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Abstract

Maximum likelihood (ML) processing of transmission electron microscopy images of protein particles can produce reconstructions of
superior resolution due to a reduced reference bias. We have investigated a ML processing approach to images centered on the unit cells
of two-dimensional (2D) crystal images. The implemented software makes use of the predictive lattice node tracking in the MRC soft-
ware, which is used to window particle stacks. These are then noise-whitened and subjected to ML processing. Resulting ML maps are
translated into amplitudes and phases for further processing within the 2dx software package. Compared with ML processing for ran-
domly oriented single particles, the required computational costs are greatly reduced as the 2D crystals restrict the parameter search
space. The software was applied to images of negatively stained or frozen hydrated 2D crystals of different crystal order. We find that
the ML algorithm is not free from reference bias, even though its sensitivity to noise correlation is lower than for pure cross-correlation
alignment. Compared with crystallographic processing, the newly developed software yields better resolution for 2D crystal images of
lower crystal quality, and it performs equally well for well-ordered crystal images.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Electron crystallography of two-dimensional (2D) crys-
tals is a commonly used technique to obtain high-resolu-
tion three-dimensional (3D) structures of proteins (for a
recent review, see Renault et al., 2006). The technique
was developed mainly by Henderson and Unwin (1975)
and one of its first applications led to an atomic model of
bacteriorhodopsin (Henderson et al., 1990). Many other
structures have been solved at a resolution that allowed
an interpretation with an atomic model. The data collected
from 2D crystals come in two flavors: images and electron
diffraction pattern. Electron diffraction data provide inten-
sities of diffraction spots, much like X-ray diffraction of 3D
crystals. These can be measured, and their square root
gives the amplitude components of the protein structure.
1047-8477/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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The images of the 2D crystals can be Fourier transformed,
and both, amplitudes and phases of the calculated diffrac-
tion spots can then be measured by Fourier extraction.
This is in contrast to the situation in X-ray crystallography,
where phases are not directly observable. Therefore, to col-
lect a complete data set from 2D crystals by electron crys-
tallography, both electron diffraction and imaging are
usually performed.

Images also offer another advantage over X-ray crystal-
lography. If disorder is present in a crystal and limits the
resolution in a diffraction pattern, the crystal distortions
in an image of the crystal can be corrected computation-
ally. This procedure is commonly referred to as ‘‘unbend-
ing’’ and significantly improves the resolution attainable
by Fourier extraction from 2D crystal images. For the
unbending process, a reference image containing only a
small number of unit cells is generated either from a filtered
version of the image itself, or by projecting an already
existing 3D reference structure using the program MAKE-
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TRAN (Kunji et al., 2000). A cross-correlation map is then
calculated between the reference and the image to deter-
mine the location of each unit cell in the crystal. Using
the autocorrelation function of the reference, the correla-
tion map can be searched for peaks and unit cell locations
are recorded. The MRC program QUADSEARCH (Crow-
ther et al., 1996) performs such a search and exploits the
a-priori knowledge of the approximate location of the
peaks. It uses an iterative refinement process to predict
the peak location in the cross-correlation map, and then
searches for the actual local maximum in that map within
a limited radius of the predicted location. A coordinate list
of the identified lattice nodes is then generated, which is
used by the MRC program CCUNBEND to correct the
crystal distortions in the image by one of two methods: a
better ordered crystal image is generated by either
smoothly warping the image so that the unit cells fall onto
a perfect lattice, or by creating a discrete montage of unit
cells placed at the crystallographically determined grid
points. The Fourier transform of the unbent image is then
evaluated to obtain values for the amplitudes and phases of
the crystal projection map in that image.

The unbending procedure described above has been
applied very successfully in many cases and is in common
use, but it also has some limitations. First, in its current
implementation, it cannot correct for in-plane rotational
disorder. Second, the use of correlation functions for align-
ment is prone to error when the signal is weak, due to the
increased chance of mistaking a noise peak for the correla-
tion peak produced by the signal. The signal in the correla-
tion map depends on the size of the reference area used to
find the unit cell locations. A larger reference area will pro-
duce stronger signal peaks but will also be less sensitive to
short-range disorder in the crystal. To detect and remove
short-range disorder, a smaller reference area containing
one unit cell or even a single molecule would be desirable.

In the case of strong irregularities in a badly ordered 2D
crystal, or variations among the unit cells due to sample
heterogeneity, single-particle image processing can be
applied to the recorded 2D (pseudo-)crystal images. The
goal of the single particle processing is similar to the 2D
crystal unbending procedure. In both cases alignment and
averaging of individual molecules or their assemblies is
done to enhance the signal. Sass et al. (1989) have com-
bined phases from correlation averaging (CA) with ampli-
tudes from electron diffraction, obtaining a 3.5 Å
projection map of porin. Schultz et al. (1993) imaged neg-
atively stained 2D monolayer crystals by tomographic sin-
gle-axis tilt series, calculated a 3D reconstruction of the
unit cell via single particle methods, and combined two
molecules from the unit cell with non-crystallographic sym-
metry to fill the missing cone. Sherman et al. (1998) applied
multivariate statistical analysis to 2D crystal images. Stahl-
berg et al. (1998) used single particle methods to detect and
correct for the non-crystallographic orientation of the pho-
tosynthetic reaction center within well-ordered 2D crystal
images of the surrounding light-harvesting-complex I.
Tahara et al. (2000) could significantly improve the resolu-
tion of a Na+/K+-ATPase projection map by applying
single particle processing methods to 2D crystal images
and allowing for sample heterogeneity.

Here, we apply a maximum likelihood (ML) approach
to the single-particle processing of 2D crystal images. The
ML processing was introduced for the processing of images
of non-crystalline material (single particles), and was
shown to have superior performance at low signal-to-noise
ratios (SNR, variance ratio of signal over noise) compared
with correlation-based alignment (Sigworth, 1998). Com-
bining the single particle processing with an ML approach
can therefore lead to an improvement over the currently
used unbending process. We utilize a whitening filter to
make the ML method applicable to the real data which
have nonwhite noise. We discuss here the application of
ML to 2D crystals and compare its performance with the
traditional correlation-based unbending. Furthermore, we
show how the contrast transfer function (CTF) of the elec-
tron microscope can be included in the processing.
2. Theory

2.1. Maximum likelihood for 2D crystals

The application of the ML approach to single particle
images has been described previously and employs the iter-
ative expectation maximization algorithm to maximize the
likelihood function (Dempster et al., 1977). Since the
images we will process as single particles will be centered
on unit cells excised from a 2D crystal, it is reasonable to
limit the alignment of each particle to an in-plane angle
and translation. Individual unit cells may also suffer from
out-of-plane tilts, for example due to undulations in the
crystal (cryo-crinkling, Vonck, 2000). To perform a full
3D alignment, two additional angles would have to be con-
sidered. The computational load associated with the expec-
tation maximization algorithm would be very high in this
case and some approximations have to be made (Scheres
et al., 2005). However, application of the ML approach
to experimental data from 2D crystals (see below), shows
that very good results can also be obtained when limiting
the alignment to in-plane transformations. We will, there-
fore, limit our discussion to this case and follow Sigworth’s
implementation of the maximization algorithm (Sigworth,
1998). Briefly, we assume that we have a set of N images
X = {Xi; i = 1, . . . ,N} and corresponding transformation
parameters U = {/i; i = 1, . . . ,N} describing how these
images are related to the underlying structure A. We fur-
ther assume that the noise in each image follows approxi-
mately a Gaussian distribution and is uncorrelated. This
assumption will be discussed further below when consider-
ing experimentally observed data. We can write for each
image i

X i ¼ Að�/iÞ þ rRi; ð1Þ
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where R = {Ri; i = 1, . . . ,N} are independent Gaussian
noise images, and r is the standard deviation of the noise.
The negative sign in front of the transformation /i indi-
cates that it describes the transformation needed to bring
image Xi into register with structure A. A transformation
/i consists of /i ¼ qxi; qyi; qai

� �
where qxi; qyi

� �
describes

an in-plane translation and qai a rotation applied to each
image. Furthermore, we assume that each image is approx-
imately centered on a point (nx,ny), and that the deviation
from this point can be described by a Gaussian distribution
with standard deviation (rx,ry) (for isotropic lattice distor-
tions, rx = ry). For images of single particles, the distribu-
tion of in-plane rotations is usually assumed to be uniform.
The in-plane angular distribution of unit cells within a 2D
crystal, on the other hand, will be quite narrow. It will be
represented by a Gaussian distribution centered on the
value na with a standard deviation ra. The goal of the
ML approach is to maximize the probability P(X|H) that
the set of images X is observed assuming a set of model
parameters H = (A,r,nx,ny,na,rx,ry,ra). Instead of maxi-
mizing P (X|H), its logarithm L(X|H) is maximized. Assum-
ing independent variables associated with each image,
P(X|H) is the product of probabilities for each image Xi,
and we can write for the logarithm.

LðXjHÞ ¼
XN

i¼1

ln PðX ijHÞ: ð2Þ

The probabilities P (Xi|H) can be written as integration
over the product of the probability density P (Xi|/,H) for
each image given the model parameters H and a transfor-
mation /, and the probability density f (/|H) for a trans-
formation / given the model parameters H:

LðXjHÞ ¼
XN

i¼1

ln

Z
cið/;HÞd/; ð3Þ

where

cið/;HÞ ¼ P ðX ij/;HÞf ð/jHÞ: ð4Þ

Using the assumptions made above for the noise in the
images and the distribution of transformation parameters,
we can now write for the probability density f (/|H) for the
transformation parameters (Sigworth, 1998).

fð/jHÞ ¼ 1ffiffiffiffiffiffi
2p
p
� �3

1

rxryra

� exp � qx � nxð Þ2

2r2
x

�
qy � ny

� �2

2r2
y

� qa � nað Þ2

2r2
a

" #

ð5Þ

and

P ðX ij/;HÞ ¼
1

r
ffiffiffiffiffiffi
2p
p

� �M

exp � X i /ð Þ � Aj j2

2r2

" #
: ð6Þ

M is the number of pixels in an image. By demanding that
the derivative of L(X|H) with respect to each model param-
eter vanishes, an iterative expectation maximization proce-
dure can be established for obtaining improved estimates
of each model parameter, given the parameters H(n) (Sig-
worth, 1998):

Aðnþ1Þ ¼ 1

N

XN

i¼1

R
X i /ð Þci /;HðnÞ

� �
d/R

ci /;HðnÞ
� �

d/
; ð7Þ

rðnþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NM

XN

i¼1

R
X i /ð Þ � AðnÞ
�� ��2ci /;HðnÞ

� �
d/R

ci /;HðnÞ
� �

d/

vuut ; ð8Þ

nðnþ1Þ
x ¼ 1

N

XN

i¼1

R
qxci /;HðnÞ
� �

d/R
ci /;HðnÞ
� �

d/

nðnþ1Þ
y ¼ 1

N

XN

i¼1

R
qyci /;HðnÞ
� �

d/R
ci /;HðnÞ
� �

d/
ð9Þ

nðnþ1Þ
a ¼ 1

N

XN

i¼1

R
qaci /;HðnÞ
� �

d/R
ci /;HðnÞ
� �

d/
;

rðnþ1Þ
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

XN

i¼1

R
qx � nðnÞx

� 	2

 �

ci /;HðnÞ
� �

d/R
ci /;HðnÞ
� �

d/

vuuut

rðnþ1Þ
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

XN

i¼1

R
qy � nðnÞy

� 	2

 �

ci /;HðnÞ
� �

d/R
ci /;HðnÞ
� �

d/

vuuut ð10Þ

rðnþ1Þ
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

R
qa � nðnÞa

� 	2

ci /;HðnÞ
� �

d/R
ci /;HðnÞ
� �

d/

vuuut :
2.2. Noise whitening

The formulation in the previous section does not take
into account the CTF of the electron microscope and is
based on the assumption of independent Gaussian noise.
This implies independence of neighboring pixels, an
assumption that does not hold in many experimental situ-
ations (Scheres et al., 2005). Uncorrelated noise gives rise
to a flat power spectrum, which is usually referred to as a
white spectrum. As an example, we calculate the power
spectrum for the image stack of unit cells from a 2D crystal
of bacteriorhodopsin. The images in the stack were padded
to four times their original size to achieve finer sampling of
the power spectra, and their power spectra were added for
averaging. The average spectrum is shown in Fig. 1,
together with a line scan. The power spectrum exhibits
Thon rings (Thon, 1971) and an amplitude falloff and
therefore, the assumption of independent noise does not
hold. A noise whitening procedure is needed before maxi-
mum likelihood estimation can proceed. For single parti-
cles, a noise whitening filter has been constructed from
circularly-averaged power spectra of a pure noise region
(Sigworth, 2004). Based on the noise model described
below, we obtained a similar whitening filter for 2D
crystals.



Fig. 1. (a) Averaged power spectra from 10,029 tiles of a cryo-EM image of a bacteriorhodopsin 2D crystal. Pixel size was 1.15 Å and tile size 100 pixels.
Tiles were padded into 400 pixel wide squares, Fourier transformed, and the intensities were averaged. The diffraction spots of the 2D crystal appear
blurred due to the small tile size. (b) Average power along the red line in (a).
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The power spectrum in Fig. 1 can be described as a
composition of four components: the first arises from
the crystal and can be identified as the spot pattern visible
in the spectrum (Fig. 1a). This will be referred to as the
signal S since it contains the information that we are try-
ing to extract with the maximum likelihood procedure.
The second component is the ring pattern (Thon rings)
that shows oscillations characteristic for the CTF
(Fig. 1a and b). This will be referred to as the image back-
ground Bi since it is originating from the entire sample
including the non-crystalline parts, such as the carbon
support film and/or ice. The third component arises from
the shot noise of the electrons forming the image. It lacks
the CTF modulation but is still affected by a detector
modulation transfer function (MTF). This will be referred
to as sample-independent background Bs. The fourth
component Be is the MTF-independent background, aris-
ing from detector noise (film scanner electronics, or CCD
camera electronics). The detector-convoluted Bs together
with Be contribute to the background, indicated by the
red line in Fig. 1b. We can write for the power in our
spectrum

PðkÞ ¼ ½ðSðkÞ þ BiðkÞÞENViðkÞCTF ðkÞ�2MTF2ðkÞ
þ B2

s ðkÞMTF2ðkÞ þ B2
e : ð11Þ

k is a point in the power spectrum in Fig. 1a. The envelope
function ENVi contains all the factors affecting the optical
properties of the electron microscope, such as spatial and
temporal coherence, as well as any reduction in contrast
due to sample movement and charging (see, for example,
Zhu et al., 1997). Assuming independence of S and Bi,
we can write for the power spectrum of the background
in the image

P BðkÞ ¼ B2
i ðkÞENV2

i ðkÞCTF2ðkÞMTF2ðkÞ
þ B2

s ðkÞMTF2ðkÞ þ B2
e ; ð12Þ
where CTF is given by

CTFðkÞ ¼ �w1 sin½vðkÞ� � w2 cos½vðkÞ� ð13Þ

with (Scherzer, 1948)

v kð Þ ¼ pkk2 Df kð Þ � 1=2k2k2Cs

� �
: ð14Þ

k is the magnitude of k. The two constants w1 and w2 are gi-
ven by the percentage of amplitude contrast, W, in the image:

w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� W 2

p
;

w2 ¼ W
ð15Þ

Usually, the value for W ranges from 0.03 (Toyoshima and
Unwin, 1988; Toyoshima et al., 1993) to 0.14 (Smith and
Langmore, 1992) for proteins embedded in ice, and 0.19
(Zhu and Frank, 1994) to 0.35 (Erickson and Klug, 1971)
for proteins embedded in stain (uranyl acetate). k is the
electron wavelength and Cs is the spherical aberration coef-
ficient of the objective lens. The defocus Df is given by
(Henderson et al., 1986; Mindell and Grigorieff, 2003).

DfðkÞ ¼ 1=2½DF1 þDF2 þ ðDF1 �DF2Þ cosð2½ak � aast�Þ�;
ð16Þ

where DF1 and DF2 are the two defocus values describing
the defocus in two perpendicular directions in an image
when astigmatism is present, aast gives the angle between
the first direction (described by DF1) and the x-axis, and
ak is the angle between the direction of the scattering vector
k and the x-axis. For a particular image, DF1, DF2 and aast

can be determined using a fitting procedure that fits a cal-
culated CTF to the observed Thon rings (Mindell and Gri-
gorieff, 2003). Note that in Eqs. (14) and (16) a positive
value for the defocus indicates an underfocus.

The power spectrum modulation is mainly due to the
first term in the sum in Eq. (12), which includes the oscilla-
tions of the CTF. Therefore, a whitening filter Hw is
obtained by averaging the power spectrum along the path
of the thon rings
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HwðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

P
k1ðkiÞ¼k1ðkÞP BðkiÞ

q ; ð17Þ

where k1(ki) = k1(k) indicates the pixels ki in reciprocal
Fourier space that are on the same Thon ring as pixel k.
N is the number of Fourier pixels along one Thon ring that
are averaged. k1(k) is a function that is constant for all k

lying on the same Thon ring. In the case of no astigmatism
it simply returns the magnitude of k. For the more general
case, k1(k) is given by

k1ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

� �2

� 2Df kð Þk2
2

k2Cs

þ k4
2

svuut
; ð18Þ

where k2 is the resolution of the pixel k, (i.e.: k2 = |k|). Eq.
(18) is derived in Appendix.

During calculation of Eq. (17), Fourier pixels are
excluded from the averaging if their power deviates from
the average by more than the standard deviation of the
power. The latter was calculated from the Fourier pixels
for which k1(k) is a constant value, and this value was
refined by four times iteratively excluding pixels with an
amplitude exceeding the standard deviation of the included
pixels. Therefore, strong reflections from the crystal that
contain predominantly signal, are mostly excluded from
the averaging and the whitening filter reflects mainly the
background modulation. The Fourier transform of the
background with whitened power spectrum is

F nðkÞ ¼ F ðkÞH wðkÞSign½CTFðkÞ�; ð19Þ
where F(k) is the pre-whitening Fourier transform. Eq. (19)
includes a multiplication by Sign[CTF(k)] which equals +1
for CTF P 0 and �1 for CTF < 0. The multiplication does
not change the power spectrum. However, it performs a
phase flip according to the CTF that is important when
points with different values of the CTF are being averaged.
This situation can arise, for example, when there is astig-
matism present in an image. Any rotation of an image rel-
ative to another image from the particle stack would then
result in the averaging of image terms that do not have
the same CTF value.

Fig. 2 shows the average power spectrum after whiten-
ing. As the line scan in Fig. 2b shows, the power is now
approximately constant. Fig. 3 shows that the distribution
of densities in both the original the whitened images closely
match a Gaussian profile. This shows that the whitening
does not significantly alter the density distribution of pixels
in an image. The background in the whitened image can
now be treated as uncorrelated Gaussian noise and, there-
fore, satisfies the condition of the likelihood formalism out-
lined above. Apart from the background term, the
whitened image also contains the crystal. However, the
SNR of the whitened image is only about 1/170 (see
below), making the contribution of the crystal negligible.

The whitening process amplifies the noise level, particu-
larly at high resolution and near CTF zeros. Therefore, the
algorithm presented here requires a larger number of parti-
cles to obtain the same overall SNR in the final reconstruc-
tion, compared with other algorithms that do not require
whitening.

2.3. Contrast transfer function

The ML procedure described above can be applied to
the stack of unit cells excised from the 2D crystal after
whitening. The whitened stack is not suitable for determi-
nation of the projection structure of the crystal, however,
since it does not correct for the CTF of the electron micro-
scope. To obtain a CTF-corrected projection structure of
the crystal, a second stack of unit cells has to be generated
that contains unaltered amplitudes and phases. Upon con-
vergence of the ML procedure for the stack with the whit-
ened crystal data, an ML estimate of the unaltered crystal
can be calculated using Eq. (7) by replacing the data set X

with CTF-corrected data set ~X derived from the unaltered
crystal. In evaluating Eq. (7), it is important that the prob-
ability function c is calculated using the whitened images.

If ~S is the signal component in the ML estimate of the
unaltered crystal, an estimate of the crystal structure S

can be obtained by ‘‘dividing’’ by the CTF. However,
because the CTF contains regions of small values and
zeros, a straight division is not possible. It is customary
in these cases to use the well-known Wiener inverse filter
(Freiden, 1975). S is then given by

SðktÞ ¼

~SðkÞSNRðkÞ
CTFðkÞ 1þSNR kð Þ½ � for CTFðkÞ 6¼ 0

0 for CTFðkÞ ¼ 0;

8><
>: ð22Þ

where SNR(k) is the SNR of ~S at point k. The SNR is usu-
ally not known at every point in the spectrum. However, an
estimate of the average SNR can be obtained from the
crystal by comparing the integrated intensity of all diffrac-
tion peaks in a power spectrum of the crystal with the inte-
grated intensity of all other points in the spectrum. In a
typical low-dose image, such as the image of the bacterio-
rhodopsin 2D crystal considered below, the average SNR
before averaging is about 1/50. After averaging over N unit
cells in a stack (for example N = 10,029 unit cells from the
bacteriorhodopsin crystal, see below) the SNR in the aver-
age is N times the SNR of the raw image (in our example
the average SNR is about 200). If we assume that the
SNR is approximately proportional to CTF2,

SNRðkÞ ¼ a � CTF2ðkÞ; ð23Þ
the average SNR within the considered resolution range,
SNR, will be a � CTF2. Here, a is a proportionality constant.
It follows for the SNR in the ML estimate from N images
that

SNRðkÞ ¼ SNR

CTF2
� CTF2ðkÞ: ð24Þ

Using Eq. (22) we can write for the structure S



Fig. 2. (a) Average power spectrum as in Fig. 1, but calculated from the noise-whitened image. (b) Average power along the red line, as in (a).

Fig. 3. Histogram of the grey-values in the noise-whitened image (red line)
that was used for Fig. 2. For comparison, the histogram of the same image
before whitening is shown (black dashed line). After appropriate scaling,
the two histograms are virtually identical.
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S kð Þ ¼ ~S kð ÞX kð Þ ð25Þ

with

X kð Þ ¼ CTF kð Þ
CTF2 kð Þ þ CTF2=SNR

: ð26Þ

Eqs. (25) and (26) say that we can correct the observed den-
sity ~S by dividing by the CTF at most points. ~S is multi-
plied by the CTF only where CTF2 becomes small. The
value for CTF2 will be close to 0.5 if the CTF is not signif-
icantly attenuated by the envelope ENVi. For a signifi-
cantly attenuated CTF, the value for the average will be
smaller. For example, if the envelope function at the
high-resolution end of the considered resolution range
attenuates the power spectrum by 90%, the value for
CTF2 is only 0.15. For large values of SNR, for example
200 (see above), the action of the filter (Eq. (26)) will not
depend strongly on the precise value of CTF2. Therefore,
in the following calculations, we will approximate CTF2

by its upper bound of 0.5.
If the defocus does not change across the image (untilted

specimen), the CTF correction factor X can be applied to
the original image of the 2D crystal before excising the unit
cells. Applying the CTF correction to the entire image or at
least to larger patches of the original image before excising
the unit cells has the advantage that the CTF-dependent
point-spread-function (PSF) in the image is not truncated
and can be completely included for the CTF correction
(Rosenthal and Henderson, 2003; Philippsen et al., 2006).

A further factor affecting the contrast is the resolution-
dependent amplitude falloff. To restore the signal at higher
spatial frequencies, the amplitudes can be scaled by an
exponential function

EðkÞ ¼ eð�B=4k2Þ; ð27Þ

where a negative temperature factor B determines the
amount of amplification. Note that Eq. (27) uses the defini-
tion of the temperature factor commonly found in X-ray
crystallography. To relate this to the Debye–Waller tem-
perature factor, it has to be divided by 4.
2.4. Resolution determination

In single particle image processing, the resolution of the
final map can be estimated with the help of the Fourier Ring
Correlation (FRC) function between the Fourier transfor-
mations of two reconstructions that are made from two sub-
sets of the dataset. As described in Stewart and Grigorieff
(2004), this bears the risk of noise correlation, when image
data of low SNR are aligned to the same reference with an
algorithm suffering from strong reference bias. Therefore,
we calculate the FRC between two structures obtained by
independent alignment cycles with two different references.
As a resolution cut-off, we used FRC = 0.33 to match the
crystallographic criterion. A FRC of 0.33 corresponds
roughly to a phase error of 45� (Rosenthal and Henderson,
2003). The crystallographic resolution was determined by
the IQ-weighted phase residual determined during symme-
try averaging, also with a cut-off of 45�.

When applied to averages calculated from a 2D crystal
image, the resolution determination by direct FRC gener-



Fig. 4. Flow-chart of the implemented ML algorithm.
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ally fails: the Fourier transformation underlying the FRC
calculation assumes periodic boundary conditions in the
image. As the unit cell stack generated from a 2D crystal
image generally does not have window dimensions and ori-
entations that are exactly aligned with the crystal unit cells,
the periodic boundary conditions are not met. The discon-
tinuities at the boundaries correspond to strong and sharp
contrast features that will lead to spurious correlation in
the FRC curve.

We have therefore opted for resolution determination of
the final image after application of a circular mask with a
smooth edge. In addition, our software extracts the precise
crystal unit cell of the final map and re-interpolates this
onto a 200 · 200 pixel wide square image, which is then
Fourier transformed, and the amplitudes and phases of
the Fourier pixels are extracted, following the procedure
by Sherman et al. (1998). These values for amplitudes
and phases are then directly compatible with the 2D crys-
tallography package of the MRC image-processing suite,
and can be used for further processing with the MRC soft-
ware. Specifically, Fourier merging and lattice line interpo-
lation performed by the MRC software for 3D
reconstructions from differently tilted 2D crystal images
is made possible.

2.5. Implementation

Crystallographic image processing with the MRC soft-
ware programs includes the program QUADSEARCH
(Crowther et al., 1996), which determines a coordinate list
that describes the positions of the unit cells of the 2D crys-
tal. This list is subsequently interpolated into a much finer
raster by the program CCUNBEND, which corrects crys-
tal distortions in the real-space image. The corrected image
is Fourier transformed and the amplitude and phase values
of the diffraction peaks are evaluated. In QUADSERCH,
the unit cell positions are found by searching for maxima
in a cross-correlation map, calculated by correlating a ref-
erence image (extracted from a filtered version of the origi-
nal image) with the raw image. However, instead of simply
determining the locations of global maxima in this cross-
correlation map, QUADSERCH can make use of the
a-priori knowledge of the approximate crystal unit cell
location, and predicts the location of the next unit cell by
extrapolating from the last n (usually 6 or 7) identified unit
cell locations. Therefore, QUADSERCH only performs a
local peak search of the cross-correlation map in the neigh-
borhood of the predicted location. This reduces the risk of
mistaking a spurious noise peak for the correct correlation
peak indicating the unit cell location. QUADSERCH
allows also refinement of the predicted unit cell location
table, by extrapolating a specific new unit cell location
from the previously determined raster of neighboring unit
cell locations, approaching the location in question simul-
taneously from different sides. This algorithm enables
QUADSERCH to find the correct crystal unit cell location
with a much higher precision than a simple cross-correla-
tion peak search over the entire unit cell would allow. This
allows the usage of a smaller reference particle size, since
the prediction algorithm in QUADSERCH can find a cor-
rect local peak, even if this peak is only a weak local max-
imum within the noisy landscape of the cross-correlation
map.

A single-particle approach to the processing of images
of 2D crystals would have a disadvantage over the crystal-
lographic approach if the unit cells were selected based
only on the maxima in the cross-correlation map between
reference and 2D crystal image, instead of profiting from
the knowledge of the approximately predicted location of
the next unit cell. We decided, therefore, to use the list of
unit cell locations determined by QUADSERCH. The
more accurate centering of the unit cells extracted at the
determined locations will lead to a narrow distribution in
Eq. (5) (small rx, ry), which acts as a significant constraint
in the likelihood maximization. The different steps of pro-
cessing including QUADSERCH and ML analysis are
depicted in Fig. 4.

Using the environment of the 2dx software (Gipson
et al., 2007a), we utilize the peak position profile deter-
mined by QUADSERCH to define the unit cell locations
for further processing. The 2dx_image standard-script
‘‘Maximum Likelihood’’ was created, which allows the
application of the ML algorithm during the standard image
processing sequence. This script calls the program
2dx_ML.exe, which performs the ML calculations. All
required parameters and input images for the ML process-
ing are transmitted from the 2dx_image environment,
which provides usable default values and offers an interac-
tive help function in form of program-internal manuals,
online-documentation and right-mouse-click activated
pop-up information windows for the user. The results of
the ML processing are channeled back into the 2dx_image

graphical user interface (GUI) for further analysis or
parameter refinement.

The program 2dx_ML.exe performs noise-whitening
according to Eq. (19) on the entire input image, and then
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windows the particle stack. For the particle selection, the
user has the choice of either accepting particles with a
QUADSERCH profile correlation value above a given
threshold, or explicitly defining the percentage of QUADS-
ERCH particle locations (e.g. 90%) that should be chosen
for usage in the ML processing. The program then esti-
mates the ML parameters according to Eqs. (4)–(6), (8)–
(10), and iteratively calculates the next generation of esti-
mates structure A(n+1), according to Eq. (7), with correc-
tion of the CTF according to Eqs. (25) and (26).

For the first estimate for the iterative processing the user
can choose either the average of the noise-whitened particle
stack, a computer-generated random noise image, or a ran-
domly chosen unit cell. Upper limits for the translation in
form of a circular mask and for the rotational angle search
range for the ML profiles can be defined. The iterative cal-
culation of the next estimate can be done by a ML calcula-
tion with a weighting scheme according to Eq. (7). The
SNR of the data can be increased by applying a 2-, 3-, 4-
, or 6-fold rotational symmetry to the calculated estimate,
if such symmetry is expected to be present. Application
of rotational symmetry automatically centers the result
onto the symmetry center. An experimental option to apply
a low-pass filter using either sharp cut-off or Gaussian pro-
file to the estimated structure after each ML iteration is
available. Application of a low-pass filter during the initial
iterations can help the overall convergence of the ML pro-
cedure in some cases. The iterations are terminated when
either a pre-defined number of iterations is reached or the
change of the ML parameters is below a given threshold.
For the final reconstruction a negative B-factor can be
applied (Eq. (27)) to amplify high-resolution terms. The
final result is output as an image in MRC format, and
can be inspected in the 2dx_image GUI. The final result
is also translated into a list of amplitudes and phases fol-
lowing (Sherman et al., 1998), for further processing in
the 2dx_merge program (Gipson et al., this issue).

For comparison with the ML results, a cross-correlation
(CC) based single particle algorithm is also implemented.
This CC algorithm prepares a set of rotated reference,
and calculates the cross-correlation map between the set
of rotated references and the particles. A peak search over
all cross-correlation maps for each particle is then per-
formed. The particles are then rotated and shifted accord-
ing to the CC peak location, and subsequently averaged to
produce a new reference. As for the ML algorithm, the
result is then translated back into amplitudes and phases.
The user can choose in the 2dx_image GUI between either
the ML or the CC algorithm.

3. Results

The ML algorithm was first applied to an image of a
negatively stained OmpF 2D crystal recorded with a
CCD camera. Fig. 5 shows the results using the ML algo-
rithm. After noise whitening and five ML iterations the
OmpF trimer became visible (Fig. 5a). However, further
ML iterations tracked the hexagonal background pattern
from the CCD camera’s fiber taper, superimposed on the
crystal structure (Fig. 5b and c). This is due to the enhance-
ment of the hexagonal pattern in the power spectrum. Even
though in the raw image and in the calculated power spec-
trum no signature of the CCD camera’s fiber optics back-
ground was observable, the hexagonal pattern became
visible in the power spectrum of the whitened image.

The ML algorithm was therefore extended by a function
that excludes Fourier pixels from whitening if their resolu-
tion was higher than half the Nyquist frequency and if their
amplitude was higher than eight times the local average
amplitude. The identified pixels were instead set to an
amplitude of one, while the whitening algorithm sets the
average of the amplitudes of the remaining pixels to one
(see Eq. (17) and (19)). This function prevents the signal
in the Fourier transformation that originates from the fiber
optics pattern at high frequencies from dominating the ML
estimate. The modified whitening procedure removed the
artifacts seen in the OmpF structure (Fig. 5d–f).

We compared results using the new ML procedure with
results using another algorithm based on linear cross-corre-
lation alignment, and crystallographic image processing as
implemented in the MRC software. These three procedures
were applied to 2D crystal images of different SNR and
crystalline order: we processed (1) a well-ordered bacterio-
rhodopsin image (frozen hydrated, image recorded on pho-
tographic film and digitized, with an SNR of 1/170,
Grigorieff et al., 1995), (2) a partially disordered 2D crystal
of the ammonium transporter AmtB (negatively stained,
CCD image with an SNR of 1/80, Khademi et al., 2004),
and (3) a semi-crystalline membrane patch of the tetra-
meric potassium channel MloK1 (negatively stained,
CCD image with an SNR of 1/30, Chiu et al., 2007). To
avoid amplification of noise, whitening was not applied
in the CC alignment.

For the well-ordered 2D crystal image of bacteriorho-
dopsin (bR, Fig. 6), 3-fold symmetrization was applied
during processing with each method. All processing was
done with only one image of bR. For this image, as well
as the images of other samples processed for this work,
the effect of potential beam tilt was ignored. Using the
FRC = 0.33 criterion, the ML approach yielded a resolu-
tion of 3.2 Å, slightly better than that of the CC alignment
(3.4 Å). The crystallographic approach produced results at
a similar resolution (3.5 Å), IQ-weighted phase residual
during symmetrization <45�. The FRC curves in Fig. 6c
show the correlation between two structures obtained by
two separate ML and CC processes, using two independent
reference structures. The FRC curves indicate slightly
higher resolution of the ML. The ML process converged
after 12 iterations with a translational standard deviation
of 0.5 pixels and an angular standard deviation of 0.57�.
When the alignment was done with the entire dataset and
one common reference, and the FRC was calculated using
two subsets of the data, the CC alignment showed a slightly
higher FRC at high resolution (result not shown). This may



Fig. 5. ML processing of the image of a negatively stained 2D crystal of QmpF. (a–c) Intermediate maps obtained after noise whitening and 5, 15 and 20
iterations, respectively. (d–f) ML processing of the same data when using the modified whitening procedure that excludes peaks in the Fourier spectrum
produced by periodic image features.

Fig. 6. Application of the ML (a) and CC (b) algorithms to a frozen
hydrated 2D crystal image of bacteriorhodopsin. Threefold symmetry was
applied during processing. (c) The Fourier ring correlation between two
half-data sets of the final maps. (d) Image processing result from one
image, after unbending and Fourier extraction using the MRC crystallo-
graphic programs, with p3 symmetrization.
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have been due to the correlation of noise features between
the two structures obtained from subsets of the data using
a single reference (Grigorieff, 2000).

ML processing outperformed the other two methods
when applied to images of partially disordered 2D crystals
of AmtB (Fig. 7). The ML reconstruction showed a resolu-
tion of 12 Å (FRC = 0.33). The CC alignment resulted in a
visually lower-resolution map, but similar resolution at the
FRC cut-off of 0.33. The ML process converged after 23
iterations with a translational standard deviation of 1.1
pixels and an angular standard deviation of 1.35�. The
crystallographic processing of the same micrograph with
the MRC software resulted in a projection map at 18 Å res-
olution (IQ-weighted phase residual during symmetrization
<45�).

When applied to a badly ordered 2D crystal of MloK1,
the single particle approaches achieved significantly better
results than the crystallographic approach (Fig. 8). Both
the ML and CC algorithms produced structures at a resolu-
tion of about 20 Å. The similar performance might be due to
the high SNR, compared to the other images, produced by
the high defocus used when recording the image. At high
SNR values, the ML and CC algorithms tend to have similar
performance (Sigworth, 1998; Scheres et al., 2005). The ML
process converged after 25 iterations with a translational
deviation of 3.8 pixels. The unit cells were rotated at 90�
steps to detect the deviations from fourfold symmetry.
The crystallographic processing of the same micrograph
resulted in a blurred reconstruction of 28 Å resolution
(IQ-weighted phase residual during symmetrization <45�).
3.1. Noise correlation produced by the ML and CC

alignment methods

A major advantage of the ML approach, compared with
CC alignment, is the larger convergence radius. This means



Fig. 7. Processing of a negatively stained, partially disordered 2D crystal
image of the ammonium transporter AmtB. Final maps with 2-fold
averaging using the ML (a) and the CC (b) alignment approach. (c) The
Fourier ring correlation between structures calculated from two halves of
the data. (d) Structure obtained using the crystallographic approach, with
p2 symmetrization.

Fig. 8. Image processing of a negatively stained, badly ordered 2D crystal
image of a tetrameric potassium channel MloK1. (a and b) Final maps
with 4-fold averaging using the ML (a), and CC (b) alignment approach.
(c) The Fourier ring correlation between structures calculated from two
halves of the data. (d) Image processing result from one image, after
unbending and Fourier extraction using the MRC programs, with p4
symmetrization.
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that the final ML estimate is less likely to be biased by the
initial reference (Sigworth, 1998; Scheres et al., 2005).
Another problem often found with CC alignment is
so-called over-fitting, in which the refinement procedure
introduces features in the refined structure that reflect the
noise in the data, rather than the signal (Grigorieff, 2000;
Stewart and Grigorieff, 2004). A hallmark of over-fitting
is a FRC curve that shows artificially high values at high
resolution where the SNR is low. Following (Stewart and
Grigorieff, 2004), we designed a test to detect over-fitting
in the ML and CC approach. We constructed a test dataset
on the computer, consisting of 2000 images that were gen-
erated from a test pattern (Fig. 9a) by random translations
with a standard deviation of five pixels. In-plane rotation
was not applied to avoid interpolation errors at high reso-
lution. Each pattern was then overlaid with white Gaussian
noise to produce a set of noisy images with a SNR of 1/200,
one of which is shown in Fig. 9b. Since the signal and noise
components of each image were known, a detailed evalua-
tion of the alignment performance could be done.

We used the noise-free structure as the initial reference
to perform one round of ML estimation, or one round of
CC alignment, depending on which procedure was tested.
For the ML procedure, the initial value for the standard
deviation of translation was five pixels, matching the
model parameters that were used to generate the simu-
lated data. The performance of each procedure was eval-
uated by calculating the new ML estimate (or average of
the CC aligned images) from only the noise component of
the test images. This allowed us to detect any bias pro-
duced by the ML or CC alignment approach. A bias is
expected to reveal a replica of the reference in the noise
average (Stewart and Grigorieff, 2004). The results in
Fig. 9c and d suggest that the ML procedure exhibits
over-fitting to a lesser extent than CC alignment. Over-fit-
ting becomes significantly more apparent in the ML aver-
age after 20 iterations (Fig. 9f), but still remains less
prominent compared with the result from CC alignment
(Fig. 9e). Especially at high resolution, the FRC between
the noise average produced by the ML procedure and the
original pattern is much lower compared with the FRC
curve calculated for the average from the CC alignment
(Fig. 9g).

The performance of the ML and CC alignment proce-
dures can also be evaluated by their alignment error

Err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðsxi � sx0iÞ

2 þ ðsyi � sy0iÞ
2

N

s
; ð28Þ

where sxi and syi are the actual offset of the ith (1 6 i 6 N)
image to the true reference, and sx0i and sy0i are determined
from the coordinates of peaks in the CC map calculated be-
tween the ith image and the final map. The ML alignment
showed an error of 2.8 pixels, and the CC alignment an er-
ror of 5.2 pixels.
4. Discussion

Several recent publications reported data of crystals that
diffract to less than 8 Å resolution (e.g. Oling et al., 2001;



Fig. 9. Computer simulation to detect over-fitting of noise. (a) Test pattern used to generate 2000 noisy images with a SNR of 0.005 (b). Average
calculated from the noise component of the test images after one iteration of CC alignment (c), and ML estimation (d). Averages similar to (c) and (d) are
shown after 20 iterations for CC alignment (e) and ML estimation (f). (g) FRC curves between the noise-free test pattern (a) and the noise averages in (e)
and (f).

372 X. Zeng et al. / Journal of Structural Biology 160 (2007) 362–374
Parcej and Eckhardt-Strelau, 2003; Tahara et al., 2000;
Ziegler et al., 2004). In those cases, a single particle
approach can lead to a substantial improvement (Tahara
et al., 2000). Here we developed and implemented an adap-
tation of a ML algorithm for computer image processing of
2D crystal images.

The amount of noise correlation in three different align-
ment methods has been studied by Stewart and Grigorieff
(2004). In their experiments, the phase residual performed
worst as a similarity measure, CC alignment performed
better, and a newly proposed alignment using a weighted
CC performed best. The ability of the new method devel-
oped by Stewart and Grigorieff (2004), to minimize noise
correlation is partly due to the weighting function. The
ML algorithm can be viewed as using a weighting scheme
that is related to the cross correlation profile and the
in-plane transformation profile (Eq. (5)). The profiles usu-
ally result in a frequency low-pass filtration, which presum-
ably renders the ML procedure more resistant to noise
over-fitting.

The new ML algorithm uses unit cells centered accord-
ing to the coordinates written out by the program
QUADSERCH. The distribution function describing the
in-plane translations of the unit cells converged during
the iterative ML processing to a narrow Gaussian-like pro-
file with a width depending on the order of the crystal. In
the examples shown here the final profiles had standard
deviations of three pixels or less, but did not converge to
a single point. The widened profile reflects a difference
between the correlation peak locations found by QUADS-
ERCH and unit cell locations estimated by the ML algo-
rithm. The effect of the Gaussian-like profile is similar to
the convolution of the reference image with a Gaussian fil-
ter during a conventional single-particle cross-correlation
alignment. With the narrowing of the Gaussian profile dur-
ing ML refinement, the influence of high-resolution terms
in the images becomes stronger. The dominance of the
low-resolution terms at the beginning of the refinement is
presumably one of the reasons for the superior convergence
radius and reduced initial reference bias of the ML proce-
dure, compared with CC alignment. The Gaussian filter
also reduces the over-fitting of noise (see above). This
self-adjusting filter is similar to the self-adjusting weighting
function used with the weighted CC alignment (Stewart
and Grigorieff, 2004).

The rotational distribution for the ML processing is
assumed to be Gaussian with a standard deviation that
depends on the quality of the crystals, for example ±2.5�
for relatively well-ordered crystals. Some crystal images,
however, may be best processed by assuming a uniform dis-
tribution of rotations, i.e. equal likelihood for all angles
within a specific interval. The newly implemented software
allows the specification of an angular search range and step
size. A large step size can be used to test for systematic
deviations from nominal symmetry. For example, devia-
tions from fourfold symmetry of the tetrameric potassium
channel MloK1 can be detected by testing alignments of
the unit cells in 90� steps (Chiu et al., 2007). Therefore, a
prior knowledge of the distribution of translation and rota-
tion is very important for the ML method, as also been
noticed by Scheres et al. (2005).

The whitening procedure is essential for satisfying the
current ML theory, and needed for the ML method to
work reliably. Further development of the theory to allow
also non-white noise distributions may improve the perfor-
mance of the ML algorithm because it avoids amplification
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of noise. The described whitening filter was applied to
images of entire crystals with subsequent excision of the
unit cells, to avoid truncation of the PSF. CTF correction
and whitening of smaller areas containing only a small
number of unit cells is required for adapting the method
to tilted images with different defocus areas (this work is
ongoing).

5. Conclusions

Single particle processing of 2D crystal images has been
considered previously for images of 2D crystals (Sherman
et al., 1998; Tahara et al., 2000). Here we apply the maxi-
mum likelihood approach for the first time to 2D crystal
images. The correlation of real-space noise of neighboring
pixels in the image is eliminated by using a whitening filter.
Compared with cross-correlation alignment, the ML
method is significantly less sensitive to, but not entirely free
of noise-correlation and reference bias. The better perfor-
mance on data of low SNR makes its application to stacks
of images containing unit cells excised from the crystal
image possible. The ML approach has its greatest advan-
tage over the crystallographic approach when applied to
partially disordered crystals where the disorder would nor-
mally limit the attainable resolution. Based on our tests,
the ML approach can yield structures at better than
3.5 Å resolution, sufficient for their interpretation by
atomic models.

The newly developed ML algorithm is available within
the software package 2dx (http://2dx.org).
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Appendix

In the absence of astigmatism, Thon rings are circular
and the function k1(k) in Eq. (17) corresponds to the iden-
tity function k1(k) = |k|. Astigmatism produces elliptical or
hyperbolical Thon rings, in which case averaging of the
pixels along a Thon ring ellipse requires identifying all pix-
els k in reciprocal space that lie on the same Thon ring
ellipse or hyperbole. This is done by the function k1(k),
which assigns to each reciprocal pixel k the resolution of
the corresponding pixel on the same Thon-ring in the direc-
tion of the largest defocus, which is defined as the direction
of DF1 or by aast in Eq. (16). The function k1(k) can be
derived by calculating the phase shift v(k) (Eq. (14)) for
the Fourier pixel k in question and setting that equal to
the phase shift v(k) for the defocus in direction aast:

pkk2
1ðDF1 � 1=2k2k2

1CsÞ ¼ pkk2
2ðDfðkÞ � 1=2k2k2

2CsÞ:
ðA1Þ

This can be transformed into

k2
1 ¼

DF1

k2Cs

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

� �2

� 2Df kð Þk2
2

k2Cs

þ k4
2

s
ðA2Þ

giving rise to Eq. (18):

k1 kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

� �2

� 2Df kð Þk2
2

k2Cs

þ k4
2

svuut
: ðA3Þ

The sign of the square root in Eq. (A2) can be identified by
testing for the non-astigmatic case DF1 = DF2 = Df(k),
which leads to

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

� �2

� 2DF1k2
2

k2Cs

þ k4
2

svuut
: ðA4Þ

This is equal to

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF1

k2Cs

�DF1

k2Cs

þ k2
2

s
; ðA5Þ

which resolves to k1 = k2, when the minus sign in Eq. (A5)
and therefore the plus sign in Eq. (A2) is chosen.
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