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Abstract

Despite the rise of single particle cryo-electron microscopy (cryo-EM) as a premier
method for resolving macromolecular structures at atomic resolution, methods
to address molecular heterogeneity in vitrified samples have yet to reach matu-
rity. With an increasing number of new methods to analyze the multitude of
heterogeneous states captured in single particle images, a systematic approach
to validation in this field is needed. With this motivation, we issued a challenge
to the community to analyze two cryo-EM image particle sets of the thyroglobu-
lin molecule with continuous conformational heterogeneity. The first dataset was
experimental and the second was generated with a simulator, allowing control
over the distribution of molecular structures in the particle images. This simu-
lated dataset also enabled direct comparison between participants’ submissions
and the ground truth molecular structures and distributions. Participants were
asked to submit 80 volumes representing the heterogeneous ensemble and esti-
mate their respective populations in the image sets provided. Participation of the
research community in the challenge was strong, with submissions from nearly
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all developers of heterogeneity methods, resulting in 41 submissions across both
datasets. Submissions qualitatively exceeded expectations, with the molecular
motions identified by methods resembling both each other and the ground truth
motion. However, quantitatively assessing these similarities was a challenge in and
of itself. In the process of assessing the submissions to this challenge, we devel-
oped several validation metrics, most of which require reference to the underlying
ground truth volumes. However, we have also explored the use of metrics which
do not necessarily reference ground truth. This is particularly apt for experi-
mental datasets where ground truth is inaccessible. These approaches allowed
us to assess the similarity and accuracy in volume quality, molecular motions,
and conformational distribution of different submissions. These metrics and the
efforts of all participants will help chart a path forward for the improvements of
heterogeneity methods for cryo-EM and future challenges to validate these new
methods as they continue to be developed by the community.

Over the last decade, cryo-electron microscopy (cryo-EM) has become mainstream for
the determination of high resolution structures of biological macromolecules. Espe-
cially for difficult targets, it has become a preferred method over X-ray crystallography
and nuclear magnetic resonance [1, 2](Fig. 1A). Several key advantages are that crys-
tals are not a prerequisite, biomolecules can be large, samples can be prepared at
near-native environments, and that single molecules are imaged directly. In a typical
cryo-EM dataset, images of tens of thousands to millions of biomolecules are captured
within a thin layer of vitreous ice. While standard cryo-EM reconstruction meth-
ods [3, 4] generally classify these images into a few states so that tens of thousands of
images can then be averaged into a single high resolution structure, information about
a broader distribution of states can also be captured from cryo-EM datasets due to its
single-molecule nature. Indeed, an increasing number of methods are being developed
and used to analyze heterogeneity in cryo-EM particles (Fig. 1A), ranging from linear
methods to machine-learning algorithms that map the images onto a low-dimensional
space representing the main conformational motions, to methods coupled to physical
simulators of the conformational motions. We refer readers elsewhere for an overview
of approaches [5–7].

The capacity for cryo-EM to capture conformational heterogeneity of biomolecules
has potential impacts from basic biology to drug design. Understanding the confor-
mational change, for example, of the SARS-CoV2 spike protein [8, 9] or the capacity
for cryo-EM to capture multiple states of drug targets like GPCRs [10] has lead
to important therapeutic advancements [11, 12]. Generally, it is acknowledged that
static structures of proteins do not tell the whole story of their function. Some
key examples of this in cryo-EM heterogeneity analysis include gaining insights into
allosteric modulation [13, 14], entropy-driven processes [15], or the transition state
of enzymes [16, 17]. However, analyzing the conformational heterogeneity present in
cryo-EM data is challenging, because applying different methods to the same dataset
can yield varying results [18], and there are limited metrics and tools for quantitatively
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comparing and validating these outputs [19, 20]. This stems from a fundamental differ-
ence in objectives: while traditional cryo-EM reconstruction prioritizes high-resolution
structure determination, supported by well-established validation metrics, heterogene-
ity analysis focuses on resolving conformational motions and estimating population
distributions; quantitative metrics for validating these aspects remain underdeveloped.

Community challenges in cryo-EM have been launched to compare algorithmic
performance on a variety of cryo-EM data processing tasks: CTF estimation [21],
volume estimation [22], atomic model building [23], and particle picking [24]. However
until now, a community challenge for conformational heterogeneity in cryo-EM has yet
to be conducted. One key barrier to running a community challenge for conformational
heterogeneity is the lack of metrics for assessing the quality of results on this particular
task. For example, gold-standard metrics that avoid overfitting like the half-set Fourier
shell correlation (FSC) for reconstruction or the Q-score for model building do not
exist for analyzing output series of volumes from cryo-EM variability methods.

Despite this, the age of machine learning has made it clear that benchmarks and
metrics can rapidly accelerate algorithmic advances [25], especially obvious in the field
of structural biology with the role of CASP to facilitate the success of AlphaFold [26].
Motivated both by these successes, and our own questions about how much to trust the
results produced by conformational heterogeneity methods in cryo-EM, we launched
the Flatiron Institute Cryo-EM Conformational Heterogeneity Challenge to the com-
munity in the summer of 2023, which included two datasets: one simulated with a
ground truth, for which metrics would be more straightforward, and one experimental
dataset. We had strong participation from the cryo-EM method’s developer commu-
nity across the globe, with 41 submissions for both datasets. Here, we first describe
the construction of the challenge, and the participant’s submissions. Then, we present
the metrics we developed to assess and compare the methods’ outputs for several spe-
cific tasks, assessing volumes, motions, and distribution quality across submissions.
Overall, we do not find a single validation method that consistently outperforms the
others; rather, different methods highlight different trends.

1 Results

1.1 Dataset design

In the design of this heterogeneity challenge, we sought a system that, though sim-
ple, would present a non-trivial task for the participants. We were also motivated to
include both experimental and simulated cryo-EM images (Fig. 1B, left) that exhib-
ited continuous conformational heterogeneity. The experimental dataset was a 33,742
particle stack of thyroglobulin that reconstructed to a resolution of 3.1 Å (see the
Methods). We subsequently used this experimental dataset to design the simulated
dataset. The simulated dataset was constructed using the Euler angles, defocus val-
ues, and particle number of the experimental dataset, and was generated using the
cisTEM (Computational Imaging System for Transmission Electron Microscopy) sim-
ulator [27, 28]. This simulator is more complex than simulators that only make the
typical weak phase and projection approximations and employ Gaussian white noise.
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Fig. 1: A. Number of publications per year for ‘X-ray crystallography’ vs. ‘cryo-EM’
search terms (left) or ‘cryo-EM’ with additional search terms ‘dynamics’, ‘hetero-
geneity’, or ‘machine learning’ (right). Note zoomed-in y-axis for cryo-EM subterms.
Data gathered via PubMed Trends. B. Schematic of challenge process: dataset gen-
eration, submissions, and comparison metrics. Upper right panel indicates the legend
for method type of challenge submissions, subsequently used throughout the rest of
the manuscript.

We chose this more complex simulator because we wanted to model experimental cryo-
EM data more closely with cisTEM’s multislice integration, explicit solvent modeling,
and inclusion of radiation damage. Notably, not all participants were able to distin-
guish between the experimental and simulated datasets during the initial phase of the
challenge. In fact, it is fair to say that the simulated dataset has higher noise than the
experimental dataset.

A main motivation for including a simulated dataset in this challenge was to
have ground truth conformations and a distribution to which we could compare
participants’ submissions. We ran coarse-grained molecular dynamics simulations of
thyroglobulin whose conformational space we then redistributed along the first prin-
cipal component of its motion in molecular space (MD-PC1). We re-weighted the
conformational distribution according to a nonuniform mixture of three Gaussians
that included a less-populated state in the middle of this space, which we believed
would represent an interesting challenge for methods to identify (Fig. 4). A total
of 3,861 conformations were sampled from this distribution, backmapped to atomic
coordinates and used to generate the 33,742 image simulated particle stack. While
re-weighting the distribution along a low-frequency degree of freedom suggests one
degree of freedom, the simulated volumes still contained other degrees of freedom, and
exhibit considerable side chain motion (Supplementary Movie 2).
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1.2 Submission summary

For both of the provided datasets, one experimental and one simulated, we asked
for participants to submit 80 volumes along the dominant degree of freedom and the
relative populations of each volume (Fig. 1B, middle). This format was influenced by
our knowledge that most cryo-EM heterogeneity methods produce volumes as output,
rather than molecular ensembles for example, and the request for 80 volumes was
to increase the chance of picking up low-probability states. To facilitate comparison,
we asked that participants align their submitted volumes to a provided reference and
match its voxel size (2.146 Å). Additionally, we designed two mock submissions for the
simulated dataset built from the Ground Truth (GT) which we refer to as Averaged GT
and Sampled GT. First we sorted the volumes by MD-PC1, and split up the volumes
into 80 equispaced groups with an approximately equal number of volumes (80 sets of
48-49 volumes). Averaged GT consists of 80 volumes generated by Euclidean averaging
each equispaced set. Sampled GT consists of 80 volumes selected by choosing the most
commonly sampled volume in each equispaced set.

All submissions underwent the same pre-processing of being aligned to the consen-
sus reconstruction for experimental or the average of the ground truth volumes for the
simulated data before being passed through the separate analysis pipelines (see Meth-
ods for further details). This was done to avoid favoring one volume pair, or having
to perform multiple alignments between all pairs. We labeled the submissions by ice
cream flavor to preserve the anonymity of the participants. We have grouped methods,
as shown in the top right of Figure 1A, as physics-informed (blue), neural network
without physics (purple), non-linear (orange), linear (magenta), and ground truth for
the simulated datasets (yellow). We note that some ice cream flavors have additional
number labels (e.g. Ice Cream Flavor 1, Ice Cream Flavor 2, etc). These count the
number of rounds the same method made a submission. Note that only submissions
from “round 1” are blind; after that participants had seen a presentation illustrat-
ing the ground truth distribution for the simulated dataset (although not the ground
truth latent values in the simulated images, and not the ground truth volumes).

1.3 High level overview of submissions

As an initial analysis of the submissions, the simplest procedure is to visually inspect
the submitted volumes and the conformational motions (Fig. 2A). From a qualitative
perspective, the submissions were diverse in terms of resolution and, in general, the
motions represented were consistent (Supplementary Movie 1). Despite an effort at
making unambiguous instructions to align to a reference volume at a specific pixel
and box size, substantial pre-processing of the submitted volumes was still required.
For the simulated dataset, since the ground truth is available, we could also assess the
resolution of the submissions by comparing the volumes to the ground truth structures
using the Fourier Shell Correlation (FSC) with a 0.5 threshold (Fig. 2E). We computed
the FSC for all 3861 GT volumes against all volumes in every submission, and matched
each of the 80 volumes with the closest GT volume using the resolution at FSC 0.5
threshold. Some submissions had relatively tight resolution distributions, either higher
(Cookie Dough 1 around 9 Å; Mango 1 around 9.5 Å) or lower (Chocolate Chip 1
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Fig. 2: A. The 40th volume from each submission for the experimental dataset, based
on the sign of the first PCA eigenvector (blue is negative, red is positive, white is
zero). B. Projection of submissions onto PC1 and PC2 of the common subspace for the
experimental dataset. Each dot represents a submitted volume, with the size defined by
the submitted population. The contour plot in all subplots is a weighted kernel density
estimate computed with the projection of all submissions and their populations.C. and
F. show the best cross-correlation for each particle for the experimental and simulated
dataset, respectively for a subset of particles (see Section 6.6). We compute the cross-
correlation by comparing each image to each volume at different rotations and in-plane
shifts, and choose the highest value obtained for each particle.D. shows the proportion
of captured variance (PCV) between the submissions in the experimental dataset,
specifically, we show how much variance from the “rows” is captured by the “columns”.
Similarly, G. shows the PCV between the submissions and the mock Ground Truth
submissions. E. Best resolution for each submitted volume obtained by computing the
FSC against the GT volumes. The resolution is defined using the 0.5 FSC threshold.
Submissions which made use of an expanded simulated dataset with 674, 840 particles
are marked with a (*).
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and Rocky Road 2 around 18.5 Å). Other submissions had a large range of values, for
example Chocolate Chip 2, Salted Caramel 3. As an alternate validation metric not
needing access to ground truth volumes, we directly assessed each submitted volume
against a subset of the individual images by exhaustively searching the pose space and
identifying the optimal cross-correlation for each image, as described in the Methods.
We observed that the distributions of image-to-volume cross-correlations are broad for
both the experimental and simulated datasets (Fig. 2C and F, respectively). However,
some methods produce volumes that align more closely with the images than others.
Notably, the patterns observed in image-to-volume comparisons do not always align
with those seen in volume-to-volume evaluations.

1.4 Comparing conformational motions through PCA

For both experimenta and simulated datasets, a subspace can be computed for each
submission. These subspaces can then be quantitatively compared, and a common
subspace can be derived to visualize the similarity between the inferred conformational
motions. This is accomplished through Principal Component Analysis (PCA) on each
submission, which provides an orthogonal basis defined by the eigenvectors V and
the eigenvalues S2 of each submission’s volume covariance matrix. These bases can
be used to compute a common subspace, as detailed in Section 6.4.4. We compute
the similarity between the different bases using the Percentage of Captured Variance
(PCV) introduced in [29].

Figure 2A-B shows the behavior of each submission in both the individual and
common subspaces for the experimental dataset. Figure 2A illustrates the regions of
variance in the first principal component eigenvector for each submission’s embedding.
A change in color indicates regions of variance between the submitted volumes, pro-
viding insights into the motions predicted by each submission. Conversely, Figure 2B
shows the projection onto PC1 and PC2 of the common subspace obtained for the
simulated dataset submissions. Most methods cover a similar range in PC1, demon-
strating that most methods share at least one high variance conformational motion.
The dominance of Salted Caramel in the second principal component can be attributed
to it having more submissions and possibly presenting higher frequency variance. Sup-
plementary Figure S3A shows the projection of the motions for the simulated dataset,
and the conformational motion with the highest variance aligns well with that of the
ground truth and most of the submissions.

To quantify the similarity between different submissions, we measure the percent-
age of captured variance (PCV) between each pair of submissions, which we denote by
PCV (i, j), where i and j refer to the i-th and j-th submission respectively. Submis-
sion i serves as the reference, and we compute how much of its variance is captured by
the subspace of submission j (see Section 6.4.3 for more details). The asymmetry in
this metric allows us to quantify, when comparing two submissions, which submission
captures more variance. For example, when comparing the two mock Ground Truth
submissions, we see that the Sampled GT is better at capturing the Averaged GT.
This is consistent with what we would expect, as averaging results in the loss of high
frequency features.
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Figure 2G shows the PCV for the simulated dataset using the Ground Truth
mock submissions–Averaged GT and Sampled GT–as references. The results indicate
that methods with higher resolution outputs (e.g., Salted Caramel, Chocolate, and
Neapolitan) are better at capturing the high frequency features of the conformational
heterogeneity from the Ground Truth volumes. Once these features are averaged out,
lower resolution submissions (e.g., Rocky Road, Vanilla, Mango) perform much better.
There are also methods that have a good balance of both cases, such as Chocolate and
Cookie Dough. Supplementary Figure S3B shows the percentage of captured variance
between all methods as a distance matrix, where the rows correspond to the reference
subspace as defined in Equation 27. We observe that methods assigned to the same
categories have a tendency to form clusters, which can be seen from bright spots along
the diagonal. Additionally, we notice that Piña Colada, Peanut Butter and Chocolate,
methods that presented a balanced behavior in the simulated dataset, are easily cap-
tured by other methods (bright rows); while Neapolitan and Peanut Butter are good
at capturing other methods (bright columns).

1.5 Comparing conformational distributions

A key objective of the challenge was to assess the capacity for heterogeneity methods
to predict the population distribution along the 1D conformational coordinate used
to generate the simulated volumes. Since the true populations are unknown for the
experimental dataset, our analyses here focus solely on the simulated dataset, where
the ground truth distribution is available.

1.5.1 Via linear subspace embedding

One way to compare the conformational distributions is by using the linear subspaces
introduced in Section 1.4. Specifically, we project the submissions onto the subspace
defined by the Sampled GT mock submission and visualize the distributions with
respect to the first principal component along with the population of submitted vol-
umes. This is illustrated in Supplementary Figure S2, where these distributions are
compared to the distribution of the Averaged GT. Most submissions report a distri-
bution with two modes, either missing the middle mode or showing shifted modes
that possibly accumulate the middle mode into the lateral modes. Other submissions
simply report a single mode in the middle. Only three submissions (Cherry 2, Choco-
late 2, and Vanilla 2) infer the three modes present in the Ground Truth, although all
correspond to the second (i.e. non-blind) round of submissions. On the other hand,
most submissions obtain a good coverage of the first principal component, showing
that most methods are good at estimating motions.

1.5.2 Via Kullback–Leibler divergence and Earth Mover’s distance

In order to quantitatively compare the information in the volumes and their popula-
tion weights, we used a distance over distributions known as the earth mover’s distance
(EMD), and the Kullback-Leibler (KL) divergence. The EMD compares two probabil-
ity distributions over a metric space and is also known as the “Wasserstein distance”
or “Kantorovich–Rubinstein metric” in the optimal transport literature. In discrete
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Fig. 3: A. Volume-to-volume BioEM3D distance, Eq. (12), for select submissions. The
distance matrices for all submissions can be found in Supplementary Figure S4. B.

Optimal population weight (in color, Eq. (34)) via the EMD, and original submitted
population weight (black). Replicates average volume to volume distances over sets
of 50 GT volumes, ordered by neighboring MD-PC1. C. EMD comparing submitted
volumes and population weights to the ground truth. The error bars are from averaging
the objective values when GT MD-PC1 neighbourhoods of 40,45,50 were used. D.

Ensemble-to-image likelihood (Eq. 40) for a subset of 1224 images generated by GT
80 volumes (Sampled GT 80).

settings it involves finding a soft correspondence matrix between two weighted spaces,
referred to as an optimal transport plan, which is a joint probability matrix between
these spaces. In other words, the optimal transport plan is the joint distribution that
minimizes the distance, d, defined between these spaces. Here we compare two dis-
crete probability mass functions (of size 3861 for the ground truth, and 80 for the
submission) where we use the EMD/KL with our volume to volume distance function
for d (see Section 6.1 for details). The EMD has already been used to compare distri-
butions of biomolecules [30], where the authors compared two sets of atomic models
(with equal weight), and pairs of biomolecules were compared by RMSD. In our case,
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we compared voxelized volumes, which do not prima facie include correspondence
information between labeled coordinates. We experimented with various “volume to
volume” distance functions suitable for comparing these discretized scalar densities,
balancing computational feasibility with robustness to pose and high frequency confor-
mational heterogeneity. Furthermore, since inferring the relative populations of their
submitted volumes was a new task for many challenge participants, we also optimized
their relative populations under the EMD and KL objectives. In other words we used
(i) ground truth volumes and (ii) ground truth relative populations, and (iii) submitted
volumes, but optimized the submitted relative populations.

As reference, we present here the results using one specific volume-to-volume dis-
tance, the BioEM3D distance, which marginalizing out the overall offset, magnitude
and noise level of the submitted volumes, under a Gaussian white noise model in 3D
voxel space. Results for other volume-to-volume distances are shown in supplementary
Section 6.3. In Figure 3A we show the volume-to-volume distance matrix for several
representative submissions. Using these, we compare the optimal relative population
(colored) to the submitted one (black) in the submission’s space of volumes (Figure
3B). As illustrated by the Averaged GT, an idealized submission that comes from
averaging ground truth has a near optimal population. Also the BioEM3D distance in
a KL volume distribution objective yielded a smooth optimal population for Sampled
GT, which was also seen for the EMD conformational distribution objective (data not
shown), but not seen in the other volume-to-volume distances. Figure 7D compares the
conformational distribution with the EMD using a BioEM volume-to-volume distance,
and different trends are seen even among submissions of the same ice cream flavor:
for instance Cherry, Chocolate, Rocky Road, Vanilla, Peanut Butter, Neapolitan, and
finally Sampled/Averaged GT. Note that the volume-to-volume distance for Sampled
GT atypically shows low values on the diagonal, and is high elsewhere, regardless of
if the submitted volume is close in MD-PC1.

For roughly half of the submissions, the optimized probabilities show a trimodal
mixture, with two symmetric large modes close to the two large modes from the
submitted population and another mode ranging from around 1

3
to 1

2
its size in the

middle, which resembles the ground truth distribution, as expected. In a related way,
various bimodal submissions optimized to be trimodal, indicating the difficulty of
inferring low probability surrounding a “hidden middle” mode. This is not surprising
given the high level of noise in the images, small scale of the motion, and low number of
images that represent the trough in the ground truth relative population distribution.

1.6 Ensemble-to-images comparison metric

The previous metrics relied on ground truth volumes and population distributions,
making them infeasible to evaluate the methods using experimental data. Here, we
introduce a comparison metric that bypasses this requirement by directly evaluating
how well an ensemble of volumes explains a given set of cryo-EM images [31]. This
metric is independent of identifying a common subspace, and does not require the
use of ground truth volumes, because it directly compares volumes with populations
to the images using the ensemble-to-image likelihood (Eq. 40) [31]. Each volume is
compared to each image by finely searching poses and assuming a forward model of
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image formation with Gaussian white noise [32]. As this pose-search is computation-
ally expensive, only a subset of particles from each dataset were chosen to evaluate
this metric (see Sction 6.6 for details). The higher the log-likelihood the more likely
the particle images are to be generated by the volumes at the given relative popu-
lation. With this metric, we ranked the performance of submissions for 2000 of the
experimental images (Supplementary Figure S6). Here we had no ground truth for
the poses or volumes. While for the simulated dataset we specifically chose to com-
pare to a subset of 1224 images which corresponded to the 80 volumes in the Sampled
GT, allowing us access to a ground truth comparison for this metric (Fig. 3D). These
results show that the log-likelihoods from the ensemble-image comparison agree to
some extent with the KL results, especially for the submissions that are far from the
data (e.g. Salted Caramel, Rocky Road 2, Chocolate Chip 1). Unlike the KL, many
submissions show better agreement with the images than Averaged GT 80. However,
the volumes corresponding to the exact images (Sampled GT 80) have the best agree-
ment. Overall, this suggests that the ensemble-to-image likelihood comparison is able
to discern which volumes are a poor match, but is sensitive to an exact match between
the images and volumes, and care must be taken if volumes are smoothed or averaged
in some manner.

When comparing the log likelihood results for submissions to both the experimental
and simulated datasets, we find that no submissions perform significantly better or
worse on either dataset. Similar trends between the relative ranks of submissions are
observed in Figure 3D and Supplementary Figure S6. This can also be seen in the
cross-correlation scores (Figure 2C, F). However, because of higher noise levels in the
simulated dataset, the difference between the log likelihoods compared to the consensus
structure in the submissions to the simulated dataset are usually less than those for
the experimental dataset.

Discussion and conclusions

The capacity to accurately discern the structures and populations of conformational
ensembles of biological macromolecules has vast implications for the understanding
of biological processes. Cryo-EM offers an unprecedented window into this conforma-
tional heterogeneity. However, cryo-EM methodologies and validation metrics have
primarily focused on achieving high-resolution reconstructions, while quantitative
frameworks for assessing the accuracy of approaches that recover conformational
motions and population distributions are still emerging. Here, we presented both
experimental and simulated datasets analyzed by different methods in the hands of
the developers themselves and subsequently compared to one another and to ground
truth when available. The simulated dataset exhibited a one-dimensional conforma-
tional change with realistic atomic-detail (high frequency) heterogeneity, and we found
it valuable to have coupled experimental and simulated datasets. The submissions
overall were able to capture similar conformational motions and many methods even
captured populations comparable to the ground truth distribution in the simulated
dataset.
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We launched this challenge knowing that the metrics with which the submissions
would be assessed had yet to be developed. Therefore, in the process of analyzing
the challenge submissions we have developed and tested new quantitative cryo-EM
heterogeneity metrics, with the aim of providing computationally tractable, reliable
indicators of volume and population prediction accuracy that are robust to expected
numerical transformations (noise, sharpening, alignment ambiguity). We developed
three distinct classes of metrics to evaluate the quality of submissions across different
tasks: i) a PCA-based method that compares conformational subspaces, ii) an optimal
transport method that allows for the comparison of populations under volume-to-
volume similarity measures, and iii) an image-to-ensemble likelihood that allows for
direct comparisons of the volumes and populations to the provided images. One com-
mon advantage of all these metrics is that they do not require analysis of the latent
spaces produced by the heterogeneity analysis methods themselves. One issue we have
had with all metrics, however, is their sensitivity to the resolution of the submitted
volumes and other aspects of the preprocessing of the volumes. When comparing vol-
ume series through linear subspace methods (PCA), it is important that the volumes
in all series are close in resolution, as we found that otherwise methods with high res-
olution outputs would be unfairly penalized. We solved this issue by normalizing the
power spectrum of submissions and ground truth volumes, allowing us to find that
submissions like Neapolitan, Salted Caramel, and Peanut Butter excel at matching
the ground truth volumes. For the volume-to-volume metrics, one can downsample
volumes or smooth out the distance to high frequency information (e.g. truncate the
FSC at a lower resolution). For the volume-to-images comparison, one can likewise
simply downsample images and volumes.

Overall, while some metrics show similar patterns, no single method consis-
tently outperforms the others; instead, different approaches demonstrate strengths
in different areas. We also did not observe strong evidence that particular groups
systematically outperform others across specific tasks. For instance, some ML-based
methods—such as Cookie Dough—achieved strong EMD scores but performed aver-
age in terms of image cross-correlation. Likewise, performance among physics-based
methods varied significantly depending on whether the metric related to resolution.
These findings suggest that the specific design and implementation details of each
method play a critical role in determining its effectiveness for a given task.

Throughout the analysis of the challenge submissions, some of the limitations of
the dataset choice and submission format have become clearer, though ultimately we
believe this task has been a suitable one for a first attempt at a conformational het-
erogeneity challenge in cryo-EM. For example, while thyroglobulin is a biomolecule of
typical size (660 kDa) and conformational heterogeneity can be detected with a mod-
est particle count (33,742 images), it is a symmetric molecule, hence conformational
heterogeneity can be washed out due to degeneracies in pose estimation (Fig. S1).
For the simulated dataset, we aimed to restrict heterogeneity to a single dimension
by selecting conformations along PC1 and limiting variance to a narrow band in PC2.
However, because higher-order modes were not filtered, residual variability from these
modes remains present in the data (Supplementary Movie 2). In the future, while
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multi-dimensional state spaces are realistic in molecular systems, a more careful lim-
itation of the motion in question to a single degree of freedom may be warranted.
Additionally, the choice of the number of volumes is something we have more insight
on after these analyses. For example, 80 volumes was chosen with the assumption that
this would make it more likely that participants could identify a low-lying state of
interest, however in subsequent studies of the number of ground truth average volumes
necessary to get good distributions within the EMD metric we find that 80, 40, 20, 16,
10, and 8 volumes derived from the ground truth are all a suitable match (Fig. S5).
Finally, we note that requesting submissions in the form of volume series rather than
atomic models introduced certain challenges, as this format requires standardization
steps such as filtering, sharpening, and alignment—procedures that are non-trivial but
essential to ensure fair comparisons. Nevertheless, volumes remain the most widely
accessible format for most heterogeneity-focused methods and offer valuable insights
into conformational variability, even when only low-resolution data is available.

In summary, with 41 submissions across both datasets and the development of
metrics to assess these submissions, this first conformational heterogeneity challenge
in cryo-EM has been informative on many fronts. First, while benchmark datasets
based on simulations are immensely valuable [19, 33], this challenge represents the first
coordinated effort by the community to systematically compare cryo-EM heterogene-
ity analysis methods on both experimental and simulated datasets. Participants were
given the opportunity to optimize their approaches as they saw fit, enabling a realis-
tic assessment of each method’s capabilities. Second, we established a foundation for
cryo-EM heterogeneity metrics tailored to specific tasks—capturing motions and dis-
tributions—both in the presence and absence of ground truth data. We have brought
to the forefront the importance of accurately estimating populations [34], crucial for
understanding the thermodynamics of biomolecules. Third, we hope this challenge
serves as only the first of many that can drive the field forward towards more confident
estimates of conformational ensembles from cryo-EM data. Finally, we are grateful to
a community of scientists that helped bring this project together and will continue to
be key to progress in this field for the many practitioners who seek to confidently use
computational methods to extract the information inherent in their cryo-EM datasets.

Data Availability

All submitted volumes and relative populations, anonymized and pre-processed, are
available at https://osf.io/8h6fz/. All analysis code is available at https://github.com/
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