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Despite the parallels between problems in computer vision and cryo-electron

microscopy (cryo-EM), many state-of-the-art approaches from computer vision

have yet to be adapted for cryo-EM. Within the computer-vision research

community, implicits such as neural radiance fields (NeRFs) have enabled the

detailed reconstruction of 3D objects from few images at different camera-

viewing angles. While other neural implicits, specifically density fields, have been

used to map conformational heterogeneity from noisy cryo-EM projection

images, most approaches represent volume with an implicit function in Fourier

space, which has disadvantages compared with solving the problem in real space,

complicating, for instance, masking, constraining physics or geometry, and

assessing local resolution. In this work, we build on a recent development in

neural implicits, a multi-resolution hash-encoding framework called instant-

NGP, that we use to represent the scalar volume directly in real space and apply

it to the cryo-EM density-map reconstruction problem (InstaMap). We

demonstrate that for both synthetic and real data, InstaMap for homogeneous

reconstruction achieves higher resolution at shorter training stages than five

other real-spaced representations. We propose a solution to noise overfitting,

demonstrate that InstaMap is both lightweight and fast to train, implement

masking from a user-provided input mask and extend it to molecular-shape

heterogeneity via bending space using a per-image vector field.

1. Introduction

Cryogenic electron microscopy (cryo-EM) of biomolecules

(for example proteins, nucleic acids and lipids) is a structural

biology technique that images ultracooled specimens with

phase-contrast transmission electron microscopy at magnifi-

cations on the subnanometre scale. In single-particle experi-

ments, samples are purified and placed on a grid, and induced

to form a thin film before being vitrified and imaged. The

resulting images of millions of individual molecules are then

recombined into a 3D structure or ensemble of structures

(Brzezinski, 2017) and made publicly accessible to the

community, enabling downstream applications (Jumper et al.,

2021; Varadi et al., 2022; Kleywegt et al., 2024; Turner et al.,

2024). In cryo-EM, as with many areas of structural biology

(Corso et al., 2024), computational biology (Wang et al., 2024)

and all of science (Lavin et al., 2021), there is an increasing

application of general tools from AI/ML and computer vision.

Algorithms, programming languages and hardware exist in an

asymmetric relationship (Hooker, 2021), and in diverse ways

are combined with heuristics from bespoke analyses that were

historically developed by domain scientists. In the case of

cryo-EM, there is a strong tradition of signal processing

approaches, numerical linear algebra, Bayesian inference,
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statistical inference and, more recently, differentiable

programming/deep learning and simulation-based inference

(Jensen, 2010; Singer & Sigworth, 2020; Donnat et al., 2022;

Dingeldein, Cossio et al., 2024).

The field of computer vision has a long history of optimizing

the estimation of 3D models from 2D images, as the applica-

tions in industry are vast, ranging from satellite image anno-

tation (Blaschke, 2010) to self-driving cars (Bojarski et al.,

2016) to simulated video-game play (Eslami et al., 2018).

Recently, implicit neural representations in the form of neural

scalar fields (Lu et al., 2021) and neural radiance fields

(NeRFs; Mildenhall et al., 2022) have highly impacted

computer vision by enabling the reconstruction of 3D objects

from images at different camera-viewing angles. In a short

time these methods and their variants have become

commonplace in the analysis of natural images to generate a

model of the 3D world that they represent. Even before its

application to natural images, a NeRF-like architecture was

used in a difficult scientific inference problem: to infer motions

of 3D volumes of biomolecules from 2D cryogenic electron-

microscopy (cryo-EM) data (Zhong, Bepler et al., 2021).

However, because cryo-EM images have different funda-

mental properties to natural images in terms (i) of high noise,

(ii) of microscope effects and (iii) of the projective nature

of the image-formation process, popular computer-vision

approaches for natural images cannot be naı̈vely adopted out

of the box. So how can we represent a biomolecule’s shape?

Like various other inverse imaging problems (Ongie et al.,

2020), cryo-EM has recently benefited from approaches that

leverage neural representations of shape. In addition to

cryoDRGN (Zhong, Bepler et al., 2021), the cryo-EM litera-

ture now contains several uses of neural representations for

the volume, for tasks of either homogeneous or heterogeneous

reconstruction with or without knowledge of pose, and

methods as recent as 2023 are reviewed in Donnat et al. (2022)

and Toader, Sigworth et al. (2023). Various architectures have

been used for volume representation in cryo-EM: (i) dense

multilayer perceptrons (MLPs; Zhong, Bepler et al., 2021;

Rosenbaum et al., 2021; Levy, Raghu et al., 2022; Li et al.,

2024), (ii) the MLP-based FourierNet in Levy, Poitevan et al.

(2022), which used sinusoidal activation functions (SIRENs)

and element-wise exponentiation to cover the large dynamic

range in Fourier space, (iii) a real-spaced SIREN approach

(Herreros et al., 2024), (iv) coordinate-based representations

that map to deterministic density kernels (Chen & Ludtke,

2021; Chen et al., 2023) and (v) 3D convolutional layers

(Gupta et al., 2020). Recent real-space approaches allow

spatial locality and are efficiently composable with geometric

operations on coordinates such as local coarse-graining,

masking and regularization for smoothness and similarity to a

reference atomic model (Chen & Ludtke, 2021; Chen et al.,

2023; Herreros et al., 2024; Schwab et al., 2024). Over six

months after the initial submission of our white paper for this

special issue, we became aware of concurrent work similar to

our method (Qu et al., 2025) that also employs instant-NGP to

model cryo-EM density, including heterogeneity. While our

approaches differ in some ways, the similarities are encoura-

ging for the promise of applying instant-NGP to problems in

cryo-EM.

Here, we also make a real-spaced choice for volume

representation and employ a neural implicit function that

outputs directly to real space. Our choice is motivated by the

availability of a lightweight neural implicit function with multi-

resolution hashing known as an instant neural graphics

primitive: instant-NGP (see the tinycudann documenta-

tion for the PyTorch bindings; https://github.com/NVlabs/

tiny-cuda-nn), which shows impressive performance for rapid

training of 3D scenes from 2D natural images with known

pose (Müller et al., 2022). This lightweight architecture helps

the real-space computation become tractable. In brief (see

Fig. 3 of Müller et al., 2022), for each query coordinate in 3D

space, the surrounding voxels (in 3D space) are looked up at L

resolution levels. For each of the corner indices touching the

query coordinate, learnable feature vectors of length F are

efficiently looked up through a hash table and linearly inter-

polated in 3D space. This intermediate encoding value of

dimension length LF is passed to a trainable MLP, which here

predicts the scalar density value at the coordinate. Gradient

information is back-propagated through the MLP, including

the concatenation of L feature vectors and the linear inter-

polation, to the trainable look-up feature vector of length F.

To summarize, instant-NGP, as we have applied it, maps a

spatial coordinate in 3D to a scalar density in 3D. As we will

explain in Section 2.1 and Algorithm 1, other parts of the

image-formation model of cryo-EM (the projection, applica-

tion of microscope effects and modeling of heterogeneity)

happen upstream or downstream of the instant-NGP archi-

tecture through a differentiable computation.

After presenting our implementation of instant-NGP for

cryo-EM density maps, we perform experiments on both

synthetic and real data, assuming that poses (rotation and

translation) and imaging parameters (point-spread function/

contrast transfer function) are known. We highlight advan-

tages in the early training stages. We show results for several

loss functions that are invariant to global multiplicative and

additive scaling of the input particles, or that marginalize out

different signal-to-noise ratios. We demonstrate masking of
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regions inside a pre-defined mask by subsetting coordinates.

Finally, we extend InstaMap to the heterogeneous recon-

struction problem in cryo-EM using per-image vector-field

deformation and infer two-state discrete conformational

heterogeneity.

2. Methods

We perform reconstruction of the cryo-EM volume under the

weak phase and projection approximations (Vulović et al.,

2014; Glaeser et al., 2021), using instant-NGP as the learnable

volume representation. We will now describe how we inte-

grated the cryo-EM forward model with the learnable volume

representation (see Fig. 1 and Algorithm 1).

2.1. Forward model of image formation

For a given scalar density representation f�:R
3 ! R, we

apply the pose 2 SE(3) [rotation R 2 SO(3), translation

T ¼ ðtx; ty; tz ¼ 0Þ 2 R3� by rotating the grid points in the

microscope’s frame, rather than rotating the specimen’s

density in a fixed microscope frame. The rotated density is

f�(x, y, z) = f�[R
� 1(x0, y0, z0)T + (� tx, � ty, 0)T]. Fig. 1 shows

examples of the rotated grids (blue and red boxes). Note how

the (silver) 3D density remains in a fixed frame. After the

rotation is applied, the observed image may be described as

y ’ N ½ŷ; I��;with ŷ ¼ PSF � Pðf�Þ; ð1Þ

where P denotes orthogonal projection along the z axis,

Pðf�Þðx; yÞ ¼
R

f�ðx; y; zÞ dz and N ½�; I�� denote per-pixel

independent and identically distributed (i.i.d.) Gaussian white

noise with variance �2, I is the identity matrix and (PSF �)

denotes the convolution with the point-spread function, which

is a linear operator describing the application of the contrast

transfer function (CTF) in Fourier space. Standard expres-

sions for the CTF can be found in Wade (1992), with more

contemporary notation in Rohou & Grigorieff (2015). We

applied the parametric form of the CTF via element-wise

multiplication in Fourier space, with further details given in

Section A2. For the experiments in this work, these CTF

parameters are supplied with the data and are not estimated

by InstaMap.

2.2. Computational implementation of the forward model

We discretize the volume at grid coordinates

G ¼ Gx �Gy �Gz ¼ fðx; y; zÞjx 2 Gx; y 2 Gy; z 2 Gzg

¼ f. . . ; ðxi; yi; ziÞ; . . .g 2 RjGj�3; ð2Þ

where the x, y spatial coordinates in Gx = Gy are on a regularly

sampled line with the same diameter as the observable y (or

within a user-specified mask, or inscribed within the sphere

with the same diameter as y). Points z in the viewing direction

are likewise regularly spaced, but their number (Gz) is sepa-

rately controlled. The exact layout of points in the axis-aligned

grid is determined by two parameters per xyz spatial direction

for a total of six: the number of points in each direction and

the spacing between each grid point. For our experiments,

we configured the number of points and the spacing in the

imaging plane to correspond to one point per pixel in the

observable y. The number of points in the viewing direction,

|Gz|, had 64 or 128 points, with spacing to cover the same

extent as in the other directions. Thus, for an image size of 100
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Figure 1
Overview of InstaMap. Cryo-EM images yi (left) with annotated pose and imaging parameters (Ri, Ti, PSFi) are used for gradient-based learning. Instant-
NGP is queried at the rotated, shifted and jittered grid. A pose-independent projection matrix maps the 3D grid indices to the 2D plane (middle). The
electron-microscope effects are then applied to generate a noiseless projected image corresponding to the observation of the top view of the biomolecule
(TRPV1 ion channel; right). The loss function is computed by summing the losses from the individual particles.



� 100 pixels, there would be 100 � 100 � 64 or 100 � 100 �

128 grid points (before masking).

As described in the forward model of image formation

(Section 2.1), rather than rotating and translating a scalar

density of a 3D volume, we query the implicit function f� at

grid points corresponding to the desired pose. We project 3D

density to 2D via sparse-matrix multiplication,

Pðf�Þði; jÞ ¼
P

ða;b;cÞ!ði;jÞ

f�ðxa; yb; zcÞ; ð3Þ

where (a, b, c) ! (i, j) denotes the set of grid-coordinate

indices that project to pixel (i, j). In other words, the projec-

tion is numerically implemented as a sparse-matrix multi-

plication of f�, the scalar density at discrete points, and

M 2 f0; 1gn
2�jGj, which has values of 1 where the mapping

exists and 0 elsewhere. By querying the entire pose-specific

grid R� 1G � T, we can project through a sparse-matrix

multiplication

Pðf�Þ ¼ Mvec½f�ðR
� 1G � TÞ�; ð4Þ

where vec denotes the ordering of density points corre-

sponding to 3D locations as a (flattened) vector, with

vec½f�ðR
� 1G � TÞ� 2 RjGj. In general, the layout of points in G

does not have to correspond to the same spacing as the image,

or even be on a regular grid, which is why we use the notation

|G| instead of n3 to denote the number of points. The mapping

of 3D spatial points (a, b, c)! (i, j) is fixed under pose, and

thus M is fixed and only needs to be computed once for the

coordinates in G. In the case of dynamic masking, G changes

to G0 and M0 contains a subset of columns corresponding to

the grid points in G0.

Before querying f�, we randomize the computation by

jittering the sampling points in order to produce an estimate of

the projection (more motivation for this can be found in

Section 3.2). A jittered grid point at a specific pose is

R� 1ð~x; ~y; ~zÞ
T
� ðtx; ty; 0Þ

T
; ð5Þ

where ð~x; ~y; ~zÞ ¼ ðx; y; zÞ þ ðux; uy; uzÞ; ð6Þ

and where ux, uy, uz are uniform random variables sampled

i.i.d. from [� J/2, J/2], yielding one random variable per point

coordinate for a total of |G| � 3 and scaled by J 2 R�0. The

posed and jittered points from equation (6) can reach all

spatial points in a continuous manner: they are not on a fixed

lattice and reach ‘in-between’ the original spacing of points in

G. Thus, as a learnable continuous representation, with more

particles the ‘resolution’ can exceed the limits from discretized

representations, such as the Nyquist frequency in Fourier

representations [see Li et al. (2023) for an example of super-

resolution beyond Nyquist in photonics].

After querying f�, jittering and projecting, we apply the CTF

as a discrete convolution through an element-wise multi-

plication in Fourier space (see equation 14).

2.3. Instant-NGP multi-resolution hashed neural scalar field

for 3D density

In general, in order to perform numerical optimization for

3D reconstruction, we must parametrize the density f� in some

closed form amenable to computation (in both its forward pass

and its gradient-based update). We note that the entire image-

formation process (equation 1) is fully differentiable with

respect to the samples f�(x, y, z), and hence to have gradient

updates to the global variable � from the loss lðy; ŷÞ, it suffices

to obtain a differentiable parametrization of f� : R3 ! R.

Consequently, we make use of a neural implicit representation

of the cryo-EM map’s scalar density. We do not predict color

and specularity, as they do not appear in the cryo-EM imaging

process. Moreover, unlike most NeRF applications with

natural images, our problem is free from observational

differences in the aspect (gloss, reflectance, specularity) of the

object from different views, because our goal in cryo-EM

reconstruction is to recover a latent representation of the

object that is independent from perspective.

As our specific choice of model, we apply a state-of-the-art

technique issued from the computer-vision literature: instant-

NGP (neural graphics primitives; Müller et al., 2022). We

perform experiments on other options for the scalar density

representation, f�, to verify that instant-NGP provides a

favorable balance between the number of parameters

required to represent the signal, the quality of the recon-

struction, the computational power required to evaluate the

function and the training time. For our instant-NGP multi-

resolution hash encoder we used the tinycudann PyTorch

bindings. Our setup is akin to that of the original instant-NGP

publication (Müller et al., 2022) and employs eight geome-

trically scaled levels. In configuring the encoder for various

biomolecules of different box lengths (number of pixels), we

tailored the maximum size in the instant-NGP multi-resolution

hash encoder to vary, adapting to the unique requirements of

each biomolecule. As for the architecture of the decoder, we

followed a design similar to the original publication, utilizing

two two-layer MLP decoders, each equipped with 64 (in some

experiments 128) neurons and ReLU activations.

2.4. Heterogeneity

To incorporate heterogeneity into the InstaMap framework,

we infer a per-image vector field, F’ðx; y; zjyiÞ : R
3jyij ! R3,

parametrized by a global variable ’, and then ‘bend’ the

spatial grid coordinates by a per-image vector field, before

querying the scalar density parametrized by instant-NGP.

This was performed through a neural network (Rjyij ! R3n3
F )

conditioned on each image that maps to a regular grid of shape

(3, nF, nF, nF), which represents a discretized vector field F

downsampled from the original image by the ratio nF/n. We

linearly interpolate the vector field at the same pose-specific

grid points as the scalar field (R3 ! R3). Since the output of

the neural network layers is pose-invariant (i.e. it has a

canonical reference frame like f�), and the linear interpolation

is performed at the pose-specific grid points, Gi, jittered by

uniform noise, ui (see equation 6), the pose-specific vector
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field Fi is SE(3) equivariant. Here, we apply Fi to Gi via

addition,

Fi ¼ ðFi;x; Fi;y; Fi;zÞ ¼ F’½R
� 1
i ðGþ uiÞ � Tijyi� ¼ FðGiÞ; ð7Þ

f�;i ¼ f�ðGi þ FiÞ: ð8Þ

2.5. Loss functions

Within our InstaMap framework we implemented three loss

functions that all arise from a Gaussian white-noise model.

These loss functions are at one ‘end’ of our ‘end-to-end’

approach. In any one experiment we numerically auto-

differentiate one of them with respect to the high-dimensional

global variables �, ’.

2.5.1. Mean-squared error

The most basic loss function we use is the mean-squared

error (MSE), arising from the generative model where the

image pixels are i.i.d.: y � N ½ŷ; ��. MSE is the negative log-

likelihood of this model. The corresponding loss function is

lMSE ¼
jjy � ŷjj22

2�2
; ð9Þ

where � is the standard deviation (assumed to be known) and

ŷ is the pixel image intensity from the forward model (equa-

tion 1) without noise.

2.5.2. Cross-correlation

We also implemented a cross-correlation (CC) loss that is

invariant to global multiplicative and additive scaling (proof

in Appendix A4, equation 18). It is related to the cross-

correlation between the observed and calculated forward

model images via

lCC ¼ �
wðyÞ

T
wðŷÞ

�2
; ð10Þ

where wðyÞ ¼ ðy � E½y�Þ=Std½y� and where E and Std are the

expected value and standard deviation, respectively. Unless

otherwise stated, we used lCC in our experiments with � = 3,

which merely numerically scales the loss by a constant.

2.5.3. BioEM

Finally, we implemented the Bayesian inference of electron

microscopy (BioEM) loss function, given by

lBioEM ¼ � log
�
½n2ðCccCoo � C2

ocÞ þ 2CoCocCc � CccC2
o

� CooC2
c �

3=2� n2=2
½ðn2 � 2Þðn2Ccc � C2

c Þ�
n2=2� 2

�
; ð11Þ

where n2 is the number of pixels, Co ¼
Pn2

j y½j�, Cc ¼
Pn2

j ŷ½j�,

Coo ¼ jjyjj
2
2, Ccc ¼ jjŷjj

2
2, Coc ¼ yT ŷ, j indexes the pixels and o

and c stand for observed and calculated, respectively. This loss

does not involve an estimate of the noise level (� in equations

9 and 10). Cossio & Hummer (2013) originally developed this

loss for Bayesian inference of electron microscopy (BioEM)

images by marginalizing over all global multiplicative and

additive scalings with a uniform prior, and performing a

saddle-point approximation to integrate out the noise para-

meter � (equation 10 in their Supplementary Information).

We experienced a numerical issue, because the original

BioEM loss is minimized by minimizing the magnitude jŷj. In

our case this resulted in an instability due to finite precision,

where ŷ was driven to all zeros. We overcame this numerical

issue by re-deriving the loss under a Gaussian prior. We

explain this at length in Section A4.

2.6. Data sets

To show the efficacy of the InstaMap approach on homo-

geneous reconstruction, we analyze both synthetic and real

cryo-EM data sets of two proteins: the TRPV1 ion channel

and apoferritin. Synthetic data were simulated from the

atomic model, where the density was approximated with a

mixture of Gaussians placed at each atom coordinate, corre-

sponding to the parametrization in Lobato & Van Dyck

(2014), and added Gaussian white noise at fixed � = 3,

resulting in signal-to-noise (SNR) ratios of 0.050 � 0.005

(Fig. 13). For the real experimental (empirical) cryo-EM data

sets we used the publicly available TRPV1 (EMPIAR-10005)

and apoferritin (EMPIAR-10421) data sets. The distribution

of pose and microscope parameters of empirical data was used

to generate synthetic data. For heterogeneous reconstruction

we used a coarse-grained model of thyroglobulin with higher

signal (� = 0.1). The number of particles used in each

experiment ranges from less than 1000 (in an experiment set

up to promote overfitting; see Section 3.2) to as large as

80 000, and is mentioned in place. Further details are given in

Section A5.

3. Experiments

3.1. InstaMap representations achieve higher resolution in

early training

In order to highlight the benefit of instant-NGP’s multi-

resolution hash compared with other parametrizations of the

scalar field, we compared instant-NGP against five other

volume representations using the same algorithmic framework

and code base: f� denotes an instant-NGP with multi-resolution

hash Grid encoding (Müller et al., 2022), f! denotes a

‘frequency neural implicit’ (sinusoidal encoder and MLP

decoder; Mildenhall et al., 2020), fTW denotes a TriangleWave-

encoded (Müller et al., 2021) neural implicit, fOB denotes a

OneBlob-encoded neural implicit (Müller et al., 2019, 2020),

fSH denotes a spherical harmonics encoded neural implicit1

and finally fV denotes a real-space voxel intensity, interpolated

at any pose-specific grid point through torch.nn.func-

tional.grid_sample(..., mode=‘bilinear’,

padding_mode=’zeros’). Each of these functions

performs the same mapping from coordinates to real-space

density. Fig. 2 compares the map resolution, measured with the

Fourier shell correlation (FSC), over the course of training for
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documentation.



the synthetic TRPV1 data. The FSC was calculated between

the 3D rendering from each of fV, fTW, fSH, f�, fOB and f!
compared with the ground-truth volume from which we

generated the synthetic data, and the 0.5 threshold was used

was used, which we denote by FSC0.5. Examples of the

rendered densities are also shown for each method (blue,

green and orange). Remarkably, instant-NGP renders

volumes around �4 Å resolution after training on only a few

hundred images (Fig. 2). This is in contrast to fV, fTW, fSH, fOB

and f!, even though they have a similar number of trainable

parameters of �200 000 or more (fV has �4 000 000).

The noise for the instant-NGP is also unique: there is little

‘noise dust’ in the intermediate renderings, which is consistent

with the multi-resolution hash of instant-NGP (A–E in Fig. 2).

Overall, our results suggest that much less training time is

needed, and that low-resolution features can be learned from

a few hundred images (with known poses). We also quantify

this trend for empirical data: Fig. 11 shows that InstaMap

achieves better resolution than DFI, reaching �10 Å with�60

particles and �3 Å with 20 000 particles.

3.2. Jittering grid points reduces noise overfitting

We observe that excessive epochs with small numbers of

particles yields an InstaMap whose 3D renderings contain

noisy artifacts that appear as ‘small dusty blobs’. We show this

in Fig. 3, where with increased training time, rendered

projections contain similar salt-and-pepper noise features as

observable in the synthetic data, indicating overfitting to noise.

We hypothesized that jittering the grid points would amelio-

rate this effect, at the expense of introducing disagreement in

the signal, which is recovered in expectation. In Fig. 3, we

quantify the trend empirically by overtraining a batch of 1000

particles at various jitter levels, J 2 {0.05, 0.1, 0.5, 1.0, 2.5,

5.0, 7.5, 10.0} Å, highlighting the tradeoff between a limited

resolution and the occurrence of noise artifacts. The FSC-

estimated resolution increases, and this increase indicates a

problematic overfitting after�3000 gradient steps, i.e. epoch 6.

The rendering panel late in training for J = 0.05 shows noise

artifacts appearing. With J = 10 these artifacts are absent in the

projected images, but the resolution plateaus around 12 Å. For

J � 1.0 the resolution reaches 4 Å, but then increases to 7 Å.

Interestingly, there seems to be an optimal level of jittering at

J = 2.5 where the resolution remains at �5 Å and does not

worsen. Jittering is a real-space operator analogous to the low-

pass Fourier filters commonly used in cryo-EM reconstruction

software: uniformly jittering coordinates in a box becomes a

convolution with a box (top-hat) filter in expectation, and thus

a sinc filter in Fourier space, as illustrated in Fig. 4. Although

Fourier filtering could also be introduced in the input data set,

or on the fly in the loss function, there is a major difference in

applying jittering: it smooths out the scalar function implicit in

the neural network without the need for filtering, which can

be useful for super-resolution rendering or computation of

numerical derivatives that do not required advanced noise

stabilization (van Breugel et al., 2020). Furthermore, it can be

applied locally at different levels for different spatial locations.

This is an example of how our real-space-based representation

has advantages over the Fourier-space alternatives popularly

employed.

3.3. A large instant-NGP hash size achieves high resolution

faster

The number of trainable parameters in InstaMap is

controlled through a ‘Grid’ encoder and MLP decoder

configuration in tinycudann, with various hash settings

outlined in Section 2.3. The original authors of instant-NGP

emphasized that only the hash size and finest resolution need

to be tuned to the task (Müller et al., 2022; Table 1). We
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Figure 2
Instant-NGP trains fast. Resolution of the TRPV1 ion channel using instant-NGP versus various real-spaced representations for synthetic data (10 000
particles). Volume resolution, measured with the Fourier shell correlation (FSC), is shown as a function of the gradient-training steps for varous real-
spaced volume representations. All representations have a similar number of training parameters (�20 000), except for the voxel representation which
has 4.1 million, �20� more. The FSC was calculated against the reference structure from which the synthetic data was generated, with a threshold value
of 0.5 used to estimate the resolution. Example 3D volumes are shown at the indicated time points (A, B, C, D and E).



adapted the hyperparameters of instant-NGP to our cryo-EM

problem by matching the finest resolution based on the

Nyquist frequency of the observations, and performed

experiments on the hash size with a lightweight two-layer

MLP with 64 or 128 neurons each. Fig. 5 shows that InstaMap

with a hash-map size of F = 212–222 at L = 8 levels for a total

number of trainable parameters of 75 000–11 400 000

(Table 1) suffices to reach FSC0.5 resolutions of 7–10 Å after

training on a few hundred particles and up to 3–4 Å after a few

thousand. However, smaller hash sizes took longer to reach

higher quality resolutions and some did not reach resolutions

better than 10 Å. This is not surprising since these small

instant-NGP architectures contain few trainable parameters

(�35 000). Comparing the performance of a mid-sized hash

map with the frequency neural scalar field and voxel repre-

sentations, 212ðf
big enough
� Þ ’ 75 000ðf too small

! Þ ’ 433ðf too small
V Þ,

illustrates that InstaMap can quickly reach high resolutions

with a number of trainable parameters that corresponds to a

lightweight frequency neural scalar field or a real-spaced

volume downsampled to a 43-pixel box size [(212 = 4096) �

(75 000 ’ 433 = 79 507)].

As mentioned in Section 2.2, the number of total grid points

in the viewing direction, Gz, is a hyperparameter. It is

uncoupled from the pixel size of ŷ. In Fig. 6 we show that

InstaMap trains faster with more points, and we settled on

using 64 or 128. Interestingly, with |Gz| as low as 2, 4 or 8,

InstaMap still reaches a good FSC, although there are ‘dotting’

artifacts in the rendered maps. At |Gz| = 16, 32, 64, 128 there

are no such artifacts.

3.4. Instant-NGP reconstructions on empirical data can

achieve high resolution

Having validated our pipeline on synthetic data, we

assessed the ability of InstaMap to analyze real experimental

cryo-EM data sets: TRPV1 and apoferritin (see Section 2.6).

Firstly, we compared the performance of InstaMap in early

training with direct Fourier inversion (DFI), a classical solu-

tion to tomographic projection implemented in many iterative
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Figure 3
Jittering regularizes InstaMap. Volume resolution at FSC0.5 as a function of the number of particles used for training for different jittering scaling values
J. The loss is shown as insets for the training and validation sets. With few (<1000) particles and many (>20) training epochs, InstaMap fits high-resolution
noise. This can be ameliorated by jittering the grid and increasing its scaling J. This acts in a similar way as a low-pass filter, preventing both high-
resolution signal and noise overfitting, as can be seen from the light-blue (J = 0.05) and dark-blue (J = 10) panels on the right for two poses. For each
example pose, the four subpanels from top to bottom show the top view of the TRPV1 ion channel: projected reference volume, synthetic data point,
projected InstaMap with CTF and projected InstaMap. These are shown for increasing InstaMap training time points at gradient steps 47, 94, 522, 4985
and 9495.

Table 1
Number of trainable parameters versus hash-map size.

The number of trainable parameters arises from the number of levels (L) and
also includes those from the decoder (two-layer MLP with 128 neurons each)

and assumes an output volume size of n3 = 1603.

No. of trainable parameters Hash-map size

35000 210

75000 212

200000 214

610000 216

1800000 218

5100000 220

11400000 222
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Figure 4
Jittering is equivalent to convolving with a sinc filter in expectation. The one-dimensional signal f ðxÞ ¼ exp� 0:12x2

� ½0:4x2 sinð10�xÞ� is shown for different
levels of jitter J 2 {0.5, 1, 1.5} and different levels of averaging {1, 5, 50, 500, 5000}. In expectation, jittering corresponds to a real-space convolution with a
top-hat filter. This agrees with the equivalent operation in Fourier space via the convolution theorem, where it corresponds to multiplication by a sinc
filter.



refinement methods (Penczek, 2010; Glaeser et al., 2021). We

use DFI here following the terminology from Scheres (2012a)

to refer to algorithms that perform the merging of the 2D

information from images into a 3D reconstruction in Fourier

space. DFI is related to filtered back-projection and Fourier

gridding, and their distinction relates to how interpolation

errors are corrected for (real space or Fourier space); see the

sections Theory: Conventional Methods and Experimental

Procedures: Implementation in Scheres (2012a) for more

detail. We compared volumes reconstructed from two disjoint

subsets of various sizes, and used the FSC tool in RELION

(Kimanius, Dong et al., 2021), reporting the frequency at

which the FSC was below 0.143, as commonly used in the

community (Kleywegt et al., 2024). Concretely, we used

relion_reconstruct to perform DFI, which resulted in

maps that were sometimes visually noisy, likely due to the

lack of spectral weighting (map sharpening). We used

relion_postprocess to compute the FSC, which shar-

pens maps with a filter derived from the FSC. This experiment

was performed with the TRPV1 empirical data. As expected

the resolution increased with more particles (Fig. 11). To

compare DFI with InstaMap, we independently trained two

InstaMaps using the same disjoint particle half-sets and

FSC0.143 criteria as in the DFI case. In the regime of dozens to

a few hundred particles InstaMap reaches �10 Å resolution,

with DFI at a similar value of �13 Å. One limitation of the

FSC with noisy half-maps is that they may correlate with each

other, but not with an accurate high-quality map. This happens

when two maps experience the same bias during early stages

of reconstruction, despite not being an accurate estimation of

even their own final reconstruction. This is a limitation of the

FSC as a validation metric. Therefore, we also compared with

DFI by using the FSC with a reference map. To avoid bias, we

used a reference map from DFI for the DFI FSC and a

reference map from InstaMap for the InstaMap FSC. These

reference maps were from an independent half-set of 47 921

particles, i.e. a half-map (Fig. 11). Fig. 11 shows that for small

batches of particles, InstaMap renders maps with a similar

resolution as DFI. We also note that for these small sets of

particles the InstaMap training time (minutes to tens of

minutes) is roughly of the order of that for DFI (tens of

seconds to minutes), because InstaMap has completed only

one epoch of training. Concretely, on an NVIDIA A100-

SXM4-40GB GPU, InstaMap is able to update at the rate of

34� 1 particles per second for hash sizes of 212–222 for TRPV1

synthetic data. For a run time of 10 min, this corresponds to

analyzing 20 400 � 600 particles. Most experiments were

performed in one epoch. For 100 000 particles this run time

corresponds to 49 min. These run-time estimates neglect any

computing validation metrics.

The artificially high-resolution FSC between instant-NGP

half-maps is due to them training in a similar way, indicating a

similar inductive bias that carries correlating high-resolution

detail. When we compare the FSC with the reference, it

gradually improves and does not have any early training

artifacts. This result cautions against naı̈vely relying on the

FSC between half-maps as a validation metric when there is

relatively strong inductive bias in the volume representation.

We then performed reconstruction experiments on both

TRPV1 and apoferritin empirical data sets and reached a

similar resolution compared with DFI. Fig. 7(a) shows both

specimens aligned side by side for visual comparison of

fine details and artifacts. The three graphical panels in

Figs.7(b)–7(d) show the loss over the course of training for

training (Fig. 7a) and test (Fig. 7b) sets, as well as an FSC

between the DFI and InstaMap volumes for apoferritin

(Fig. 7c). The three loss curves (scaled between 0 and 1) for

lCC, lMSE and lBioEM show a similar trend for decreasing vali-

dation loss. However, lCC shows much less variance during

training, which is likely due to the invariance to multiplicative

and additive global scaling from w. This is often a desirable
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Figure 6
A large number of query points |G| reaches high resolution faster. The
number of grid points in the imaging direction used to query instant-NGP
is controlled by the depth_samples=|Gz| hyper-parameter of
InstaMap. This has no effect on the total number of trainable parameters,
but rather the memory and run time.

Figure 5
A large instant-NGP hash size achieves high resolution faster. The hash
size (F ) of instant-NGP is controlled by the log2_hashmap_size key
passed in the encoder configuration. This has a large effect on the total
number of trainable parameters, which is shown in Table 1.



property, and thus further investigation is merited, especially

with empirical data, which can contain large outliers due to

latent variable inaccuracies (pose, CTF etc.) or ‘junk particles’.

We thus used lCC for all other homogeneous reconstruction

experiments.2 We note that the losses decreased more slowly

for empirical data compared with synthetic data, which is not

surprising given that empirical data have different noise

statistics compared with the Gaussian white-noise model that

we used to generate synthetic data. Notably, InstaMap trained

on 80 000 particles reached a similar level of visual detail as in

DFI (after filtering in RELION post-processing tools via two

half-maps of 80 000 particles), suggesting that the resolution

is limited by the empirical data (pose-estimate accuracy,

heterogeneity and noise).

Interestingly, even though the volume from InstaMap has

not been spectrally filtered, it is very similar in appearance

with minimal high-frequency noise, which is likely to depend

on the power spectra of the input particles, which decayed at

high frequency in these EMPIAR particles stacks, although

this is not always the case in EMPIAR.

3.5. Masking via subsetting coordinates

We masked by restricting the pose-specific query points Gi

to fall inside a mask. An arbitrarily shaped mask is provided as

an input file (float datatype) and linearly interpolated at the

pose-specific query points. The grid points above some cutoff

(in our experiments we used zero) are cast to a Boolean

datatype, i.e. binary mask. The pose-specific projection matrix

(M) is formed for the subset of grid points that fall within the

mask. Fig. 8 shows a slight loss of detail as the mask is made

smaller and also shows how detail emerges during the

optimization (training). In particular, note how the smallest

reconstructed subvolume (Fig. 8b) fills out the medium

reconstructed region; also note the similar quality of features in

the medium (Fig. 8c) and large (Fig. 8d) regions. One of the

challenges of validating small masked regions with the FSC is

that regions at the boundary of the mask have sharp transitions
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Figure 7
Instant-NGP reconstructions of empirical apoferritin and TRPV1 cryo-EM images can achieve high-resolution details. (a) Direct Fourier inversion
(DFI) and InstaMap reconstructions (with lCC) are shown side by side for visual inspection. Both methods used a similar number of particles (DFI, 80 000
� 2 for two half-maps; InstaMap, 80 000). (b, c) Reconstructions with each loss function (lCC, lMSE, lBioEM) were performed and are shown as a function
of training time for apoferritin. The training loss was smoothed with a running average of size 10 000. The noise level � = 3 was assumed for lCC and lMSE,
but note that it is merely a multiplicative scaling. (d) The FSC of apoferritin is computed between the DFI and InstaMap maps that are shown.

2 We did use lMSE for some heterogeneity experiments.



that carry high-frequency content; thus, when small regions

share this boundary they can correlate at high frequency

despite disagreeing in the interior. To avoid this confounding

phenomenon we looked at non-FSC validation metrics.

Fig. 8(a) shows an increase in real-space 3D volume correla-

tion, decreasing validation loss (lCC), and better visual detail

(Fig. 8h) over training time for a small region. Note that soft

masks can be used in our approach, which avoid a sharp

boundary.

3.6. Inferring heterogeneity via bending space

In contrast to cryo-EM heterogeneity methods that displace

mass (Zhong, Lerer et al., 2021b; Rosenbaum et al., 2021; Chen

& Ludtke, 2021; Chen et al., 2023; Schwab et al., 2024;

Vuillemot et al., 2023), here we bend space. This distinction

is made in literature on point-based rendering/splatting

(Kopanas et al., 2021; Kerbl et al., 2023). The fluid dynamics

community has developed related terminology in the form of

two modelling traditions for flow fields: (i) the Lagrangian,

which tracks pieces of mass through trajectories in a velocity

field and is often simulated mesh-free (displaces mass), and

(ii) the Eulerian, which focuses on fixed points in space

through which material flows and often uses a fixed mesh

(bends space; https://en.wikipedia.org/wiki/Lagrangian_and_

Eulerian_specification_of_the_flow_field). InstaMap models

heterogeneity through deforming the spatial queries into the

globally learned reference field (line 12 in Algorithm 1). Our

approach is similar to how space is bent in another cryo-EM

heterogeneity inference method, Zernike3D: see equations 4,

5 and 9 in Herreros et al. (2023). Bending space, as we employ

this term, is ‘image warping’ from digital image processing,

where there is a spatial transformation that warps coordinates

to produce mappings between input and output images.

Standard treatments distinguish forward and reverse mapping

(see Sections 3.1.1 Forward Mapping and 3.1.2 Reverse

Mapping in Wolberg, 1994). In forward mapping, the warping

function sends input coordinates (and the respective intensity

at this coordinate) to output coordinates, and requires accu-

mulators or interpolation to resolve issues with clashes and

holes. Reverse mapping applies a function to output coordi-

nates, such that the inverse coordinate (and its associated
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Figure 8
Masking preserves most detail. Loose masks were constructed with our own implementation of cosine filtering after segmentation in Chimera (Meng et
al., 2023) with Segger (Pintilie, 2010). Small (e), medium ( f ) and large (g) masks were created, with density reconstructed in dark blue (b), aqua (c) and
light blue (d), respectively. (b) Reconstructed density inside the small mask is colored dark blue, with density from the other regions shown in gray
(darker gray for medium, lighter gray for large). (c) Reconstructed density inside the medium mask is colored blue, with density from the large region in
gray. (d) Reconstructed density inside the large mask is colored light blue. For the smallest mask, the validation loss in image space (lCC) and volume
(real-)space (Pearson correlation, volume r2) improve over training (a), as shown visually (h) for gradient steps 10, 30, 100, 300, 1000, 3000, 10 000 and
180 000.

https://en.wikipedia.org/wiki/Lagrangian_and_Eulerian_specification_of_the_flow_field
https://en.wikipedia.org/wiki/Lagrangian_and_Eulerian_specification_of_the_flow_field


scalar) are queried. Whereas both Herreros et al. (2023) and

Punjani & Fleet (2023)3 apply forward mapping, here we apply

reverse mapping.

Heterogeneity via bending space was implemented as a

vector field. We ensured SE(3) equivariance through output-

ting the vector field onto a regular grid in a canonical frame.

We then query the canonical vector field at the same rotated

and translated set of points that it linearly preturbs. The

perturbed points query the global scalar density in a reverse

mapping manner; see equations (7) and (8). This was inferred

per image via amortized inference, where global parameters

’ in F’ are shared between all images, and the output is

estimated for each image. Fig. 9 shows the heterogeneity of

thyroglobulin simulated data, taken from the course-grained

representation of the motion underlying the Inaugural

Flatiron Heterogeneity Challenge (Astore et al., 2023).

Fig. 10(a) shows that the inferred vector fields are similar

between images from the same heterogeneity state. Inaccurate

inference of heterogeneity also arises when the shape differ-

ence is obscured by the pose (Fig. 10b), as expected due to the

loss of information by projection. Solutions to the entangle-

ment of pose and shape have been explained and studied

(Klindt et al., 2024), and a disentanglement algorithm has

recently been implemented in 3D reconstruction (Herreros et

al., 2024) for pose and CTF. Applying this type of disen-

tanglement regualrizer in InstaMap would involve repeated

queries of 3D coordinates into instant-NGP, which can be

performed in batch with sufficient memory resources.

4. Discussion and conclusions

4.1. Overview of our contribution

InstaMap adapts the multi-resolution hash instant-NGP to

the cryo-EM inverse problem. A main advantage of Insta-

Map’s multi-resolution hash are fast training and the absence

of confounding artifacts. Our comparisons with other scalar

density parametrizations (fTW, fSH, fOB and f!; with approxi-

mately the same number of trainable parameters, 200 000) and

voxel intensity (�20� more trainable parameters, 4 million)

show that a medium-resolution rendering can be produced

after learning from 50–100 particles. While other methods can

have artifacts (for example dusty noise, a meshy grid or

‘hedgehog spikes’), the renderings from InstaMap appear

gently blurred out, which is expected from the multi-resolution

hash. Structural biologists frequently have to interpret the

biochemical meaning of densities at the limit of reliability,

often working in regimes where these artifacts are present

(Lawson et al., 2021, 2024; Lander, 2024). While the voxel

intensity representation has more parameters, it is challenging

to reach high resolution in cryo-EM with first-order gradient-

based methods. In this context, recent work shows that an

efficient preconditioner can accelerate convergence to high

resolution via stochastic gradient descent (Toader, Brubaker

et al., 2023), showing benefits to representing the object in

Fourier space and benefits over AdamW, the first-order opti-

mizer we used. In our comparisons, we took care to employ a

frequency neural scalar field of comparable size to InstaMap,

but direct comparisons with previously published work

(Donnat et al., 2022; Toader, Sigworth et al., 2023) should take

into account their larger architecture (and therefore better

expected performance), or even be based on memory or run-

time bottlenecks rather than number of trainable parameters.

For instance, the recently published cryoSTAR used a volume

render comprised of a five-layer MLP with 32, 64, 128, 256 or

512 ReLUs (Li et al., 2024). This was in continuity with

methods such as cryoDRGN and related methods (Zhong,

Bepler et al., 2021; Levy, Raghu et al., 2022; Levy, Grzadkowski

et al., 2024). However, with the recent availability of common

data sets and validation metrics for synthetic ground truth

(Jeon et al., 2024) and blinded community challenges (Astore

et al., 2023), it seems a suitable time to compare neural

network architectures by diverse measures of performance.

4.2. Comparison with the current state of the art

When veteran experts in the field gave us feedback on

InstaMap, they raised the legitimate question of its similarities,

differences and benefits over the current state of the art. In

this section, we provide a reflection based on the dictum

respice, adspice, prospice: look to the past, look to the present,

look to the future. Our overall goal in this project was to adapt

a neural implicit representation of the volume to cryo-EM

reconstruction via end-to-end gradient-based learning, and

this involves several conceptual differences from current state-

of-the-art cryo-EM reconstruction pipelines, which we now

attempt to distinguish.

In order to meaningfully engage in this question with clarity

and precision, some distinctions are in order. First off, what

is meant by current state-of-the-art approaches? While

expectation-maximization solutions to maximum-likelihood

or maximum-a posteriori objectives remain an integral part of

state-of-the-art pipelines (Tang et al., 2007; Punjani et al., 2017;

Grant et al., 2018; Kimanius, Dong et al., 2021), gradient-based

methods that are often parametrized by differential

programming approaches (i.e. deep learning and neural

networks) are also quite popular, in particular gradient-

descent methods in ab initio reconstruction.

Another distinction is numerically employing the Fourier

slice-projection theorem to invert images into a 3D volume

via filtered back-projection (FBP) or DFI of CTF-corrected

images. Indeed, it is one thing to leverage the analytical

inversion of the forward model via slice insertion, and another

to optimize global variables that implicitly define the volume

[for example with gradient-based methods as in Nashed et al.

(2021), Kimanius et al. (2022) and Shekarforoush et al. (2024)].

The nuance with this distinction is that these gradient-based

methods are using the Fourier slice-projection theorem in the

differentiable forward model, and updating the gradient based

on matching the ‘clean signal’ of the per-measurement (pose,

heterogeneity) volume representation with the observed

image. We note that inference via gradient-based optimization

could still be performed with more complicated (but still
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3 See Methods, Convection operator: ‘the flow in 3DFlex, ui, is a forward
mapping from canonical coordinates in V to the deformed coordinates in Wi’.



differentiable) forward models of scattering (for example

multislice; Kirkland, 2020; Himes & Grigorieff, 2021;

Parkhurst et al., 2021; Nguyen et al., 2024) where inverting 3D

! 2D scattering via 2D! 3D slice insertion does not hold.

The term ‘end-to-end’ typically emphasizes the lack of

feature extraction from raw input data; see the introduction

and related work section of Mukherjee et al. (2021) for end-to-

end reconstruction in inverse problems in the context of data-

driven regularization. As alluded to above, a major benefit of

end-to-end gradient-based approaches is that the forward

model (from latents to observed variable) of image formation

can be made complex yet tractable, without being concerned
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Figure 9
Heterogeneity via bending space. Two reference volumes of thyroglobulin (a) are similar to their inferred heterogeneous volumes (b). (c) Heterogeneity
is visualized from 1000 averaged vector fields conditioned on their predicted class (as determined by clustering the vector-field cosine similarity matrix;
see Section A7) and shown as a 2D slice averaged from the middle eight voxels. The magnitude is visualized as opacity and the angle as color; they are
overlaid with a quiver showing the direction.
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Figure 10
Entanglement of heterogeneity vector fields with pose. Inaccuracies are entangled with pose due to information loss of the projection of density from 3D
! 2D. After training, vector fields for (test-set) images from two thyroglobulin states were inferred from their respective images (1960 in state A; 1960 in
state B). (a) Cosine similarity between predicted latent variables (predicted per-image vector field and predicted per-image density) is significantly
higher within states (0.75� 0.20, 0.66� 0.23) than between states (0.30� 0.12), as indicated by the block structure. (b) The distributions of the accuracy
measure, conditioned on ground-truth heterogeneity, are not completely separated, and we show the 6% overlapping region in red (dark red for state A,
light red for state B). (c) Images with more accurately inferred heterogeneity (blue) have a pose that reveals more about the conformational
heterogeneity (see Fig. 9a; axis 0), while images in the less accurate region (red) have a view that obscures the conformation (see Fig. 9a; axes 1 and 2).
(d) The pose conditioned on inferred heterogeneity shows the entanglement: the pose distribution of images with more accurately inferred heterogeneity
is different from the pose distribution of less accurately inferred heterogeneity. Thus, while the ground-truth distribution of pose and heterogeneity are
independent, the inferred heterogeneity is entangled with pose.



with explicitly inverting the model (from observed variable to

latents). In this work, we did not ‘undo’ the heterogeneity in

each image, and then average them together via DFI, although

end-to-end methods have been combined with inversion to

improve high-resolution features under continuous deforma-

tions in the promising and thoughtful work of Schwab et al.

(2024). In our case, while the addition of the vector field to the

grid coordinates is invertible (it can be subtracted; see line 8 in

Algorithm 1), this can be relaxed to have a richer relationship.

This raises the question of what types of forward models are

desirable, and how their richness and flexibility effects their

interpretability and uniqueness, and numerical trade-offs.

End-to-end approaches can be combined with symbolic/

algebraic inversion/manipulation of the bespoke cryo-EM

forward model, for instance in our modification of the BioEM

loss function in Sections 2.5 and A4. There we marginalized

out unknown parameters in the likelihood. The end-to-end

optimization of the scalar density, including its overall

magnitude, introduced a numerical issue that drove the

magnitude to zero under this loss. We solved this by re-

deriving it under a broad Gaussian centered at a numerically

stable (nonzero) value.

In a comprehensive survey of methods using data-driven

perspectives to solve inverse problems, Arridge et al. (2019)

distinguish various forms of regularization: (i) approximate

analytic inversion (for example filtered back-propagation

for computerized tomography and cryo-EM), (ii) iterative

methods with early stopping, (iii) discretization as regular-

ization and (iv) variational methods. Here, we did not use the

approximate analytic inversion of DFI after CTF correction,

which corresponds to regularization form (i). We also showed

that regularization by real-spaced jittering allowed us to avoid

some artifacts, and not tune the number of training epochs for

early stopping (ii), as shown in Fig. 3. The discretization of

InstaMap’s heterogeneity vector field (F’) is regularized by

having nearby coordinates (in our experiments on the order of

several ångströms) be close due to linear interpolation,

thereby promoting smoothness (iii). Finally, explicit regular-

izers on the global volume or vector field are an example of

(iv), although we did not employ them in this work.

4.3. Alternative representations of heterogeneity

In various cryo-EM methods, the representation of

heterogeneity is intimately coupled to the representation of

volume (Donnat et al., 2022; Toader, Sigworth et al., 2023),

which can be voxelized or coordinate-based and employ

learnable (for example neural) or fixed (for example Fourier,

Zernike) bases. In our work, the volume is treated as coor-

dinate-based with global variables shared by all of the obser-

vations, and we bend space rather than displace through

modelling a vector field that we interpolate from a regular grid

onto a rotated and translated set of points. Future work could

include priors/regularizers on the vector field, suitable for the

union of rigid-body transformations from different domains

and secondary-structural elements (Koo et al., 2023), and near-

incompressibility (Punjani & Fleet, 2023). Here, we have used

an additive transformation to perturb the coordinates, essen-

tially bending space along straight lines, but in future work it

could be bent along more structured trajectories such as

curves or parametric transformations on coordinates. We also

chose to estimate a vector field per image, but it could instead

be a global variable, with a per-image coordinate estimated.

Inference via amortization with a neural encoder versus per-

image optimization of vector field are not mutually exclusive.

Amortized inference could be used to initialize the optimi-

zation of a local per-image vector field latent, as has recently

been performed with pose in a two-stage manner which

improved accuracy and showed the accuracy limits of amor-

tization with a neural encoder (Shekarforoush et al., 2024).

Our method could be extended to compositional hetero-

geneity by training multiple scalar volume fields (similar to

Levy, Radhu et al., 2024), and perhaps by applying bespoke

disjoint masks. However, to employ an implicit neural density

and then attempt to model conformational heterogeneity via

displacing mass rather than bending space seems awkward to

implement in InstaMap. Concretely, how would one displace

the mass from 3D grid points (which depends on their real-

spaced coordinate query into the implicit volume), and also

move their location to be on the set of fixed 3D ! 2D

projections, in a differentiable way that respects pose? While it

may seem feasible in a dense way, we think that more thought

is required on how to maintaining differentiability while

employing sparse data structures to achieve small memory

allocations.

Encouragingly, significant advances rendering dynamic

scenes with NeRFs have been made. Techniques such as

D-NeRF (Pumarola et al., 2021) and HyperNeRF (Park et al.,

2021) approach scene dynamics by treating deformation as an

auxiliary field, akin to an Eulerian representation, where

changes are mapped relative to fixed spatial points. In

contrast, ModalNeRF (Petitjean et al., 2023) adopts a funda-

mentally different perspective by employing a Lagrangian

representation, viewing motion through the lens of particle-

based fields. This method notably applies modal analysis to

capture the intrinsic oscillations of objects, making it uniquely

suited for the complex and nonrigid nature of proteins and

biomolecules in cryo-EM studies.

4.4. Extending to joint estimation of pose

As a proof of concept of the benefit of using instant-NGP,

InstaMap exclusively focuses on volume inference. We

assumed that the input data were annotated with accurate

estimates of pose and microscope parameters. The next

natural step would then be to extend the framework to pose

inference.

Extending the current work to jointly infer the pose (i.e. ab

initio reconstruction) or pose refinement could be performed

by several inference methods, such as (i) amortized inference

of the pose from 2D images through training a network to

predict the rotational element 2 SO(3) or full pose 2 SE(3) as

has been performed by multiple methods (Nashed et al., 2021,

2022; Koo et al., 2023; Levy, Poitevin et al., 2022; Levy, Wetz-
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stein et al., 2022), (ii) dictionary learning where the explicit

index of each observation is associated with an inferable pose

(see the commentary in Edelberg & Lederman, 2023), (iii) an

explicit search strategy such as branch-and-bound (Punjani

et al., 2017; Zhong, Lerer et al., 2021) and (iv) search and

Bayesian marginalization with repeated likelihood evaluations

(Scheres, 2012b; Cossio et al., 2017; Tang et al., 2024), and more

recently performant use of search or amortized inference with

a final stages of gradient descent (Levy, Grzadkowski et al.,

2024; Shekarforoush et al., 2024). Perhaps the feasibility of the

specific inference method depends on the actual specimen

being estimated. In our case, given the current PyTorch

implementation of Algorithm 1, multiple evaluations of f� at

latent poses for one observation may result in a significant

memory demand, although querying of f� can be performed

sequentially in a large batch to keep memory demand low,

as there are other (run-time) computational bottlenecks in

Algorithm 1 that are less memory-intensive. Furthermore, in

the current iteration of InstaMap, heterogeneity implicitly

refers to one reference map (i.e. when F’ = 0). Therefore, it

seems reasonable that poses could first be roughly inferred via

consensus reconstruction and then be iteratively refined by

predicting a pose residual by various methods.

In contrast to the approaches outlined above, employing

classical computer-vision methods such as Structure from

Motion (SfM) and newer techniques of joint optimization of

poses and neural fields could pose a challenge. For example,

traditional approaches, such as COLMAP (Schönberger &

Frahm, 2016), are designed for scenarios where images have

easily detectable and overlapping features, a condition that is

not met by cryo-EM images. Similarly, cutting-edge trends in

combining pose estimation with neural radiance face signifi-

cant hurdles. Methods such as BARF (Lin et al., 2021), for

instance, require precise starting points for effective applica-

tion, a requirement that is often unfeasible in the context of

cryo-EM data. Generative and adversarial-based techniques,

such as GNeRF (Meng et al., 2021) and VMRF (Zhang et al.,

2022), typically require large data sets and complex training

processes. These methods hinge on the assumption that the

distribution of poses follows certain predictable patterns, an

assumption that may not hold true in cryo-EM. Two methods

that are particularly applicable to cryo-EM data are worth

noting: MELON (Levy et al., 2023) and LU-NeRF (Cheng et

al., 2023). Both methods group images into subgroups in an

initial phase. MELON divides the latent space into subsets of

equivalence classes, each supervised by ground-truth data,

while LU-NeRF groups images into subgroups, employing

self-supervised deep features for this initial categorization.

Further empirical demonstrations are required to determine

whether any of these approaches sufficiently align with the

data characteristics and forward model structure in cryo-EM.

4.5. Future outlook

The promise of using existing solutions of the neural

implicit ecosystem to incorporate pose estimation and

dynamics into the InstaMap framework established here

speaks to its potential as a viable solution as an end-to-end

framework for problems in cryo-EM.

Can we directly obtain atomic models from 2D images? On

the forward model/representation side, the recent advances of

Gaussian splatting for scene rendering (Westover, 1991; Kerbl

et al., 2023) are a clear future direction of this framework as

this should facilitate the direct fitting of atomic coordinates

rather than volume densities. Atomic models as the underlying

latent are a strong inductive bias: domain knowledge about

the underlying specimen and its dynamics from biomolecular

simulation and quantum chemistry sets cryo-EM (and all

of structural biology) apart as a privileged inverse problem.

New methods employing coordinate representations in some

manner have already revealed insights on empirical data sets

that infer directly on 2D image data, synthetic (Nashed et al.,

2022; Koo et al., 2023) or empirical (Chen & Ludtke, 2021;

Chen et al., 2023; Li et al., 2024; Schwab et al., 2024; Dingel-

dein, Silva-Sánchez et al., 2024). These studies testify to the

interest and promise in incorporating atomic coordinate

information, and are thanks to pioneering work (Kimanius,

Zickert et al., 2021; Zhong, Lerer et al., 2021b; Rosenbaum et

al., 2021) that was candid on the challenges experienced.

The discussion section in Kimanius et al. (2024) anticipates

and calls for more discussion around validation, because the

current pipeline of visually comparing scalar density maps

against features from an expected underlying atomic model(s)

is a fruitful heuristic that is not to be underestimated. Schwab

et al. (2024) learned a per-image 3D deformations of a

Gaussian pseudo-atoms model and noted that an atomic

model prior introduced unacceptable bias, but did include

coordinate-based regularizers enforcing smoothness of

deformations, local isometry and repulsion. They also estimate

the error of deformations by training two separate deforma-

tion decoders and checking for agreement (one training subset

is a validation subset for the other network). We also validated

with two networks in Fig. 11, and caution that the inductive

bias that we observed in early training would confound self-

consistency estimates at face value in pathological circum-

stances; however, in our case the inflated FSC value dissipated

after 50–100 particles and did not seem to be an issue other-

wise.

On the inverse model/inference side, we hope to see more

empirical comparisons with state-of-the-art architectures (and

objectives) such as skip connections, transformers, diffusion

models, geometric equi/invariances and topological neural

networks (Bronstein et al., 2021; Papillon et al., 2023),

although we note that in the case of Schwab et al. (2024)

various architectures (with residual connections, more linear

layers or 2D convolutions) or optimizing a local per-image

encoding (i.e. non-amortized inference) were reported to yield

similar results. Furthermore, cryo-electron tomography (cryo-

ET) or in situ cryo-EM, where electron micrographs of slices

of cells are the imaging target rather than purified biomole-

cules, has open problems at which we can point the end-to-end

framework we have employed here in InstaMap. Indeed,

instant-NGP has already been applied to cryo-ET data (Wang

et al., 2023).
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As mentioned in Section 1, the concurrent work CryoNeRF

(Qu et al., 2025) is an extremely similar approach, with minor

differences in implementation, which we deliniate in Section

A8. We are intrigued by these differences and interested to

explore the many permutations of network architecture,

instant-NGP hyperparameters, learned image embeddings,

and interpretable geometric transformations on coordinates in

future work. Cryo-EM is a challenging but meaningful scien-

tific inference problem, and we look forward to its synergy

with methodologies that have proved fruitful in computational

research.

APPENDIX A

A1. Computation

A1.1. Instant-NGP configuration

We used the following configuration settings: otype=

Grid, type=Hash, n_levels=8 (the size of the coarsest

grid), log2_hashmap_size=17 (the number of entries in

the hash table at each level), base_resolution=8, per_

level_scale=exp[log(size/base_size)/n_levels �

1] and size=160 (TRPV1), size=288 (apoferritin) or

size=256 (thyroglobulin). Following the original paper

(Müller et al., 2022), we used a two-layer MLP decoder with 64

(or 128) neurons and ReLU activations. The departures from

this instant-NGP architecture are mentioned in the text.

A1.2. Heterogeneity encoder architecture

We parametrized the per-image heterogeneity encoder via a

MLP neural network, taking the flattened image as input and

outputting a vector field on the regular grid of shape (3, nF, nF,

nF), with nF = 64, corresponding to a downsampling factor of 8

for the 256 box-sized images. The MLP had three layers of 32

neurons, with ReLU activations, which corresponded to 2.14

million trainable parameters.

A1.3. Optimization

We used the AdamW optimizer, torch.optim.AdamW,

with a learning rate of 0.001 times the batch size (1 or 2 in

our studies due to GPU memory limitations) and zero weight

decay. We used a linear warm-up schedule, torch.

optim.lr_scheduler, with a scheduler decay defined by

torch.optim.lr_scheduler.StepLR(..., gamma=

0.7).

A1.4. Codebase

The code is available at https://github.com/flatironinstitute/

InstaMap. We wrote our code base in PyTorch. We made use

the deep-learning framework PyTorch Lightning and the

hierarchical configuration systems OmegaConf (https://

omegaconf.readthedocs.io) and Hydra (https://hydra.cc/).

A1.5. Compute

All experiments were performed on a high-performance

computer cluster with 200 GB of CPU RAM and a single

NVIDIA GPU (a V100, A100 or H100, depending on avail-

ability). Training time lasted from minutes to several hours,

depending on the experiment.

A1.6. Training speed

For homogeneous training speeds, see Table 1 and Figs. 5

and 11. With the heterogeneity network F’ the training speed

decreased to about �10–12 gradient steps per second, with

one image per gradient step.

A run-time breakdown of various steps from Algorithm 1 is

shown in Fig. 12, showing that computing the code blocks that

(i) compute the loss, (ii) generate and apply the CTF and
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Figure 11
InstaMap achieves better resolution during early training than back-projection for empirical data. During early stages of training, i.e. for few images,
InstaMap reconstructions have a better FSC than DFI. We reconstructed half-maps from two disjoint sets of particles of TRPV1 (EMPIAR 10005) with
InstaMap (two independent training runs on disjoint half-sets of particles; blue) and DFI via relion_reconstruct (gray) and estimated their FSC
via relion_postprocess. The reference maps were from the independent half-map from DFI or InstaMap, respectively.

https://github.com/flatironinstitute/InstaMap
https://github.com/flatironinstitute/InstaMap
https://omegaconf.readthedocs.io
https://omegaconf.readthedocs.io
https://hydra.cc/


(iii) query instant-NGP are the largest three bottlenecks (in

decreasing order), while making the projection matrix, which

is performed in each gradient step for the points G, which may

change due to masking, is even slower than jittering the points,

which involves vectorized sampling of uniform noise and one

vectorized addition.

A2. CTF

The CTF has the form

CTF ¼ ð1 � w2Þ
1=2

sin � � w cos �; ð12Þ

where

� ¼ 2�
� ���jkj2

2
þ

1

4
Cs�

3jkj4
� �

� �ps; ð13Þ

where k = (kx, ky) are the reciprocal coordinates, �1, �2, �� are

the defoci and their astigmatism angle, �ps is the phase shift, �

is the electron wavelength, Cs is the spherical aberration and

the spherical aberration-corrected defocus �� = 1
2
{�1 + �2 + (�1

� �2)cos[2(�k � ��)]}, �k = atan2(kx, ky).

This convolution subpart of the forward model of image

formation, F :Rn2

� Rn2

! Rn2

, is differentiable, and thus

automatic differentiation propagates the gradient from the

loss function to �.

F½Pðf�Þ; CTF� ¼ iFFTfCTF � FFT½Pðf�Þ�g ð14Þ

¼ PSF � Pðf�Þ: ð15Þ

A3. FSC

The Fourier shell correlation (van Heel & Harauz, 1986)

is defined between two 3D objects and maps each discrete

bin in Fourier basis to a real-valued correlation,

FSC:Cn3

� Cn3

! R.

FSCab ¼

Re
P

k

FaðkÞ
y
FbðkÞ

� �

jjFaðkÞjj2jjFbðkÞjj2
; ð16Þ

where F(·)(k) is the 3D Fourier transform of the 3D object at

frequency shell k ¼ ðk2
x þ k2

y þ k2
zÞ

1=2, (·)† denotes the conju-

gate transpose and Re is the real-spaced projection operator.

A4. Loss functions

The loss function lCC is equivalent to lMSE, when the two

norm terms of y and ŷ are neglected, and when w is the

identity: w[(·)] = (·).

2�2lMSE ¼ jjy � ŷjj22 ¼ ðy � ŷÞ
T
ðy � ŷ

¼ jjyjj22 � 2ytŷþ jjŷjj22

¼ jjyjj22 þ jjŷjj
2
2 þ 2�2lCC: ð17Þ

The � 2ytŷ cross term is made invariant to a global multi-

plicative and additive scalar by applying, to both y and ŷ,

the function w which subtracts the mean and divides by the

standard deviation,

wðyÞ ¼
y � E½y�

Std½y�

¼
Nðyþ � � E½y� � �Þ

NStd½y�

¼
ðNyþ �Þ � E½Nyþ ��

Std½Ny þ ��

¼ wðNyþ �Þ: ð18Þ

The BioEM loss was originally derived with a flat prior

according to the equation

pðyjŷ; �Þ ¼ ð2��2Þ
� n=2

R
dN
R

d� exp
�
Pn

i¼1ðyi � Nŷi � �Þ
2

2�2

� �

ð19Þ

¼ ð2��2Þ
� n=2

R
dN exp

� b2

4a
þ c

� �
R

d� exp a �þ
b

2a

� �2
" #

;

completing the square ð20Þ

¼ ð�= � aÞ
1=2
ð2��2Þ

� n=2
R

dN exp
� b2

4a
þ c

� �

;

integrating out �; ð21Þ

where

a ¼
� n

2�2
ð22Þ

b ¼
N
P

i yi � Nŷi

2�2
ð23Þ

c ¼ �
P

i

ðyi � NŷiÞ
2

2�2
: ð24Þ

Completing the square again to perform the integral over N,

we see that equation (19) is equivalent to equations (4)–(9) in

the Supplementary Information of Cossio & Hummer (2013).
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Figure 12
Run-time bottlenecks. Various steps in Algorithm 1 are shown with their
corresponding line numbers, ranked from longest to shortest time.



pðyjŷ; �Þ ¼ ð�=� aÞ
1=2
ð2��2Þ

� n=2
R

dN expða2N2 þ b2N þ c2Þ

ð25Þ

¼ ð�=� aÞ
1=2
ð2��2Þ

� n=2
exp
� b2

2

4a2

þ c2

� �

�
R

dN exp a2 N þ
b2

2a2

� �2
" #

ð26Þ

¼ ð�=� aÞ
1=2
ð2��2Þ

� n=2
exp
� b2

2

4a2

þ c2

� �

ð27Þ

where

a2 ¼
n� 1C2

c � Ccc

2�2
ð28Þ

b2 ¼
Coc � n� 1CcCo

2�2
ð29Þ

c2 ¼
n� 1C2

o � Coo

2�2
: ð30Þ

Equation (26) is not invariant to global multiplicative scaling

of ŷ! jŷjŷ0. While the � b2/4a2 + c2 term is invariant, the term

�=� a2ð Þ1=2! jŷj� 1 �=� a2ð Þ1=2, such that prob! prob0=jŷj,

which is maximized in the limit jŷj ! 0. This causes numerical

instabilities in an end-to-end framework, since optimizing f�
can drive jŷj ! 0. Indeed, we observed this in numerical

experiments: with the TRPV1 empirical data set, after about a

few thousand gradient steps the output of f� was sufficiently

close to zero that it rounded to all zeros in finite precision. This

caused numerical instabilities that were insurmountable by

injecting random noise.

The more general loss function that applies the saddle-

point approximation is likewise not invariant to

global multiplicative scaling, and ŷ! jŷjŷ0 gives

prob! ðjŷj2Þ3=2� n=2þn=2� 2prob ¼ prob0=jŷj.

This motivated us to derive a related loss, but with a prior

that was centered around a value that was numerically stable.

The integral can be performed analytically for a Gaussian

prior, which changes the integral over N in equation (25):

pðyjŷ; �; �N; �NÞ ¼ ð�=� aÞ
1=2
ð2��2Þ

� n=2

�
R

dN expða2N2 þ b2N þ c2Þ

� exp �
ðN � �NÞ

2

2�2
N

� �

ð31Þ

¼ ð�=� aÞ
1=2
ð2��2Þ

� n=2

�
R

dN exp½ða2 þ a3ÞN
2 þ ðb2 þ b3ÞN

þ ðc2 þ c3Þ� ð32Þ

¼ ½�=� ða2 þ a3Þ�
1=2
ð�= � aÞ

1=2
ð2��2Þ

� n=2

� exp
� ðb2 þ b3Þ

2

4ða2 þ a3Þ
þ ðc2 þ c3Þ

� �

; ð33Þ

where

a3 ¼
� 1

2�2
N

; ð34Þ

b3 ¼
�N

�2
N

; ð35Þ

c3 ¼
� �2

N

2�2
N

: ð36Þ

A5. Data sets

A5.1. Homogeneous reconstruction of TRPV1 and apoferritin

Synthetic data were rendered for the ion channel TRPV1

from an atomic model from PDB entry 3j5p. We approximated

the density with a mixture of Gaussians placed at each atom

coordinate, corresponding to the parametrization in Lobato &

Van Dyck (2014), and added Gaussian white noise at fixed

� = 3. Experiments in this paper are at a signal-to-noise ratio

(SNR) of �0.045 � 0.002; see Fig. 13 and equation (10) for

more details. The pixel size (1.2 Å), box size (160), poses and

microscope parameters were chosen to match the empirical

data set we used (EMPIAR-10005), which was re-picked in-

house. For our second specimen, we chose apoferritin due to

its ability to reach high resolution and its ubiquity as a refer-

ence sample. All experiments in this paper for apoferritin are

with empirical data (EMPIAR-10421) and use the published

pixel size (0.816 Å) and box size (288). We split the synthetic

and empirical data sets for training and validation in the ratio

95:5.

A5.2. Heterogeneous reconstruction of thyroglobulin

Synthetic data were rendered from a course-grained model

of thyrogobulin from Astore et al. (2023). States were created

by linear extrapolation between the coordinates of two

extrema (r1; r2 2 R
na�3; na is the number of coarse-grained

pseudo-atoms) of the states employed by Astore et al. (2023),

as follows: one state (A) was an extremum (rA = r1) and the

other state (B) was generated by linearly extrapolating the

coordinates along the motion defined by the difference

between the two extrema (�r = r2 � r1), using a scaling factor
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Figure 13
Distribution of SNR for synthetic data of TRPV1. Each SNR is calculated
from equation (37) before the expectation over (here 20 000) images.
Each simulated measurement contains per pixel i.i.d. Gaussian white
noise (� = 3).



of 4, such that rB = rA + 4�r. We approximated the density

with a mixture of Gaussians placed at each atom coordinate,

corresponding to the parametrization in Lobato & Van Dyck

(2014), and added Gaussian white noise at fixed � = 0.1 (more

signal than in other experiments). The poses and microscope

parameters are taken from the empirical distribution of the

data set EMPIAR-10005 (TRPV1). We used a pixel size of

1.5 Å and a box size of 256.

A6. SNR of synthetic data

We computed the SNR using equation (37). Strictly

speaking, each simulated image has its own SNR, because the

variance in the signal is pose-dependent. We show a repre-

sentative distribution of SNRs in Fig. 13.

SNR ¼
Var½signal�

Var½noise�
¼ Ei

Var½yi�

Var½yi � ŷi�

� �

: ð37Þ

A7. Heterogeneity

Heterogeneity is inferred through amortized inference, such

that each image yi has a corresponding SE(3) equivariant

perturbation vector field, Fi, which renders into a 3D volume

f�,i(Gi + Fi) in a reference frame corresponding to Ri = I, Ti = 0

(Fig. 14). Fig. 10 shows vector-field similarities for 1960 images

of states A and B (each), illustrating the accuracy for different

poses, including those where the pose obscures the shape. We

compare per-image vector fields through cosine similarity,

which has a maximum of 1 and minimum of � 1. Based on

these similarities, we define a per-image summary statistic that

measures accuracy:

ai ¼
1

jstate Aj

Pjstate Aj

j2state j

sij þ
1

jstate Bj

Pjstate Bj

j2state B

1 � sij: ð38Þ

The predicted vector fields were inferred from a test set of

images. The departure of the cosine similarity matrix,

fsijg
jstate Ajþjstate Bj¼2�1960
i;j¼1 , from a block diagonal matrix (all 1s on

the two diagonal blocks of 1960 � 1960; a lower value on the

off-diagonal blocks), illustrates the generalization of amorti-

zation. Furthermore, in order to demonstrate how the

heterogeneity could be analyzed without access to the ground

truth we performed clustering (sklearn.cluster.

SpectralClustering(n_clusters=2, affinity=

‘precomputed’, assign_labels=‘kmeans’).

fit_predict(...)} on the cosine similarities of the

vector fields (which requires no access to ground truth), and

used these predictions to condition on in Fig. 9. We verified

that the false positives (23/1960 = 1.17%) and false negatives

(27/1960 = 1.38%) were low, and show the confusion matrix in

Table 2. The cosine similarity between two elements of vector
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Table 2
Heterogeneity confusion matrices.

The number of images in the predicted class and true class are shown, with
corresponding accuracy, sensitivity/recall, specificity and precision for (vector

field; image pixels): (98.72%; 49.97%), (98.83%; 99.85%) and (98.62%;
0.10%), (98.63%; 49.99%), respectively.

Predicted vector-field cosine similarity Observed image pixels L2

Predicted Predicted

Actual + � + �

+ 1937 23 1957 3

� 27 1933 1958 2

Figure 14
InstaMap models heterogeneity by bending space. Cryo-EM images yi (left) with annotated pose and imaging parameters (Ri, Ti, PSFi) are used for
gradient-based learning. A vector field in a fixed frame is queried at the rotated, shifted and jittered grid to provide a per-image SE(3) equivariant output
Fi. Space is bent via an additive perturbation on the corresponding rotated, shifted and jittered grid. The remaining pipeline is per Fig. 1.



fields is a suitable inner product on this space, and efficient to

compute (seconds for thousands of vector fields). We compute

a similarity matrix on the image pixels themselves (L2 norm of

the residual), taking no care to perform in-plane rotation, and

perform out-of-the-box spectral clustering as outlined above.

Table 2 quantifies the poor performance of classifying based

on an image L2 similarity, thereby underlining the fittingness

of an SE(3) invariant vector field as a per-image latent

embedding. Furthermore, the vector field itself could be

analyzed in more detail: through masking around a region of

interest, or dimensionality-reduction techniques such as

principal component analysis or uniform manifold approx-

imation and projection (UMAP), as is commonly performed

for neural network encodings of heterogeneity.

A8. Comparison with concurrent work employing

instant-NGP

The projection in Qu et al. (2025) is performed with a

torch.scatter operation along a ray of density values

in the imaging direction, rather than multiplication with a

projection matrix (type torch.sparse_csr_tensor) to

the same effect. They model heterogeneity through concate-

nating the Grid encoding (of coordinates) with an encoding

of each image (from a ResNet architecture), before decoding

that with a light-weight MLP. Thus, rather than employing

an explicit geometric transformation on coordinates, and

querying into a learned reference volume, they map 2D image

and 3D coordinates to 3D scalar values. Their instant-NGP

configuration (n_levels: 16, n_features_per_

level: 2, log2_hashmap_size: 19, base_

resolution: 16, per_level_scale:

1.4472692012786865) is similar to ours (n_levels:

8, log2_hashmap_size: 19–22, base_

resolution: 8, per_level_scale: exp[log(size/

base_resolution)/n_levels � 1]) except that we use a

smaller n_levels, an equal or larger log2_hashmap_

size, a smaller base_resolution and a smaller

per_level_scale [1.204 for TRPV1 (size 160), 1.240

for thyroglobulin (size 256) and 1.249 for apoferritin (size

288)]. The full meaning of these parameters is explained in

the instant-NGP documentation (https://github.com/NVlabs/

tiny-cuda-nn/blob/master/DOCUMENTATION.md#grid).
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