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Abstract

Most algorithms for three-dimensional (3D) reconstruction from electron micrographs assume that images correspond to projections

of the 3D structure. This approximation limits the attainable resolution of the reconstruction when the dimensions of the structure

exceed the depth of field of the microscope. We have developed two methods to calculate a reconstruction that corrects for the depth of

field. Either method applied to synthetic data representing a large virus yields a higher resolution reconstruction than a method lacking

this correction.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The three-dimensional (3D) reconstruction of a biologi-
cal molecule or complex from images of single, isolated
particles is an important step in electron microscopy (EM)
of macromolecules. The reconstruction algorithms com-
monly used assume that the images are projections of the
three-dimensional (3D) object. Although this assumption is
a valid approximation for many situations, it breaks down
when the size of the object and the desired resolution
exceed the depth of field of the microscope [1]. The present
work describes two methods to accommodate the depth of
field in the reconstruction and alignment of single particles
without the use of tilt or defocus pairs. We demonstrate the
validity of the approach using simulations.

2. Theory

2.1. Ewald construction

A 3D reconstruction algorithm can be understood most
easily by considering its action in reciprocal space. The
front matter r 2005 Elsevier B.V. All rights reserved.
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Fourier transform of the data from each image does not
correspond to a plane through the origin (central section)
but rather to the surface of the Ewald sphere (EWS, [2])
that passes through the origin of the 3D Fourier transform.
The construction in Fig. 1 shows that the deviation, Dz,
between the sphere and a plane increases with increasing
resolution (determined by the length of the vector g). The
value of the Fourier transform of the object differs between
the two points B, where the transform is sampled, and B0,
where the data corresponding to a projection lies; the larger
the difference, the greater the deviation of the image from a
projection. The magnitude of the difference depends on the
dimensions of the object and is larger for objects having a
longer dimension along the beam direction.
The error made in the reconstruction when using the

planar approximation depends, therefore, on the resolu-
tion, the size of the object, and the radius of the EWS (the
wavelength of the radiation). DeRosier [1] performed an
analysis of the expected phase error between B and B0 and
showed that a phase error of 661 for the planar
approximation of a spherical shell, such as a virus, occurs
at a resolution R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:7=ðtlÞ

p
(0.7 is a dimensionless

empirical factor for a spherical shell, object diameter t and
wavelength l are given in units of Å) [1]. For example, for a
virus of 500 Å diameter and a wavelength of 0.025 Å
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Fig. 1. Represents a slice through the 3D transform along the x2z plane.

An incident beam along the z-axis is scattered by the object, which emits

two symmetrically scattered beams at scattering angles 2y. The center of

the EWS lies back along the beam direction by a distance of 1=l from the

origin of the reciprocal space coordinate system. The EWS surface

represents all possible elastically scattered (diffracted) waves. The

amplitude and phase of the Fourier transform at the position k correspond

to the amplitude and phase of the wave scattered in the direction k. Waves

scattered by the same angle 2y are represented by a pair of left and right

scattered waves, kL and kR. The scattered waves are recombined by the

objective lens of the electron microscope and form an image by

interference between each other and the unscattered beam. The amplitude

and phase that are recovered from the image and that correspond to the

scattering angle 2y are a linear combination of FL and FR, the Fourier

components for the left and right beam, respectively. If Dz is small, then

FL and FR are Friedel related; that is, they are complex conjugates of one

another. In this case, FL and FR can be recovered. At sufficiently high

resolution, Dz is large enough that FL and FR are not related and cannot

be recovered from a single image.
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(200 kV electrons), R ¼ 1/3.0 Å�1. At lower resolution, the
errors are smaller but still significant.

2.2. Measured data

2.2.1. Beam combination

The two beams scattered at the angle 2y are combined by
the objective lens of the microscope, which causes them to
interfere with the unscattered beam in the image plane.
Assuming a thin specimen (a weak phase object), the
scattering can be described as

At

A0
� 1� irðxÞ (1)

(e.g. [3]). In the image, the combination (Fobs) of the
Fourier coefficients of the right (FR) and left (FL) beam,
modified by the contrast transfer function (CTF) of the
lens, is recorded (Fig. 1). As derived by DeRosier [1], the
resulting real (Robs) and imaginary (Iobs) parts of the
Fourier transform of the image are

Robs ¼ ðRR þ RLÞ sin wþ ðIR þ ILÞ cos w,

Iobs ¼ �ðRR � RLÞ cos wþ ðIR � ILÞ sin w. ð2Þ
RR and RL are the real parts of FR and FL, respectively,
whereas IR and IL are their imaginary parts. Eq. (2) can be
rewritten as

Fobs ¼ �iFR eiw þ �iFL e
iw� ��

. (3)

� indicates the conjugate complex operation. w describes the
CTF of the microscope (e.g., [5,6]):

w ¼
pCSl

3g4

2
� pDf l � g2, (4)

where CS is the third-order spherical aberration coefficient,
Df the change in focal length or defocus of the lens (a
positive value corresponds to underfocus) and g the
scattering vector.
Eqs. (2) and (3) describe the phase contrast in an image.

Usually, an image also contains amplitude contrast that
arises from electrons lost to the elastic image by their
inelastic scattering or scattering outside the aperture. The
amplitude contrast is introduced into the scattering
formula by an ‘‘absorption’’ term a:

At

A0
� 1� ðiþ aÞrðxÞ (5)

(e.g. [3]). By analogy to Eq. (3), Fobs becomes

Fobs ¼ �ðiþ aÞFR eiw þ �ðiþ aÞFL e
iw� ��

, (6)

where

Robs ¼ RL þ RR þ aðIL þ IRÞ½ � sin w

þ IL þ IR � aðRL þ RRÞ½ � cos w,

Iobs ¼ IR � IL þ aðRL � RRÞ½ � sin w

þ RL � RR þ aðIL � IRÞ½ � cos w, ð7Þ

Thus we have two observations Robs and Iobs, but four
unknowns RL, IL, RR, and IR. DeRosier [1] suggested
several methods for obtaining additional data to solve for
all four unknowns. The new methods we have developed
are modified versions of the algorithm incorporated in
FREALIGN [4]. In FREALIGN, the Fourier transform
data from the images are inserted into the 3D Fourier
transform of the reconstruction by generating a set of
Fourier coefficients on the corresponding 3D lattice. In the
algorithm the cloud of observed Fourier coefficients that
surrounds each lattice point is summed using weighting
functions to approximate the value of the unknown
Fourier coefficient at the lattice point.

2.3. Modifications of the FREALIGN method

The first modification to the FREALIGN insertion
algorithm concerns the location of the observed Fourier
coefficients. Because of the curvature of the EWS, the data
correspond to the points A and B, not A0 and B0 (Fig. 1).
Moreover, the two beams are not Friedel mates but are at
least partially independent and can have different ampli-
tudes and phases. 3D reconstruction is performed by
inserting the data for each particle image into the correct
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Fig. 2. An Argand diagram showing how the 3D reference map is used to

split the observed data.

Fig. 3. Ewald construction for an image of an object, and for a second

image of the object flipped 1801 around an axis perpendicular to the beam.

If these two images were strict projections (flat EWS) they would be

related by a mirror. The same pair of images could, therefore, also be

generated by an object with opposite handedness. However, due to the

EWS curvature, the two images are not related by a mirror. Hence, an

object with opposite handedness would not generate the same pair of

images. In the diagram, the Fourier components are related diagonally,

since these are Friedel mates (RR, IR, RL, IL are the real and imaginary

parts of the right and left beam).
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coordinates in Fourier space [4] along the EWS. The
problem is how to separate the two image components that
correspond to the left and the right side of the EWS.

We investigated two methods of including the observed
data. The first method simply includes Fobs twice at the
correct locations (i.e., at A and B instead of A0 and B0) of
the reconstruction. We will refer to this method as the
simple insertion method. Fobs contains the unseparated
contributions from both beam components FR and FL. At
point B, for example, the component FR is included
correctly but the other, FL, is not and has the effect of
adding extra noise. The second method uses a reference
from a previous reconstruction cycle to split the image
data into the two components for the right and left beam
(Fig. 2). We will refer to this method as the reference-based
insertion method. The observed Fourier component Fobs is
the sum of components of the right and left beam FoR and
FoL. The corresponding Fourier component F ref from the
reference map is the sum of the right and left coefficients,
F rR and F rL. FoR and FoL are chosen such that the relative
angle a between them is the same as that between F rR and
F rL, and the ratio of their amplitudes is the same as the
ratio of the amplitudes of F rR and F rL. This is achieved by
setting

FoR ¼ ðF rR � FobsÞ=F ref (8)

and

FoL ¼ ðF rL � FobsÞ=F ref . (9)

Repetition of this procedure with the resulting reconstruc-
tion as a new reference will minimize the difference vector.

A third possibility to separate the contributions of the
left and right beams in Fig. 1 is illustrated in Fig. 3. For
this method we assume we have two images of the same
object at the same defocus, which differ in their orientation
by 1801. As shown in Fig. 3, the Fourier components of the
two opposing views are related to each other, leading to a
system of equations that allows solving for the left and
right components. However, in practice it is difficult to find
image pairs in the particle stack that show exactly opposite
views of the particle. In the special case of a particle with a
two-fold axis in the plane of the image, the image would
represent both opposing views of the particle and the
Fourier components could be extracted directly. However,
in general, even with a large number of randomly oriented
particles the accuracy of the determined orientation would
become the limiting factor. Therefore, this approach was
not pursued further.
2.4. CTF correction

If the first method of EWS correction is used (simple
insertion method with inclusion of Fobs twice at the correct
locations in the 3D Fourier transform), CTF-corrected
coefficients F3D,k at lattice points k of the 3D Fourier
transform of the structure can be calculated as

F3D;k ¼

P
j;sw

2
jscjsFobs;js

f þ
P

j;sðwjs ReðcjsÞÞ
2
. (10)

The sums in Eq. (10) run over all images j and points s

within each image Fourier transform that are close to
lattice point k. wjs is a weighting term that includes the
interpolation function used to approximate the Fourier
terms on the 3D lattice, as well as weights characterizing
the quality of the image. cjs represents the CTF term and is
set to ½�ðiþ aÞ eiw�� for the insertion of Fobs on the right
side, and �ðiþ aÞ eiw for the insertion of Fobs on the left
side. f is a Wiener filter constant. At low resolution, the two
insertion points (A and B in Fig. 1) are Friedel mates,
points A� and B (A and B�) coincide, and the two inserted
terms add to give Fobs ReðcjsÞ. The real part of cjs is simply
given by sin w� a cos w [5,6], and Eq. (10) becomes the
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same formula as previously described for the reconstruc-
tion algorithm without EWS correction [4]. At higher
resolution, points A and B are no longer related, and the
result of Eq. (10) will differ from that derived previously in
Ref. [4].

Using the second (reference-based) method, F 3D;k is
given by

F3D;k ¼

P
j;sw

2
js ReðcjsÞ

2Fo;js

f þ
P

j;sðwjs ReðcjsÞÞ
2
. (11)

Fo is either the right ðFoRÞ or left ðFoLÞ beam component
of Fobs calculated in Eqs. (8) and (9), depending on which
component is close to lattice point k and included in the
sum. In Eq. (11) the CTF term acts only as a weighting
term and does not change the phase of Fo since the phase is
already corrected by the division by F ref in Eqs. (8) and (9).

2.5. Handedness of the structure

The handedness of the structure is important when
considering the EWS. If the image were a true projection,
there would be no way of detecting the hand of the
structure without using some additional technique such as
tilting the structure in the microscope. When the EWS is
taken into account, however, this ambiguity is removed. If
OðrÞ is the density of the object, then ŌðrÞ ¼ Oð�rÞ has the
opposite handedness. Accordingly, in Fig. 1, FR and FL

have to be replaced by F�R and F�L, respectively. Hence, for
the observed image F̄obs of the inverted structure

F̄obs ¼ �ðiþ aÞF�R eiw þ �ðiþ aÞF�L e
iw� ��

. (12)

The inversion of the object leads to an apparent 1801
rtation of the observed image along the image plane,
compared with the image of the non-inverted object. To
compare the two images, we rotate the image F̄obs by
another 1801 and obtain

F̄
180
obs ¼ F̄

�

obs ¼ ði� aÞFR e�iw þ ði� aÞFL e
�iw� ��

(13)

and

R̄obs ¼ RL þ RR � aðIL þ IRÞ½ � sin w

� IL þ IR þ aðRL þ RRÞ½ � cos w,

Īobs ¼ IR � IL � aðRL � RRÞ½ � sin w

� RL � RR � aðIL � IRÞ½ � cos w. ð14Þ

Eqs. (13) and (14) describe the observed image of an object
of opposite handedness to that described by Eqs. (6) and
(7). If the EWS curvature is neglected, FL ¼ F�R and F̄

180
obs ¼

Fobs ¼ 2FR sin w� a cos w½ � which leads to the ambiguity
in the handedness described above.

In an experimental case where the handedness of the
object is unknown, the difference between Eqs. (6) and (13)
can be used as a test to determine the handedness. If the
object is small or the resolution is not very high, the
difference will be small and difficult to detect. However, for
larger objects, such as viruses, and higher resolution,
correlation coefficients can be calculated between observed
images and images calculated from a reference structure
using either (6) or (13). Provided that none of the observed
images were mirrored during scanning or image processing,
the average correlation coefficients for the entire data set
should differ significantly between the two cases, identify-
ing the correct handedness as that corresponding to the
higher correlation. It is thus, in principle, possible to
determine the absolute handedness of an object from a
single image. In practical terms, however, averaging of
many images is required to recover sufficient signal from
the noisy data.

3. Tests of the methods using simulated images

An artificial 3D test object consisting of a synthetic virus
with an average diameter of about 500 Å diameter was
created. Two sets with 2000 images of the object were
calculated using an effective electron beam at 200 kV (see
Section 6). One set contained strict projections, and one set
contained images calculated taking the curvature of the
EWS into account; that is, the Fourier coefficients of the
first set were extracted from the 3D transform from a
central section along a plane ‘‘planar-extracted images’’
while in the second set they were taken along the surface of
the EWS ‘‘Ewald-extracted images’’. Each set was subse-
quently used to generate 3D reconstructions using one of
the two methods we proposed. Icosahedral symmetry was
then imposed on the reconstruction. The success of the
method was monitored using the Fourier Shell Correlation
(FSC) generated by comparing the Fourier coefficients of
the reconstruction to those of the synthetic virus (i.e., the
true values).
Fig. 4 shows the FSC as a function of resolution for the

first method we propose, which simply inserts Fobs twice at
the correct locations of the reconstruction. As a control, we
took the images corresponding to true projections and
inserted the data as the appropriate central sections. The
resulting Fourier coefficients are essentially perfect out to
the Nyquist limit as expected for the control (see curve PP,
Fig. 4). Next, using the data generated from images which
included curvature of the EWS, we inserted the data not as
a planar section but at the point on the EWS from where
they originated when calculating the images. The result
(curve E+E+, Fig. 4) is almost as good as the result
above, thus showing that the algorithm corresponding to
the first proposed method works. For comparison, we also
tried some other combinations. If we took data that
included curvature of the EWS but treated it as if it were
from a true projection (planar insertion), the resolution
was noticeably worse (curve E+P). The same loss occurred
if the data corresponding to perfect projections was used as
if it needed to be corrected for curvature of the EWS (curve
PE+). Finally, when using data that included curvature of
the EWS but assumed the wrong hand (that is, with the
EWS center on the other side of the central plane), we
found that the resolution is considerably worse (curve
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Fig. 4. Noise-free data and simple insertion method: (A) Fourier shell correlations (FSC, left ordinate) between a synthetic 3D reference and its

reconstruction with and without EWS correction from 2000 simulated images of a synthetic virus with an average diameter of 500 Å at 200 kV. The images

were generated once by extraction of the Fourier coefficients along a planar central section through the 3D transform of the reference ‘‘planar extraction’’

and once by extraction of the Fourier coefficients lying on the surface of the ‘‘EWS extraction’’ in the 3D transform. Top coinciding pair of thin curves:

planar extraction and reconstruction by planar insertion (PP). EWS extraction and reconstruction by EWS insertion (E+E+). Both methods reproduce

the original faithfully across most of the spectrum. The extra noise added by the EWS insertion methods does not produce a noticeable difference in the

FSC curve in this case because the signal-to-noise ratio of the reconstruction remains high despite the added noise, giving correlation coefficients close to 1.

Middle coinciding pair of thin curves: EWS extraction and reconstruction by planar insertion (E+P). Planar extraction and reconstruction by EWS

insertion (PE+). If the data is not corrected for EWS curvature, there is an increasing phase error which deteriorates the reconstruction at high resolution.

Bottom thin curve: EWS extraction and reconstruction by insertion of the image Fourier components along an EWS of opposite curvature (E+E�); this

shows the effect of getting the hand of the structure wrong. If the curvature of the EWS is opposite to that of the data, then the effect of EWS ‘‘correction’’

results in a worse reconstruction than if uncorrected. (B) Thick curve: Fourier shell phase residual (FSPR, right ordinate) between E+P and the original

model: a phase error of 661 is reached at 2.8 Å.
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E+E�). This last result is expected to be the worst because
it places the data twice as far from the place at which it was
extracted. Finally, we also plotted the Fourier Shell Phase
Residual (FSPR, [7]) between the reconstruction calculated
by planar insertion from images that included EWS
curvature, and the original synthetic structure. This curve
can be compared with curves plotted in Ref. [1]. A phase
error of 661 is reached at 2.8 Å, close to the resolution of
3 Å predicted in Ref. [1] for a 500 Å shell (see above).

Under noise-free conditions, both simple and reference-
based insertion methods perform perfectly; there is essen-
tially no difference between these two methods (Fig. 5,
top dashed pair of curves). Two additional sets of images
were generated that were identical with the first two sets
but contained added noise at an overall signal-to-noise
ratio of 0.1 (see Section 6). A signal-to-noise ratio of 0.1
falls into the range of experimentally observed values,
based on correlation coefficients we observe between low-
dose images of viruses and a high-resolution reference
(data not shown). Under noisy conditions, as the signal
becomes weak towards high resolution, the reference-based
method yields a lower FSC, even when using the original
model as a reference.

We then asked if a cycle of refinement might improve the
resulting reconstruction. To test this idea, we took the
reconstructions (E+E+ and reference method) generated
in the first round and used them as the references in a
second round of the reference-based method. The resulting
maps were both slightly worse.
Why does the second, reference-based method not work

as well as the simple insertion method? The model-derived
information used by our reference-based insertion algo-
rithm is the relative angle between the two beams and the
ratio between the two beam amplitudes. With a perfect
reference, Fobs is split correctly. However, the noise term in
Fobs is also split and scaled. Setting Fobs ¼ F þN for the
signal and noise term, we have for the right beam,
FoR ¼ ½F rR � ðF þNÞ�=F ref . If F ref happens to be small
the noise term will be strongly enhanced. The same is true
for the left beam FoL. The noise amplification might be the
reason why the reference-based method falls behind the
simple method when used with noisy data.

4. Discussion

The EWS construction and its effects on images in
transmission EM have been discussed previously [8–10],
most recently by DeRosier [1]. DeRosier also provided
algorithms to take the EWS curvature into account in the
3D reconstruction of macromolecular complexes. While
there is a relatively straight-forward implementation of an
algorithm that deals with helical objects and 2D crystals,
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Fig. 5. Performance evaluation of both insertion methods with synthetic data under noise free conditions (top dashed pair of curves, SNR ¼ 1) and at

image signal-to-noise ratios (SNR) of 0.1 (solid curves). The FSC is calculated between original reference and reconstructions from 2000 simulated images

of a synthetic virus at 200 kV. The EWS corrected reconstruction by simple insertion of images extracted along the EWS of the original under noisy

conditions represents the benchmark ‘‘E+E+’’. This reconstruction or the original reference was subsequently used as a model to derive the splitting of

the two beams during insertion (‘‘simple ref’’ or ‘‘perfect ref.’’). Whereas both simple and reference-based methods of insertion work flawlessly under noise

free conditions, the reference-based algorithm falls short under noisy conditions: EWS corrected reconstruction using the original reference as a model

‘‘SNR ¼ 0.1, perfect ref.’’ and subsequent reconstruction using this previous reconstruction as a reference ‘‘SNR ¼ 0.1, perfect ref., 2nd’’ or

reconstruction using the previous result of the simple method as a model ‘‘SNR ¼ 0.1, simple ref.’’.
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the implementation described for single-particle structures
involved the recording of defocus pairs for each particle.
Defocus pairs provide the necessary information to
correctly retrieve the structure of the object. In theory,
this procedure is superior to the algorithms described here
because an incorrect addition of some Fourier components
of the image (simple insertion method) or iteration
(reference-based method) is avoided. However, the record-
ing of defocus pairs doubles the number of images that
need to be collected and processed for a given project, and
it adds an additional source of error because the defocus
difference between the two images in a pair is often not
precisely known.

Our simulations using a structure derived from an
atomic model of HPV with an average diameter of 500 Å
show that the resolution in a reconstruction would be
limited to about 3 Å if the EWS curvature is ignored
(Fig. 4B). In most single-particle projects, a 3 Å resolution
is not yet reached and the EWS curvature does not impose
a serious limitation. However, for larger objects, such as
the double-stranded DNA containing paramecium Bursar-

ia chlorella virus type 1 (PBCV-1, 1900 Å diameter) [11]
and Chilo iridescent virus (CIV, 1850 Å diameter) [11], the
limiting resolution would be about 6 Å (assuming a 200 kV
electron beam) and the algorithms described here would be
key to reaching higher resolution. Other examples are
clathrin-coated pits [12]. Potential applications of the new
algorithms would also include electron tomographic data.
It has been argued that the resolution in the z-dimension of
a tomogram cannot exceed twice the section thickness [13].
This is due to incomplete sampling leading to a missing
cone of data, but also due to the lack of defocus correction
which proves difficult for tilted specimen. Typical cryo
sections have a thickness of 300–800 nm [14] and the field
of view can span several microns across the tomographic
section. The effective height of a sample measuring 5 mm
across is about 43,000 Å at a tilt of 601, limiting the
resolution of the reconstruction to 25 Å at 300 kV due to
the effect of the EWS curvature alone. While the correction
of the EWS curvature in tomographic reconstructions
would solve the problem of correcting for the defocus
gradient, the problems associated with the missing cone of
data, radiation damage and multiple scattering remain.

5. Conclusions

We have described two methods for EWS correction of
structures derived using single-particle EM that do not
require multiple exposures of the same object at different
defocus or tilt. Tests with synthetic data generated using a
virus with about 500 Å diameter show that the final
reconstruction reaches higher resolution using the new
algorithms than a reconstruction without EWS correction.
The correction requires knowledge of the correct handed-
ness of the object. The new algorithms have been
implemented in the program FREALIGN [4].
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6. Methods

A complete atomic model of HPV16 in its T ¼ 7 form
was created by the Scripps VIPER icosahedral server [15]
applying the coordinates of the HPV16 capsid model
(Protein Data Bank (PDB) entry: 1LOT) derived from the
crystal structure of a small virus-like particle of the L1
protein by Modis et al. [16]. The electron density map was
generated with the program pdb2mrc [17] with heteroatoms
in a 512� 512� 512 pixel volume at 1.4 Å/pixel and a
resolution of 2.8 Å. To create simulated projections, a
separate program was written called MODEL using the
projection algorithm implemented in FREALIGN [4].

A set of 2000 noise-free projections was created from the
test object by extraction of the data along central sections
of the Fourier transform of the test volume, using random
Euler angles and with subsequent multiplication by the
CTF using a range of defoci, including amplitude contrast.
A second set of noise-free images was generated in a similar
way, but by extraction of the data along the surface of the
EWS and combining the two Fourier components of the
right and left beam according to Eq. (8). A third and fourth
data set were created in identical manner as the two
previous ones, but with a SNR ¼ 0.1 (variance ratio) by
adding Gaussian-distributed noise to the images. Image
creation and processing parameters for all four data sets
were: magnification 50,000� , acceleration voltage 200 kV,
CS ¼ 2:0mm, amplitude contrast 7%, pixel size 1.4 Å,
defocus range 5000–45,000 Å on 50 different micrographs.

3D density maps were reconstructed with the program
FREALIGN [4] from single-particle images of each test
data set, using the list of rotational, translational, and
defocus parameters generated upon test set creation. Image
data were inserted into the 3D Fourier transform either as
planar sections or along the curvature of the EWS. The
FSC and FSPR between different volumes were calculated
with the THREED-COMPARE command implemented in
the software IMAGIC [18]. The data were plotted with
SIGMAPLOT 2001 [19]. All calculations were performed
on personal computers with Intels dual Xeons processors
or AMDs Athlons processors running under the Linux
operating system. FREALIGN was compiled with Portland
Groups Fortran 5.2 (PGF77) to enable the processing of
512� 512� 512 pixel volumes on 32-bit Linux.
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