding challenge. The frozen sample is imaged with a limited number of

Significance

Biomolecules reorganize between
alternative conformations to
perform their functions. Mapping
out all their different
conformations is critical to
understanding how they work.
Cryoelectron microscopy
provides 2-d snapshots of copies
of a biomolecule, each in a
possible conformation. If we
could assign each image to a
specific conformation, we could
identify and count important
conformations. However,
assigning conformations to
images is challenging because the
images are noisy and show
projections along unknown
orientations. We developed
a computational method
combining Bayesian inference
and machine learning to assign a
biomolecule’s conformation in
individual cryo-EM images. Our
method provides not only a most
probable assignment but also an
associated statistical confidence.
It is very fast, enabling the
analysis of massively large
datasets.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2025 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
covino@fias.uni-frankfurt.de or pcossio@flatironinstitu
te.org.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2420158122/-/DCSupplemental.

Published June 4, 2025.

PNAS 2025 Vol. 122 No. 23 e2420158122 https://doi.org/10.1073/pnas.2420158122 1 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
M

A
SS

A
C

H
U

SE
T

T
S 

W
O

R
C

E
ST

E
R

, M
E

D
IC

A
L

 S
C

H
O

O
L

 L
IB

R
A

R
Y

" 
on

 J
un

e 
4,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
14

6.
18

9.
16

4.
12

.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2420158122&domain=pdf&date_stamp=2025-05-29
https://orcid.org/0000-0003-1683-503X
https://orcid.org/0000-0002-9830-7929
https://orcid.org/0000-0002-1506-909X
https://orcid.org/0000-0003-0884-0402
https://orcid.org/0000-0002-5404-9948
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:covino@fias.uni-frankfurt.de
mailto:pcossio@flatironinstitute.org
mailto:pcossio@flatironinstitute.org
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2420158122/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2420158122/-/DCSupplemental


electrons to avoid radiation damage, resulting in picked particles
that are very noisy projections of the molecular density in
unknown conformations and orientations. Obtaining high-
resolution structures requires averaging over many particles to
reduce the noise. Consequently, 3-d classification methods can
reconstruct a limited number of different conformations (6–
9), which can be combined with molecular dynamics (MD)
approaches to estimate a conformational ensemble (10–13).
However, these methods require grouping particles into a
relatively small set of classes. Each class must contain enough
particles necessary for a high-resolution reconstruction. Particles
belonging to scarcely populated classes are discarded. Thus,
current 3D classification methods may result in an incomplete
understanding of a molecule’s biological function (14). Rare
conformations and transition states that occur infrequently will
be missed in these analyses, which are also unsuitable for studying
highly flexible biomolecules; additionally, class refinement often
fails to converge, with repeated analyses yielding different particle
classifications depending on the random seed used (15), and these
methods depend on averaging, preventing the identification of
conformations at the level of individual images.

Machine learning (ML) enabled an important step toward
extracting heterogeneous reconstructions from cryo-EM, from
pioneering approaches using manifold embedding (16) to state-
of-the-art deep generative models (17–21). The key idea is to
use ML to learn the mapping between the particles in a cryo-
EM dataset and the corresponding conformational volumes (22).
However, the statistical inference can become computationally
intractable, especially when both the conformation and pose
(projection direction and location) must be inferred simulta-
neously. This is why most cryo-EM ML methods, as well as
non-ML variability methods (23–26), rely on “consensus” maps
and costly explicit-likelihood methods to calculate the particle
poses, which fail for highly flexible molecules. CryoAI (27) and
its implementation in cryoDRGN (28) use direct gradient-based
optimization to amortize the particle poses while still requiring
the direct estimation of a pose for each particle. Additionally,
these methods do not provide statistical errors when assigning
each particle to a specific conformational state in the latent space,
and the latent space itself lacks physical interpretability (29, 30).

Template-matching-based approaches assign each single par-
ticle to a molecular structure with high fidelity. BioEM can
discriminate molecular conformations in individual particles
by integrating over poses and imaging parameters within a
Bayesian framework (31, 32). Recently, high-resolution template
matching identified biomolecular conformations in situ using a
cross-correlation-based approach in 2-d (33, 34) and 3-d (35).
When the poses are sampled on a fine angular grid, and
the matching is repeated for templates representing different
molecular conformations, this method provides a highly accurate
metric for conformational identification. However, this brute-
force likelihood optimization rapidly becomes computationally
prohibitive. Currently, there is no fast and tractable method for
identifying molecular structures in individual cryo-EM images
that also provides assignment uncertainties.

Here, we leveraged recent advances in simulation-based in-
ference (36, 37) to develop cryo-EM simulation-based inference
(cryoSBI), a computational framework that uses Bayesian infer-
ence to assign a molecular conformation to an individual cryo-
EM image avoiding expensive pose searches or costly likelihood
optimizations. Our framework provides amortized inference and
accurate statistical confidence. Standard cryo-EM reconstruc-
tion techniques combined with molecular modeling such as
advanced MD schemes (38) and AI-based structure-prediction

tools (39, 40) provide a set of structural templates that serve as
structural hypotheses. We then simulate cryo-EM experiments
to produce particles that answer the question: “What would
an experimental particle look like if it depicted this molecular
conformation?.” The synthetic particles arise from random poses
and imaging parameters with adequate noise levels. Neural
network density estimation allows us to learn from these particles
the Bayesian posterior. We illustrate the cryoSBI algorithm,
benchmark it on synthetic data, and showcase its use on
experimental data.

CryoSBI has several key advantages: i) it provides not only the
most probable assignment but also a statistical confidence; ii) the
inference is amortized, making it exceptionally fast and enabling
analysis of an arbitrarily large number of images; iii) training ML
models on simulated particles—on which we have full control—
guarantees that the ML embedding is robust and interpretable.
CryoSBI solves the problem of identifying molecular conforma-
tions in individual cryo-EM images, paving the way for learning
the entire conformational ensemble, including rare and transient
conformations, directly from experiments.

Results

Simulation-Based Inference of Single-Particle Cryo-EM. We for-
mulate the task of inferring molecular conformations from a
single-particle cryo-EM image as a Bayesian inference problem.
In essence, we want to quantify the probability that a given image
I depicts a molecular conformation X . Let us consider a set of
molecular conformations, that is, a set of structures, and a vector �
that parameterizes them. In general, � is simply the index of each
structure in the set. In specific situations, it is possible instead
to map the structures to a low-dimensional parameterization
describing a conformational change. For instance, we could
describe the movement between two protein domains with an
angle or a distance. For clarity, we will illustrate cryoSBI using
structural ensembles that represent a conformational change
that can be described by a one-dimensional �. However, the
cryoSBI algorithm does not require such a low-dimensional
parameterization to be formulated or to be effective.

Given a cryo-EM image I , we aim to infer the conformation
� of the molecule observed in the image. Therefore, we want
to compute the Bayesian posterior p(�|I), quantifying how
compatible � (that is associated with conformation X ) is with
the observed image I . The posterior can be computed by Bayes’
theorem

p(�|I) ∝ p(I |�)p(�) , [1]

where p(I |�) is the likelihood of generating an image I given
a molecular conformation � and the prior p(�) encodes all
available knowledge before making the inference on how the
conformations are distributed. Modeling the image formation
process described by the likelihood requires taking into account
the details of the experiment and the function of the electron
microscope. For instance, it is often assumed that the molecule
is randomly rotated, that the images are noisy, and that the
microscope will introduce aberrations. The full likelihood of
the image formation process is, therefore, p(I |�,�), containing
additional parameters � required to model the details of the
experiments and microscope. Usually, we are not interested in
making inference of �, treated as nuisance parameters. In other
words, the likelihood is a marginalization

p(I |�) =
∫

p(I |�,�)p(�)d� , [2]
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Fig. 1. Schematic representation of cryoSBI: Simulation-based inference for cryo-EM. Simulated particle images generated from template conformations �
and imaging parameters �, such as rotation, defocus, and translation, are used to train the cryoSBI embedding network and posterior estimator (black boxes).
� and � are sampled from a prior distribution, and fed to a forward model M to generate a particle image I. An embedding network that featurizes the images
S(I) and a density estimator of the joint distribution of features and parameters are trained simultaneously using millions of simulated particle images. CryoSBI
learns a computationally efficient approximation of the posterior p(�|S(I)), which takes an image as input to predict the posterior distribution over �, enabling
amortized template matching of experimental images (magenta boxes). For each experimental particle, cryoSBI provides the full posterior, indicating both the
most probable conformation that generated the image and the statistical confidence of the inference.

with the prior of the imaging parameters p(�). Maximizing the
marginal likelihood p(I |�) is computationally very expensive
(32, 33) because each evaluation requires integrating over all
imaging parameters. The high computational cost of approaches
that require explicit likelihood optimization restricts their appli-
cability to small sets of images.

Simulation-based inference (SBI) is an alternative approach
to do Bayesian inference with intractable or computationally
expensive likelihoods (36, 37, 41–44). The main idea is to
replace a likelihood evaluation with a forward model to simulate
synthetic data and then learn an approximation of the posterior
on them. Here, we develop an SBI framework for amortized
template matching of conformations from single-particle cryo-
EM images (Fig. 1). While the inverse problem of inferring
a conformation from a cryo-EM image I is challenging, the
forward problem is much simpler. We can easily encode the
image formation process described by the likelihood p(I |�,�) in a
cryo-EM simulator, and repeatedly sample it by running forward
simulations to produce synthetic images, i.e., Ii ∼ p(I |�i,�i)
with �i ∼ p(�), �i ∼ p(�). In this way, we accumulate a dataset
of simulated images and parameters describing their generation,
D = {�i,�i, Ii}. Here, we used Neural Posterior Estimation (45)
with a normalizing flow to directly approximate the Bayesian
posterior from D. We used an embedding network S(I) to
extract features and map each image into a medium-dimensional
representation. We then used another neural network q as a
conditional density estimator to build a surrogate model of the
posterior, i.e., a statistical model that approximates the posterior,
q(�|S(I)) ≈ p(�|I). We then trained S and q jointly on D
using standard supervised deep learning methods. In this way,
we learned an approximation of the desired Bayesian posterior,
bypassing any explicit likelihood evaluation and marginalization.

After training on the simulated images, the neural density
estimator q estimates the posterior for any new experimental
image. The inference is computationally efficient for two reasons:

First, it does not require any marginalization over the nuisance
parameters �; and second, the inference is amortized. The
computationally expensive part due to the sampling, must be paid
only once upfront by repeatedly running the simulator to build
the dataset D. Once the conditional estimator q is trained, any
new inference requires only an evaluation of the neural network
underlying q.

In summary, cryoSBI involves the following steps: i) Prepare
a set of experimental cryo-EM particles or micrographs. ii)
Obtain a set of molecular conformations that serve as structural
hypotheses—template structures—by using molecular simula-
tions or ML methods. iii) Simulate many synthetic particles
sampling all possible template structures and nuisance parame-
ters. iv) Obtain a surrogate of the Bayesian posterior by training
the embedding and conditional density estimator simultaneously
on the set of simulated template particles. v) Perform inference
on the experimental particles with the trained surrogate posterior.

Validation and Benchmark with Synthetic Data. How precisely
is it possible to identify a structure in a single cryo-EM image?
We answered this question by validating and benchmarking
cryoSBI using synthetic data obtained from hsp90, an established
benchmark model in the field (46, 47). Hsp90 comprises two
chains that perform a large conformational change corresponding
to their opening and closing. We selected twenty structures
spanning the opening of the one of the chains, measured by
the rmsd with respect to the closed structure (Fig. 2A).

CryoSBI accurately infers molecular configurations from single
images. We trained cryoSBI on synthetic cryo-EM particle images
generated under realistic conditions, with random orientations,
a wide range of defocus values, center translations, and signal-
to-noise ratios (SNRs). We learned a surrogate model of the
posterior, that we used to make inference on the synthetic
particles. For each inference, we obtained an estimate of the
Bayesian posterior that we could compare with the structure

PNAS 2025 Vol. 122 No. 23 e2420158122 https://doi.org/10.1073/pnas.2420158122 3 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
M

A
SS

A
C

H
U

SE
T

T
S 

W
O

R
C

E
ST

E
R

, M
E

D
IC

A
L

 S
C

H
O

O
L

 L
IB

R
A

R
Y

" 
on

 J
un

e 
4,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
14

6.
18

9.
16

4.
12

.



A

C D

B

Fig. 2. Validation and benchmark with synthetic data. (A) The opening of the two arms of hsp90 defines a conformational change, quantified by �, the rmsd
w.r.t the closed conformation. We selected 20 configurations equally spaced along �. Examples of cryoSBI inference for three particles. Each inference on
synthetic images (gray-scale images in the Insets) resulted in a posterior (blue curve), quantifying which structural model was the most compatible with the
image. Red lines represent the true configurations. The shaded region is the 2� interval. (B) Inference precision for 10,000 images as a function of SNR and
projection direction. Each point represents the � interval (color bar, from dark blue—low confidence, to deep red—high confidence) of the posterior obtained
from a synthetic image produced at a given SNR and projection angle. On Top, we show the schematic definition of �, the angle formed between the direction
of the electron beam and the direction of movement of the two arms of hsp90. (C) Inference accuracy for 10,000 images for sets with different SNR. The
two scatter plots show the correlation between the estimated opening obtained as a sample of the posterior, and the true opening, using SNR = 0.1 and
SNR = 0.01, respectively. We colored each sample according to � (colors as for panel B). The black dashed line describes the average of the posterior means,
while the blue line corresponds to the mean of the maximum-likelihood estimates using BioEM (32). (D) Scaling of the computational cost w.r.t. the number of
images of cryoSBI and maximum likelihood methods (BioEM). Wall-times were obtained using an NVIDIA RTX A6000 GPU for cryoSBI, and an AMD EPYC 7742
CPU for BioEM.

that we actually used to produce the specific image (red line
in Fig. 2A). While we focused here for clarity on a one-
dimensional posterior, cryoSBI is general and can be used to
inspect higher-dimensional posterior distributions (SI Appendix,
Fig. S1). The posterior provides information both on the
accuracy of the inference—whether the bulk of the distribution
contains the ground truth—and the precision—the spread of
the distribution. The precision estimate is accurate, as shown by
the convergence of training loss and simulation-based calibration
checks (SI Appendix, Fig. S2).

The SNR and projection direction are the main experimental
factors determining how precisely we can infer a molecular
configuration from a single image. As the SNR of an image
decreases, the inference is still accurate but the posterior gradually
broadens, corresponding to an increasing uncertainty (Fig. 2 A
and B). The precision also decreases for projection directions
that occlude the conformational change of interest. In the case of
hsp90, this occurs by projecting along a direction where one arm
covers the other one (Fig. 2B), where the projection direction
is parallel to the relevant conformational motion. For very low
SNR and bad projection directions, the inference returns an
approximately flat posterior. In other words, cryoSBI correctly
tells us that these images cannot be reliably assigned to specific
conformations.

A more systematic evaluation confirms that cryoSBI is accurate
and precise for SNRs within experimental range (46). We
compared inferred configurations to ground truths for 10,000
images, assuming high and low SNR (Fig. 2C ). For SNR = 0.1,
68% of inferred configurations were accurate within 1 Å with an
average uncertainty of 0.75 Å measured by the posterior � interval
(color bar). For SNR = 0.01, the accuracy of the prediction
declined slightly to 68% of the inferred structures being within
2.7 Å of the true structure. The average uncertainties rose to
2.1 Å. In comparison to an explicit likelihood method (dashed
lines), cryoSBI’s predictions are slightly worse for low SNR. This
is expected, as SBI methods tend to lose some accuracy due to
the approximations of the ML models that make amortization
possible, a phenomenon also observed in 3D reconstruction (48).
We note that for flat posteriors, the mean is biased toward the
center due to cryoSBI being trained on a finite domain of �,
therefore, we used samples of the posterior that do not exhibit
this issue.

CryoSBI is fast and enables inference of very large sets of images
and molecular structures. We compared the computational cost
of performing inference on the synthetic dataset with cryoSBI
and methods that optimize an explicit likelihood model (31, 32).
These require to evaluate the likelihood and marginalize over all
model parameters for each image, leading to a linear scaling
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of the computational cost with the number of images and
the number of conformations (Fig. 2D). The cost quickly
becomes prohibitive, particularly for high-resolution template
matching that may involve evaluating millions of orientations
(33). CryoSBI’s inference is instead amortized, that is, the largest
computational cost occurs upfront to produce simulations and
train the model (approximately a few hours), after which the
inference is effectively free. Each inference only requires a forward
pass of the trained neural network that serves as a surrogate model
of the posterior. Amortization opens the door to comparing
thousands of structures to datasets containing an arbitrarily large
number of images.

Validating with Experimental Data. Having validated cryoSBI
on synthetic data, we sought to demonstrate that it correctly
maps individual experimental particles of apoferritin to their
corresponding reference structure. So far, the training templates
and the synthetic data have been generated with the same forward
model simulator and parameter distributions. This will not be the
case with experimental data, for which we must generally assume
model misspecification. In other words, the data we simulate to
train the model and the experimental particles that we want to
make inferences on will always differ. However, we cannot access
a ground truth with experimental particles and therefore first
validate our method using a standard experimental benchmark
system: apoferritin.

Apoferritin is a 474 kDa large cytosolic globular protein
complex composed of 24 subunits forming a hollow nanocage
(Fig. 3A). It is highly symmetric and rigid, making it a standard
benchmark in the cryo-EM field. We used a published dataset
containing 483 particles of apoferritin. Due to the absence of
conformational flexibility, it is likely that the particles do not
include alternative conformations. We selected the PDB structure
built from the cryo-EM map reconstructed from the same dataset
(49) as our ground truth (Fig. 3A). We generated a hypothetical
conformational ensemble by varying our ground truth structure
along two normal modes (Fig. 3A). The order parameter is

� =  rmsd to ground truth, where  = −1 for normal mode 1
and  = 1 for normal mode 10, which quantifies the distance of
the resulting structures from the ground truth reference that sits
at � = 0 by construction. We selected normal modes 1 and 10
to ensure two distinct conformational changes, thereby avoiding
degeneracies caused by symmetry.

CryoSBI correctly maps individual experimental particles of
apoferritin to their corresponding reference structure. Following
our pipeline, we trained a surrogate posterior on synthetic
templates generated starting from the structural ensemble shown
in Fig. 3A. Posteriors are peaked around � = 0, both for
individual particles (Fig. 3B) and for the entire experimental
dataset (Fig. 3C ), indicating that we could identify the 3D
structure corresponding to the individual particle accurately.

The posterior width shows that the mapping is also quite
precise, with uncertainty in the order of a few Angstroms. Since
we are analyzing single-molecule data (snapshots of a single
protein in a specific conformation) and not averaged observables
(e.g., 3D maps), we should not expect that every posterior
conditioned on each image is sharply peaked precisely at the
reference structure. Some particles will be more informative
than others. Building a histogram by resampling each posterior
conditioned on each image provides a statistical view of how
informative the particles in the dataset are. Interestingly, the
histogram is shaped like a funnel. Particles whose posterior
samples are closest to the cryo-EM structure (i.e., centered around
� = 0) are those that we can map with the highest confidence
(Fig. 3D).

A Challenging Experimental Dataset. Next, we challenged
cryoSBI using an experimental dataset containing particles of
hemagglutinin, a homotrimeric protein complex found on the
surface of influenza viruses (50). Compared to apoferritin, the
hemagglutinin dataset presents several additional challenges.
Hemagglutinin is more dynamic, and the particles capture a
much more heterogeneous structural ensemble. In fact, only
around 47% of the particles led to the reconstruction of the

A

B D

C

Fig. 3. CryoSBI applied to experimental particles of apoferritin. (A) Apoferritin conformational change along �, generated by varying the ground truth reference
cryo-EM structure (PDB ID 4v1w) along two normal mode directions. The conformational change is quantified by the rmsd in Å to the reference cryo-EM structure.
We multiplied the rmsd by −1 for variations along mode 1 (Left half of the axis). By construction � = 0 Å for the reference structure. (B) Example of cryoSBI
posteriors for experimental apoferritin particle images. The particles are low pass filtered for better visibility. The red dashed line indicates the position of the
reference structure along �. (C) Histogram of the inferred conformation from the posterior mean �mean for the particles in the dataset. (D) Two-dimensional
histogram reporting 1,000 posterior samples from the posterior of each apoferritin.
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A B

D E F G

C

Fig. 4. CryoSBI applied to experimental particles of hemagglutinin. (A) Example of cryoSBI posteriors for experimental hemagglutinin particle images (low
pass filtered for better visibility). The conformational change along � was modeled normal mode analysis, � =  rmsd from reference cryo-EM structure (red
dashed line) where  = −1 or 1 for normal mode 1 and 2, respectively. (B) Two-dimensional histogram showing 1,000 posterior samples for each of the 271,558
posteriors. The black dashed line indicates the cryo-EM reference structure. The dotted lines show the size of the expected fluctuation around the reference
structure estimated with MD simulations. (C) UMAP 2D projection of the latent space of the simulated particles used for training (gray) and a random subset of
10% of experimental particles (red). (D) UMAP 2D projection of the latent representation of a random subset of 10% of experimental particles colored according
to their posterior � interval. (E, F, and G) Experimental particles, selected from different positions in the UMAP in (D) (low pass filtered for better visibility).

published high-resolution structure. Additionally, the protein
adopted a preferred orientation in the experimental sample,
leading to a particle distribution that does not cover uniformly the
entire space of possible orientations. This can be problematic for
mapping two-dimensional projections into a three-dimensional
structure.

Despite these challenges, cryoSBI could correctly identify
hemagglutinin configurations in single particles. We generated a
hypothetical structural ensemble by perturbing the PDB structure
along two normal modes (Fig. 4 A, Bottom). We used these
structures to produce synthetic templates and train a posterior
model to evaluate experimental particles. The posterior could
identify the reconstructed cryo-EM structure accurately and
precisely (Fig. 4A). Evaluating the posterior on the entire dataset,
we found a large concentration of particles (∼50%) that we
could map to the high-resolution hemagglutinin structure with
high confidence, consistent with the 47% used to generate
the cryo-EM reference structure (Fig. 4B). These particles are
distributed in a region spanning approximately 4 Å around the
high-resolution structure, consistent with thermal fluctuation at
room temperature, as shown by atomistic MD simulations in
explicit solvent (SI Appendix, Fig. S3). As expected, no other
conformation is identified in the dataset with high confidence.
For many particles, the posterior is approximately uniform and
therefore uninformative.

Validating Inference with Latent Space Analysis. The embed-
ding provides a powerful tool for analyzing the particles. The
embedding is done by a neural network that encodes all
particles from 1282 pixels into a 256-dimensional representation.
Conventional dimensionality reduction techniques can further

reduce the dimensionality of the representation to generate plots
that allow us to visually inspect the entire dataset. Each red point
in Fig. 4C corresponds to a single experimental particle, whereas
synthetic particles are represented as a grayscale heat map (see
SI Appendix for details on the UMAPs calculation). The two
coordinates, UMAP1 and UMAP2, are nonlinear functions of
the pixels defining the original images, which should quantify
some “essential” features. Indeed, we can correlate different
values of these coordinates to different modeling and imaging
parameters, like the SNR, or conformations (SI Appendix,
Fig. S4).

When examining the embedding space, an initial question
is whether the synthetic hemagglutinin particles used to train
our posterior are consistent with the experimental particles.
Fig. 4C shows that synthetic particles are distributed in a
region that contains the experimental ones. In other words, the
simulator generates templates very similar to the experimental
ones. Synthetic particles populate a larger region than the
experimental ones. This is expected, and means that not all
configurations, or imaging parameters, we considered as template
hypotheses correspond to particles that constitute the ensemble
captured by the cryo-EM experiment. A more quantitative
statistical analysis based on the maximum mean discrepancy
metric confirms that synthetic and experimental particles are
very similar (Materials and Methods and SI Appendix, Fig. S5).
This analysis is essential to detect model misspecification, which
occurs when the posterior is trained with synthetic data that do
not accurately mimic the experimental data, leading to incorrect
inference. This issue is demonstrated with nonwhitened particles,
where the distributions of simulated and experimental particles
do not overlap (SI Appendix, Fig. S5).
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We then applied a similar analysis on the experimental particles
only, obtaining an insightful low-dimensional view of the entire
experimental dataset. Each point in Fig. 4D corresponds to a
single experimental image, colored according to the confidence
with which the posterior maps it to a specific configuration. The
confidence clearly describes a gradient correlating with the first
reduced variable defining the plane (UMAP1’). The confidence
of the inference is high for particles on the left of the plot and
gradually decreases going to the right. Particles on the left of the
plot (low values of UMAP1’) all contain a clearly visible copy
of hemagglutinin in their center (Fig. 4E). On the contrary,
particles on the right (large values of UMAP1’) do not contain
any protein (Fig. 4F ). This observation shows that UMAP1’ sorts
particles according to how well hemagglutinin is visible.

A slender appendix in the 2D UMAP’ plot containing high-
confidence points detaches from the distribution of points on the
top of the plot. These particles clearly contain contaminants, e.g.,
unfolded proteins, structured ice, or other types of contamination
(Fig. 4G). Then, why does our inference lead to a high confi-
dence? The posterior evaluated on these particles peaks at both
extreme values of the prior range (SI Appendix, Fig. S6). In other
words, the posterior tells us that these particles are highly atypical
and incompatible with all structures in our hypothesis ensemble,
while they have low-resolution contrast that match some low-
resolution template features. This observation is consistent with
the appendix-like morphology of the region containing these
particles. Typical particles are points with many neighbors. On
the contrary, these particles are all on the border, making them
very atypical. The analysis of the cryoSBI embedding is a powerful
way of validating the inference and analyzing the experimental
dataset.

Amortized Template Matching in a Micrograph. In single-
particle cryo-EM, particle picking algorithms identify candidate
particles within micrographs but often suffer from high false
positive rates. Misclassification of noise or junk as target
molecules requires further filtering through time-consuming
steps like 3D classification. The cryoSBI posterior can match
templates directly on a micrograph (Fig. 5). Fig. 5A presents a
hemagglutinin micrograph (3,824× 3,824 pixels) from the same
dataset as discussed so far. For this micrograph, we employed a
sliding window approach, using the trained cryoSBI posterior
with a box size of 256 × 256 pixels. Evaluating many windows

in parallel proved to be computationally efficient, achieving
posterior evaluations for the entire micrograph in a couple of
minutes. This allowed us to extract the posterior mean and width,
which we then associated with the center of each box. Fig. 5B
illustrates the effectiveness of our method in identifying the cryo-
EM reference structure from particles within the micrograph
using the posterior mean. Examples of boxes with centers
exhibiting a mean value close to the reference are shown in Fig. 5
C–E together with the posterior width. We note that because a
convolutional neural network (which is translation equivariant) is
used for the embedding, the exact particle position is not precisely
determined. This results in a relatively wide range of pixels where
the posterior mean closely matches the reference structure (red in
Fig. 5C–E). Analysis of the latent space combined with the shape
of the cryoSBI posterior, could also facilitate the identification
of outliers versus hemagglutinin particles in the micrograph, as
shown above for the picked particles.

Micrographs are likely to contain more junk and out-of-
distribution images compared to a stack of previously picked
particles. Since cryoSBI has not been trained on junk particles,
applying it to an entire micrograph may lead to greater model
misspecification than when used on preprocessed particles.
Analyzing the latent space alongside the shape of the cryoSBI
posterior could help distinguish outliers from hemagglutinin
particles within the micrograph, as demonstrated earlier for the
selected particles (Fig. 4D). However, training the model with
junk particles and ice-mimicking simulations might ultimately
prove more effective.

Discussion

Accurately and precisely identifying rare conformations of dy-
namic biomolecules from individual images is an outstanding
challenge in biophysics. CryoSBI aims to overcome this problem
by training a neural network with simulations that enables
Bayesian inference of biomolecular conformations from single-
particle cryo-EM images. Given an initial structural ensem-
ble hypothesis—a set of 3D templates—cryoSBI builds on
simulation-based inference, a merger of physics-based simu-
lations and probabilistic deep learning, to perform very fast
amortized template matching in cryo-EM. Here, we show how
this approach can produce high fidelity inferences from noisy
experimental cryo-EM particles and micrographs.

A B C D E

Fig. 5. Evaluating the posterior learned by cryoSBI on a micrograph directly. (A) Cropped micrograph (3,824 × 3,824 pixels) from the hemagglutinin EMPIAR
dataset 10026. (B) Absolute Distance in � between the posterior mean and the cryo-EM reference structure � = 0 as a function of window position on the
micrograph. (C–E) Example windows (Top) from the micrograph with a posterior mean close to the cryo-EM reference (Bottom) and a small posterior width
(Middle).
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The cryoSBI framework is based on Bayesian inference, which
allows us to include prior knowledge and accurately assess
uncertainties. CryoSBI can start from standard reconstruction,
or AI-based structure prediction, to obtain one or a few
reasonable conformations of the biomolecule of interest. Then,
MD simulations and AI-methods can generate a hypothetical
conformational ensemble from the initial few structures. This
ensemble, which does not need to be entirely accurate but should
provide a list of structural templates, becomes the prior for
our inference. The outcome of the inference is the posterior,
a distribution describing the probability that a given particle
contains a specific structural template. The cryoSBI posterior not
only gives us information about the most probable conformation
but also, crucially, provides an accurate statistical CI given by
the posterior width. The ability to go beyond point estimates
is crucial to distinguish particles that provide useful structural
information—characterized by a peaked posterior—from those
for which the inference leads to very broad posterior distributions
and are, therefore, not informative. In other words, some particles
will be too noisy, or originate from a specific pose, such that a
precise inference is not feasible, and the cryoSBI posterior will
indicate this.

CryoSBI provides amortized inference, enabling the analysis
of massive datasets. Given initial structural templates, cryoSBI
trains an embedding and neural posterior density using simulated
particles. Simulated template particles range over different con-
formations, poses, and other values of all the nuisance parameters
associated with the image formation process. All these simulations
are performed once upfront, with which we can train an
embedding and a neural density estimator for the inference. The
inference is a function only of the templates, marginalized over all
other parameters, including the pose. The inference is amortized,
i.e., we do not have to perform any optimization to solve the
inference problem from scratch for each particle. We have only
to evaluate the trained posterior, a forward pass evaluation of
a neural network that takes milliseconds. Therefore, in contrast
to most traditional and ML reconstruction frameworks, cryoSBI
bypasses the pose and defocus estimate, resulting in an extremely
fast inference and enabling its efficient application to micrographs
and datasets containing millions of particles. Moreover, training
with simulations enables connecting the underlying physics of
the experiment to the embedding features of the neural network.

We still face significant challenges. In this work, we have
demonstrated that cryoSBI can accurately infer large con-
formational changes in synthetic data and correctly identify
conformations in experimental data. Our current focus is on
expanding this framework to detect small conformational changes
in large proteins and identify multiple alternative states. However,
the most critical challenge is identifying and overcoming model
misspecification. Any parametric inference is only as good as the
model we assume to describe the underlying physical process.
In our case, this is the structural ensemble that we use as
a starting hypothesis and the simulator encoding the image
formation process. Here, we have shown that problems occur
when our ensemble is missing structures or when the simulator
is missing features depicted in the experimental particles (e.g.,
Fig. 4G). This can result in “hallucinations”-high-confidence
inferences that are completely incorrect (note that this differs
from “model-bias” in cryo-EM, where noise is aligned during
reconstruction). These problems may become more pronounced
when analyzing micrographs directly. However, they could be
mitigated by incorporating junk particles into the training data,
ensuring the ratio of target molecules to noise/junk matches

the expected distribution across the micrograph, and explicitly
training a network for both detection and inference to better
define the task.

An additional limitation of the current implementation is that
new models must be trained for each new biomolecule of interest.
The embedding and neural density estimation are specific to
the conformational ensemble used during training, making the
model nontransferable across different biomolecules. Future
development could leverage recent advancements in generative-
AI protein structure generation, which connect protein sequence
with their structure or structural ensemble (39, 40, 51). These
approaches allow us to represent conformational ensembles (52),
creating a natural integration point with cryoSBI. Additionally,
pretraining the posterior or embedding networks on diverse
proteins and conformations could enable efficient fine-tuning
for specific biomolecules, significantly reducing computational
costs for new applications.

Importantly, we have shown that the analysis of the latent
space provides a powerful framework to diagnose model-
misspecification. The accuracy of cryoSBI’s inference is only
guaranteed if the distribution of points corresponding to the
simulated particles largely contains the points corresponding
to the experimental ones. This is equivalent to saying that the
templates capture the underlying physical features in the cryo-
EM data. A small overlap in the latent space would instead
immediately reveal inadequate template simulations (e.g., SI
Appendix, Fig. S5). To this end, we have initiated a thorough
quantitative study of the cryoSBI latent space (53), which outlines
a validation and physical interpretation of the latent space
through manifold learning and dimension reduction techniques.
There are many exciting opportunities for this direction, such
as reducing model-misspecification by learning from data, which
is a very active field of research. Moreover, utilizing equivariant
embedding representations may enhance the efficiency of the
training process and reduce the number of required simulations.

CryoSBI can improve current cryo-EM reconstruction
pipelines. The posterior confidence can be used to classify and
sort particles with sharp posteriors (54) and weight the particle
contribution to the reconstruction. It could also be used to
improve imaging conditions, such as the electron dose per frame,
by monitoring the sharpness of posterior widths. An advantage
of cryoSBI is that it provides a per-particle measurement plus
an error, not suffering from orientational bias. Moreover, it
can explain the relation between the conformational motion of
interest and the projection direction (Fig. 2B). Therefore, it could
be combined with the ML heterogeneous reconstruction methods
to sieve particles that do not provide information along the
relevant conformational motion due to their projection direction.
Even though we focused on inferring conformations in this work,
cryoSBI can also be directly used to infer all other parameters
involved in the image formation process, such as pose and
defocus, setting priors, and ranges for cryo-EM reconstruction.

Cryo-EM has heavily relied on averaging particles. Even the
state-of-the-art ML heterogeneous reconstruction methods rely
on starting from a consensus volume and struggle with highly
dynamic systems. CryoSBI provides a single-particle inference
that can contribute to overcoming several problems, such as
identifying rare conformations, structural intermediates (transi-
tion states), or studying highly flexible biomolecules by leveraging
structural hypotheses from molecular simulations. The amortized
inference could significantly speed up the recovery of free-energy
landscapes from cryo-EM (22, 47, 55, 56) by quickly comparing
millions of particles to thousands of structures. Data-driven
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techniques applied to the latent space of experimental particles
can lead to the discovery of new metastable states and the
learning of the overall organization of the conformational land-
scape (53). Moreover, cryoSBI could speed-up the identification
of biomolecules in situ, for studying their cellular contexts and
environment-dependent properties by comparing the particles to
the templates within the embedding space.

In summary, cryoSBI not only provides accurate structural in-
ferences but also quantifies uncertainties through Bayesian poste-
rior distributions. CryoSBI is a modular and flexible framework.
The simulator, the embedding network, and the density estimator
can readily integrate more sophisticated algorithms to overcome
challenges emerging from complex datasets. Future work will
focus on addressing model misspecification and enhance the
simulator for more realistic scenarios, such as in situ scenarios,
and expanding its capabilities to detect subtle conformational
changes. These improvements will be vital for studying molecular
conformational ensembles of flexible biomolecules in biologically
relevant environments.

Materials and Methods

CryoSBI Simulations. We begin with a conformational ensemble parameter-
ized with a 1D degree of freedom �, where f : ℝ3Natom → ℝ maps a structure
X to a real number � = f(X), which can be discretized, �i, to select a specific
3D template. The goal of cryoSBI is to learn the posterior probability p(�i|I). To
train cryoSBI, we run millions of forward model simulations of cryo-EM template
images by using the forward model described in SI Appendix. We sample
from the prior parameter distributions p(�i,�) = p(�i)p(�), where and �
contains the nuisance and imaging parameters, and generate a corresponding
synthetic image (details in SI Appendix). The embedding network for the image
featurization and a neural density estimator, a function that approximates the
joint distribution of model parameters and features, are trained simultaneously
as described below.

Embedding Network. We used a modified ResNet-18 architecture (57)
as embedding network S (I) with parameters  to learn a compressed
representation of the images I. We adapted the ResNet-18 to grayscale images
and 256-dimensional output.

Learning the Posterior. We used the Neural Posterior Estimation (NPE)
algorithm to approximate the posterior distribution from synthetic particles (45).
NPE uses a neural network density estimator q' of parameters' to approximate
the posterior, p(�|I) ≈ q'(�|S (I)). For each system, we created a large
dataset of N synthetic particles In ∼ p(I|�n,�n) by drawing from the prior
conformations, �n ∼ p(�), nuisance imaging parameters, �n ∼ p(�), and
then running a total of N forward model cryo-EM template simulations, with
n = 1, . . . , N. We then trained jointly the embedding network and the density
estimator by maximizing the average log-likelihood of the posterior probability
under the training samples,

L(', ) =
1
N

N∑
n=1

log q'(�n|S (In)) . [3]

We used a Neural Spline Flow (58) as density estimator, containing
five transformation stages. The neural network in each transformation stage
contained 12 layers. The first ten layers had 256 hidden nodes, while the last
two had 128 and 64 hidden nodes, respectively. We trained the network using
an AdamW optimizer (59), with a learning rate of 0.0003, gradient clipping with
a maximum norm of 5, and a batch size of 256. Because the forward model
simulation is inexpensive, we generated synthetic images during training on
demand and did not store the training set. Therefore, each batch of images was
newlygenerated,allowingtraininguntilconvergenceandpreventingoverfitting.
In SI Appendix, we provide details about how we evaluate the trained posterior.

Latent-Space Analysis. To detect model misspecification, we compared the
latent representations from the embedding network of both experimental
and simulated particles using two approaches. The first is a qualitative visual
inspection relying on the dimensionality reduction technique UMAP (60) (SI
Appendix). In a more quantitative way, we compared the distributions of the
latent representations using the maximum mean discrepancy (MMD) metric.
MMD is a standard metric to statistically test whether two independent sets
of samples come from two different distributions (61) and is often used
in the SBI community to test model misspecification (62). Let S1 = {s1}
and S2 = {s2} be two datasets containing the 256-dimensional latent
representations. For the MMD, we used a Gaussian kernel with Euclidean
distances in the embedding space, so that for a pair of s1, s2, the kernel is
k�(s1, s2) = exp(−||s1 − s2||

2/�), where ||.||2 is the l2-norm. We choose
the bandwidth � as the median of pairwise squared distances between the
datasets S1 and S2.

Biomolecular Systems. To validate and showcase cryoSBI, we analyzed three
biomolecular systems: hsp90, apoferritin, and hemagglutinin (for details,
see SI Appendix). For hsp90, we generated synthetic data representing a
conformational change of the opening of one of its chains, quantified by the
rmsd relative to the closed structure across 20 templates. Simulations involved
varying structural B-factors, orientations, defocus, and SNRs. For apoferritin,
experimental data from EMPIAR 10026 (49) were analyzed. The templates were
generated via normal mode analysis, and cryo-EM simulations were conducted
with similar settings. Hemagglutinin images and micrographs from EMPIAR
10532 (50) were used to infer the cryo-EM structure from individual particles.
Normal modes were used as structural hypotheses. Experimental particles
were downsampled and whitened to align with simulated data. For details
about the cryoSBI parameter, ranges, training, hemagglutinin micrograph
analysis, and MD simulations, see SI Appendix. Across all cases, cryoSBI enabled
detailed inference of the molecular structures from the individual cryo-EM
images.

Data, Materials, and Software Availability. The code is available at GitHub
(https://github.com/flatironinstitute/cryoSBI) and is based on LAMPE (63), a
PyTorch implementation for simulation-based inference. Data and scripts
necessary to reproduce all the results in this paper are freely accessible at
the Zenodo repository (https://zenodo.org/records/14593608) (64).
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