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Abstract

One of the main goals in the determination of three-dimensional macromolecular structures from electron
microscope images of individual molecules and complexes (single particles) is a sufficiently high spatial resolution,
about 4 A, at which the interpretation with an atomic model becomes possible. To reach high resolution, an iterative
refinement procedure using an expectation maximization algorithm is often used that leads to a more accurate
alignment of the positional and orientational parameters for each particle. We show here the results of refinement
algorithms that use a phase residual, a linear correlation coefficient, or a weighted correlation coefficient to align
individual particles. The algorithms were applied to computer-generated data sets that contained projections from
model structures, as well as noise. The algorithms show different degrees of over-fitting, especially at high resolution
where the signal is weak. We demonstrate that the degree of over-fitting is reduced with a weighting scheme that
depends on the signal-to-noise ratio in the data. The weighting also improves the accuracy of resolution measurement
by the commonly used Fourier shell correlation. The performance of the refinement algorithms is compared to that
using a maximum likelihood approach. The weighted correlation coefficient was implemented in the computer program
FREALIGN.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Electron microscopic imaging of isolated
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Such information has become essential for a more
detailed understanding of the many molecular
machines that perform complex functions inside
living cells [1]. Single-particle electron microscopy,
as it is often called, can be used to visualize the
structure of macromolecular complexes that are
not readily accessible by more traditional techni-
ques, such as nuclear magnetic resonance (NMR)
spectroscopy or X-ray crystallography: It does not
require crystals, it does not impose an upper
molecular mass limit on the structure under
investigation, and it can be applied to minute
amounts of only a few pmol of material (see, for
example, Refs. [2,3]). The main shortcoming of
single particle electron microscopy is its limited
resolution which does not normally allow the
interpretation of the structure by an atomic model.
For example, highly symmetrical viruses can
currently be resolved to about 7 A resolution [4-6]
while the asymmetrical ribosome has been resolved
to about 10A resolution [7,8]. Furthermore, a
lower molecular mass limit of about 50 kDa exists
[9] because a minimum mass is required to generate
sufficient scattering contrast for the alignment of
images of the individual particles.

As the push to higher resolution has intensified
over the last 10 years with the development of more
powerful electron microscopes, faster computers
used for image processing, and improved image-
processing algorithms, an unbiased refinement of a
3D reconstruction, and a reliable assessment of its
resolution have become more important. Both the
refined structure and its measured resolution can
be subject to significant errors, due to over-fitting
of the 3D reconstruction to the often very noisy
image data [10]. This paper will introduce a new
strategy for the refinement of structures derived
from images of single particles, with the goal of
reducing noise-dependent over-fitting and accurate
resolution measurement. We start with a brief
review of a current typical refinement procedure
and the source of over-fitting.

2. Expectation maximization algorithm

For the refinement of a structure determined
from images of single particles, we assume that we

have already a rough structure of the particle that
was determined using, for example, the random
conical tilt [11] or angular reconstitution method
[12]. The goal of the refinement is then to obtain
more accurate parameters that describe the x, y
position of the particle in the image, and its 3
angles of orientation. A typical refinement proce-
dure will use the rough 3D structure as a reference
to re-align all particles and obtain improved
particle parameters that can be used to calculate
a better 3D structure. Such an approach is
implemented, for example, in the projection
matching procedure [13] or the minimization of a
phase residual in reciprocal space between particle
image and reference [14]. The iteration cycle of
alignment and reconstruction is a typical imple-
mentation of the expectation maximization algo-
rithm [15,16].

The expectation maximization family of algo-
rithms is a prescription for incrementally improv-
ing a model based on the current state of
knowledge about the model and data. The process
proposes finding a “complete” data set with which
one could produce the best possible model without
any additional knowledge. In our case this
“complete” data set includes both the individual
particle images, and the particle orientations which
we do not know. The expectation maximization
algorithm estimates the hidden data (the orienta-
tion parameters for the particles) using the current
model and the image data. The algorithm cycles
back and forth, iterating between predicting the
model structure given the complete data, and
estimating the particle orientation parameters. In
order for this process to lead to an improved
model (as measured by an increased likelihood of
the data), we must be sure that the alignment
function correctly weights the information con-
tained in the images to produce a strictly better set
of particle orientations. Previous implementations
have used a variety of correlation style functions to
align the particle images. We propose to use a
correlation function that is tuned such that given a
“true” model of the structure, the error in the
estimated orientations will be minimal in a least
squares sense. This requires weighting down those
signal components with low signal-to-noise ratio
(SNR).
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It has been shown that the convergence of a
correlation-based refinement algorithm onto the
correct structure is inferior to a maximum like-
lihood approach at very small SNR [17]. In the
direct maximum likelihood approach, the assign-
ment of parameters to each particle in an image is
avoided, and the refined structure contains each
image at all possible alignment parameters,
weighted by the probability of the structure given
any particular set of alignment parameters. The
calculation of the refined structure is computa-
tionally expensive and an implementation of the
algorithm has so far only been demonstrated in
two dimensions (2D, [17]). Our goal in this paper
is, therefore, to formulate a weighting scheme that
improves the performance of the correlation-based
refinement. It will be shown below that the use of a
carefully weighted correlation coefficient performs
significantly better than a simple linear correlation
coefficient, approaching the performance of a
maximum likelihood refinement.

3. Resolution measurement

At any point in the refinement, the resolution of
a structure can be estimated from features in the
structure if these features correspond to elements
of known structure. For example, the visualization
of a-helical secondary structure indicates that a
resolution of about 9 A has been achieved [18]. At
a resolution that does not correspond to a thresh-
old at which known features become visible, it is
more difficult to assess the resolution accurately.
The most commonly used resolution measure is
the Fourier shell correlation (FSC, [19]). It
evaluates the correlation in resolution zones
between two 3D reconstructions of a particle that
are calculated from two halves of the data. The
assumption in the analysis is that the noise in these
two test reconstructions that remains after align-
ment of the particles and averaging over each half
data set is not correlated. However, in practice,
this assumption is often not valid because, as
described for the expectation maximization algo-
rithm above, the particles from both half data sets
are usually aligned to a single, overall reference 3D
reconstruction that is derived from a previous

alignment cycle. This leads to a bias in the two
reconstructions that correlates the noise in the test
reconstructions, and the FSC becomes unreliable,
usually indicating significantly higher correlation
than would be expected for truly uncorrelated
noise [10].

We evaluate here the degree of bias in 3D
reconstructions induced by the reference structure,
for different similarity measures used in the
alignment. We illustrate that a reduced bias can
be achieved by careful weighting of the data
according to its SNR, and that the reduced bias
renders the resolution measurement by the FSC
method more reliable. We show that the reduced
bias significantly improves the overall particle
alignment and resolution of the reconstruction.
The study uses computer-simulated data sets for
which the underlying true structure is known a
priori. As similarity measures, we consider a
weighted phase residual, the linear (unweighted)
correlation coefficient, as well as a newly devised
weighted correlation coefficient. Finally, we com-
pare the performance of the new weighted
correlation coefficient with that of a refinement
using a direct maximum likelihood algorithm.

4. Weighted correlation coefficient

A widely used similarity measure between
images that will be considered here is the linear
correlation coefficient, CC, defined as

Zf‘ixleiyz'
VEL ey
X and Y are a particle image and a reference
image of dimensions N x N, and with pixel values
x; and y;, respectively. In Eq. (1) we assume that
the pixel averages of x; and y; are zero, according
to a normalization procedure where a constant is
added to each pixel value, followed by a multi-
plication of a second constant, to yield images with
a zero average and constant variance across the
data set. An alignment procedure will attempt
to maximize CC by applying rotations and
translations either to the particle image, or to
the reference image. If the reference is a 3D

CC(X,Y) = ()
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reconstruction, the reference image is a projection
of this reconstruction, and the alignment proce-
dure will vary the three angles defining the
projection, as well as the two positional coordi-
nates, to maximize CC. Eq. (1) can also be written
in Fourier space:

S kepoos Fx OF (k)

\/Zke[O,O.S] |FX(k)|2Zke[0,0.5] |FY(k)|2 .
(2)

Here, Fy and Fy are the Fourier transformations
of images X and Y, respectively, and k is the
reciprocal space coordinate. The magnitude
of k, k, indicates resolution and assumes values
between 0 and 0.5, the Nyquist frequency. In
the alignment of images of single particles, the
range of k is often limited to exclude very
low frequencies that could contain strong compo-
nents due to a density gradient across the image
that are unrelated to the particle, as well as high
frequencies that are very noisy. The linear
correlation coefficient contains an implicit linear
weighting by the amplitudes of both images:
Fourier terms with large amplitudes will deter-
mine the outcome of the sum in the numerator in
Eq. (2) more strongly than terms with small
amplitudes.

We will further consider a weighted phase
residual that has been used as a similarity measure
in the computer program FREALIGN [14], used
for the refinement of single particle 3D reconstruc-
tions:

CC(X,Y) =

Y ke0.0.5APx v ()| Fx (k)|
> ke0.0.5] |F X (k)|

A®y y is the phase difference between Fourier
terms of the Fourier transformations of images X
and Y. In Eq. (3), the weight for the phase residual
contains only the amplitudes of the particle image,
and not also the amplitudes of the reference image,
to avoid over weighting of strong frequency
components in the data [14,20].

The amplitude weighting in the linear correla-
tion coefficient and the weighted phase residual is
based on the assumption that a large amplitude of
a Fourier term is indicative of a strong signal. Such

PRES(X,Y) = (3)

an assumptions holds usually true, for example, in
X-ray or electron diffraction experiments where
the amplitude indicates how many photons or
electrons have been measured, respectively. When
images are considered, however, the overall SNR
is very small, for example, &+ for a particle of
80kDa molecular weight [21], due to the low
electron dose used to minimize damage to the
specimen. For larger macromolecular complexes,
the overall SNR is higher but still becomes very
small towards high resolution. Under conditions
of weak signal, the above assumption that the
amplitude of a Fourier term indicates the strength
of the signal is invalid because the amplitudes are
dominated by random noise.

Ideally, the weights used in a similarity measure
would be based on the true signal contained in the
particle image and the reference. A fundamental
problem at small SNR values is therefore the
accurate determination of the true SNR. A very
sensitive SNR measurement has been proposed
that derives from the correlation coefficient
between two images [22]. We propose here a new
similarity measure that uses weights derived from
correlation coefficients.

To introduce a more accurate weighting scheme,
we consider first an alignment procedure that
performs a least-squares fit of the reference to the
particle image. We seek to minimize

L= Y |Fy® - Fy®)|" “

k€[0,0.5]

In the following, we will assume that the
reference contains no noise. This assumption is
not valid, in practice, since the reference is usually
derived from the noisy particle images and, there-
fore, also contains noise. The effect of noise in the
reference will be considered later. The particle
image can be written as

Fy(k) = Fy(k) + Nx(k). &)

Ny is the difference between the particle image
and the reference. If these are not aligned, the
difference will arise from the misalignment, as well
as the noise in the particle image. After approx-
imate alignment, however, the main difference will
be due to the noise.
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Eq. (4) does not contain any weighting that is
based on the SNR of the particle image, SNRy.
Such a weighting can be introduced through a
Wiener filter W:

Ly= Y [Fx®Wxk - Fy®)| (©)
k€[0,0.5]
with
|
W) = (1+ 1/SNRx(K)) M
and
2
SNRy(k) = L(k)’z 8)
|Nx (k)|

The SNR of individual Fourier terms is difficult
to measure. Frank and Al-Ali [22] showed,
however, that the correlation coefficient

between two images is a sensitive measure of
the SNR:

CC

NR = .
S 1-CC

©)

Here, CC is the correlation coefficient between
two images that have the same SNR. Since we
assume for the moment that our reference image
does not contain noise, this formula becomes (see
Appendix A)

CcC?

SNR=—— .
1 —CC?

(10)

The average SNR of a group of Fourier terms
can, therefore, be estimated from the correlation
coefficient between these terms and the reference
image. The SNR can vary significantly across the
Fourier spectrum and depends on the structure we
are to determine. It has its strongest dependence
on the resolution, however, and it is therefore
reasonable to evaluate average SNR values for
resolution zones.

To relate Eq. (6) to a correlation coefficient, we
note that, if both particle image and reference
image are normalized as described above, the
minimization of Ly is equivalent to the

maximization of

> Fx(®Wx(K)F y(k)

k€[0,0.5]
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&
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CC,; is the average correlation coefficient in the
resolution zone [k;, k;+ Ak]. W;is the Wiener filter
constant calculated using the average SNR in this
zone. The index i runs over all resolution zones
considered in the alignment. For the last equality
in Eq. (11), we used the relation

W;=CC; (12)

that follows from Egs. (7) and (10). In Eq. (11), the
square root depends on the amplitudes of the
Fourier terms, as well as the number of terms in
the sums. As discussed before, an amplitude
weighting does not properly reflect the signal
contained in the data. We therefore ignore the
amplitude contribution to the weighting and write
for the function that needs to be maximized in an
alignment
1
2N
N; is the number of Fourier terms in the resolution
zone [k;, k;+ Ak].

The correlation coefficients CC; in Eq. (13) are
themselves subject to significant error. An image
with N x N pixels that contains solely noise will
have an expected correlation coefficient with a
reference that is approximately Gaussian-distrib-
uted around zero with a standard deviation of

kelk; ki+AK] kelkiki+Ak]

R= > NiCCl. (13)

w= N (14)

To reduce the dependence of the alignment
algorithm on the small and noisy correlation
coefficients, we use the standard deviation in
Eq. (14) as a filter constant and replace the
correlation coefficient in Eq. (13) by a filtered
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correlation coefficient

1 3
Ry = SN, Z N,CC}, (15)
with
cC?
St S 1
CCr, CCi+w (16)

Although for many biological single-particle
imaging projects the resolution is clearly the major
factor in determining the SNR of the Fourier data,
there are important classes of structures for which
this is not the case. Helical structures, for example,
produce concentrated energy in layer lines which
dominate the transforms of images of Actin,
Myosin, Tubulin and many other biopolymers.
Icosahedral viruses have strong spot-like reflec-
tions from their projected structure. In these cases,
our resolution zone processing of the data is non-
ideal, but estimating the SNR of strong localized
signals can be done by scanning through the data
in other ways. Strong signal generally can look out
for itself. It is most essential to correctly weight the
weak data, particularly at high resolution.

It is worth pointing out that the correlation
coefficient in Eq. (10) between particle image and
reference is only related to the SNR if particle
image and reference are perfectly aligned. For a
misaligned particle, the correlation coefficient will
be smaller than expected for a particular SNR, and
therefore, Eq. (10) will give an underestimate of
the true SNR in the image. For the purpose
of finding the best alignment by maximizing R in
Eq. (13), however, the correlation coefficient still
provides a useful measurement of the goodness of
fit, and the SNR calculated in Eq. (10) can be
taken as an “‘effective” SNR that measures only
the signal that is aligned with the reference,
while the remaining mismatched signal, together
with the noise, contributes to the difference
between image and reference.

In the derivations above, we assumed that the
reference contains no noise. In the more realistic
scenario of a noisy reference, the correlation
coefficient in Eq. (10) will be affected by the noise
in the particle image, as well as the reference.
Similarly to the case of a misaligned particle, the
result will be an underestimated SNR in the image.

The error in the SNR estimate will be greater at
high resolution than at lower resolution, and it will
lead to smaller weights ;. Since at small SNR
values, the estimate of the SNR will be relatively
noisy, this error is unlikely to have a significant
effect on the overall alignment process.

5. Uniform convergence

The use of the similarity measure given by Eq.
(15) assigns each resolution zone in the data an
appropriate weight to achieve an alignment with
reduced bias. Since the refinement of a structure
determined from images of individual particles
usually requires several iterations of alignment and
3D reconstruction, we also have to consider the
convergence behavior of our algorithm. Many
existing refinement algorithms use the reconstruc-
tion of a particle from an earlier refinement cycle
as the reference for the next iteration. Such
algorithms often converge onto local optima,
preventing further alignment that would equally
satisfy terms in all resolution zones. In our
refinement algorithm, we consider the difference
between the current model structure and the new
reconstruction given the updated parameters. This
difference should be interpreted as a direction of a
step or gradient to be applied to the earlier model
to reach an improved structure (as measured by
the function discussed above).

One important observation concerning the
Fourier representation of the gradient is the
following: A small change in particle orientation
or position may lead to only a tiny change in the
low frequency components of the gradient, but will
cause a much larger change in the high-frequency
components. Because of this, high frequencies will
tend to converge more rapidly than low frequen-
cies and can lock the system into a local optimum
based on the high-frequency components of the
images, which in general have little signal and
plenty of noise. This causes instability upon
iteration, and is a consequence of the following
consideration. A gradient should not generally be
directly applied to a model, since it is a covariant
entity. The components of different spatial fre-
quency need to be scaled so that they have uniform



A. Stewart, N. Grigorieff /| Ultramicroscopy 102 (2004) 67-84 73

influence on the model. To apply the gradient to
the model in such a way that the convergence is
uniform in all components, independent of spatial
frequency, we must filter the gradient by the
inverse spatial frequency. Such a filter does not
guarantee a convergence onto the global optimum
but onto a point that lies closer to it compared to a
refinement without a filter.

Note that obtaining the model step by filtering
the gradient does not change the stationary
(convergence) point of the iteration, only the path
taken. Without the filter the algorithm loses the
ability to reject spurious high-resolution detail.
Other techniques for managing the convergence
might be employed such as gradually increasing
the resolution between iterations or regularization
with smoothness constraints. The advantage of the
proposed method is that it is data-driven and does
not require manual tuning or interference. The use
of a step to modify the model allows us to consider
many possible additional constraints that are not
discussed here.

As shown below, the step filtering enables the
refinement algorithm to deal with very low SNR.
However, the convergence of the algorithm,
especially at the high-resolution end of the struc-
ture, is slow (see the comparison with maximum
likelihood refinement). We investigated, therefore,
also a single-step refinement algorithm that does
not use step-filtering but uses an additional weight
in the refinement function that is proportional to
the inverse spatial frequency to reduce non-uniform
convergence. Thus, the weighted correlation coeffi-
cient in Eq. (15) is further modified to

Ri=) CCj, (17)
i

Although the single-step refinement using
Eq. (17) is not optimal for data with very low
SNR (e.g. ﬁ), it performs remarkably well at
SNR values commonly encountered in experimen-
tal data (e.g. 5;).

6. Constraints

Over-fitting of noise is a common problem in
algorithms that attempt to fit a model to a set of

measurements. The degree of over-fitting can be
controlled with constraints that introduce a so-
called regularization to the fitting problem. In the
reconstruction of 3D volumes from projections,
non-linear constraints such as maximum entropy
[23] or discrete density [24] are often used.
The maximum entropy constraint attempts to
balance the information content of the model
against goodness-of-fit, while discrete density
constraints force the range of densities within
the model to agree with prior knowledge of
sample composition (such as the simple condition
that the density of the model be positive). Non-
linear constraints can help minimize over-fitting
and can be used to restrict the space of possible
models in physically reasonable ways. However, in
this paper we concentrate on the form and
behavior of the function evaluating the fit between
model and data. The behavior of these functions
is best observed in the absence of non-linear
constraints.

We introduce here a new type of constraint that
is based on the principle difference in the character
of noise and signal. Besides being random, noise in
an image also lacks ‘“‘coherence”: The density of
any point in an image is not correlated with
the density of any other point in the image.
The same is true in Fourier space. Signal, on the
other hand, has coherence. This means that
alignment of one part of the signal image will also
align all other parts. In Fourier space, the
alignment of signal at low resolution will auto-
matically align the signal at high resolution. The
signal in a perfectly aligned image will correlate
positively across the entire resolution range,
whereas the alignment of noise in one resolution
zone will not lead to any bias of correlation
towards positive or negative values in another
resolution zone. Alignment algorithms commonly
optimize an overall correlation coefficient, thus
biasing the correlation towards positive values
across the entire resolution range.

As explained above, this leads to a bias in the
3D reconstruction which is amplified by further
iterations. To reduce this bias and amplification,
we modify the alignment goal by optimizing only
the absolute value of the correlation coefficient in
each resolution zone. The target function given by
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Eq. (15) is replaced by

N 1 ;
Ri = SN, ZNJCCU , (18)
whereas Eq. (17) is replaced by

R =3 |ccl]. (19)

For the alignment of noise-free images, the
value of Ry (R/f) assumes 1 when the image is
aligned perfectly, and will be smaller for mis-
aligned images. The absolute value in Egs. (18)
and (19) introduces an ambiguity in the alignment
because, for a certain alignment, the same value of
Re (R/f) is obtained after inverting either the image
or the reference. A particle of certain shape and
symmetry that would produce the negative image
of itself upon rotation would, therefore, have at
least two possible alignments. Proteins with such
properties do not exist, however, and this ambi-
guity will not be considered in the following
discussion.

The use of Eq. (18) or (19) in the alignment of
noise images that do not contain signal leads to a
rather interesting result: For a particular noise
image, there is an equal chance for every resolu-
tion zone to be aligned “in phase” (positive CC) or
“out-of-phase’ (negative CC). This means there is
no overall bias of the alignment towards a positive
correlation between noise image and reference,
and therefore, the average (3D reconstruction)
calculated from the aligned noise images will not

carry any bias either. This is a remarkable result
because, for pure noise images, Eqgs. (18) and (19)
predict that there will be no bias in an iterative
refinement, and the FSC used for resolution
measurement, as described above, will be close to
zero, indicating the absence of signal.

When both signal and noise are present, the
noise can introduce a small bias in the alignment
because, due to the signal, the correlation between
image and reference is now biased towards positive
values. This positive bias depends on the strength
of the signal. At low resolution where the SNR is
usually highest, the alignment using Eq. (18) or
(19) will produce mostly positive correlation
values, and the bias will be strongest. However,
the stronger signal at low resolution is less prone
to over-fitting, and the noise bias will not have a
strong effect on the overall alignment of the
particle. As the signal becomes weaker towards
higher resolution, the chance of a negative
correlation due to noise (or misaligned signal) will
increase. The alignment of the low-resolution
signal will help in the alignment of the high-
resolution signal because of its “‘coherence”, as
described above. At a resolution where the signal
is negligible, no positive bias exists, as discussed in
the previous paragraph. The use of Eq. (18) or (19)
in the alignment ensures, therefore, that only
parts of the data that contain signal will add up
in phase when averaged, and that the parts that
contain predominantly noise will remain uncorre-
lated with the average. This property will be
demonstrated in the following section using
computer simulations.

>

Fig. 1. Refinement runs using the phase residual (PRES), linear correlation coefficient (CC) and weighted correlation coefficient
(weighted). The test structures used to generate the simulated data sets consisted of two cubes of 15 pixels length on the side, and
overlapping at one corner (panel A), and eight randomly distributed spheres with a diameter of five pixels (panel B). Panel C shows
FSC curves between refined structures and the noise-free reference. The refinement was carried out with 30,000 random projections of
the test structure with the two cubes (panel A), using the three different refinement functions. Panel D shows FSC curves between two
3D reconstructions from two halves of the data set derived from the two cubes after refinement using the three different refinement
functions. These curves are normally used to estimate the resolution of the refined structure. Panel E compares the FSC curve between
the refined structure and the noise-free reference (labeled model weighted, same as in panel C) with the predicted FSC curve (labeled
FSCc Weighted, Eq. (20)) based on the FSC curve between the two 3D reconstructions from two halves of the data set (see panel D).
Panels F—H show histograms of the absolute errors in the angles after refinement using the phase residual, linear correlation coefficient
and weighted correlation coefficient, respectively. PHI, THETA and PSI are the three Euler angles (rotation about the z-axis, tilt about
the y-axis and rotation about the new z-axis). As expected, the distribution is widest for the phase residual and narrowest for the
weighted correlation coefficient.
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7. Computer simulations

In the following, the results from a number of
computer simulations are shown to demonstrate
differences in the refinement algorithms using the
similarity measures given by Egs. (2), (3) and (19).
Each function was implemented in the program

(D)

FSC
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0.4

75

FREALIGN [14] used to carry out the refinement.
Two test structures were constructed on the
computer and are shown in Figs. A and B. Units
of dimension and frequency are given in pixel and
1/pixel, respectively. The first structure consists of
two cubes that overlap at one corner. Although
this structure contains a two-fold symmetry, the
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symmetry was never imposed during the refine-
ment. A Gaussian low-pass filter G(k) =
exp[—k?/0.18] (SPIDER [25], command FQ,
Gaussian filter with radius 0.3) was applied to
the structure to attenuate the strong high-resolu-
tion ripples originating from the sharp edges of the
cubes. The second structure is a collection of eight
randomly positioned spheres, each with a diameter
of five pixels. This structure has no symmetry, and
no filter was applied to attenuate the high-
resolution terms.

The test structures are used to generate projec-
tions in random orientations and with Gaussian-
distributed positional displacements from the
image center that had a standard deviation of 2
pixels. Each data set contained 30,000 projections
in images of 100 x 100 pixels. A contrast transfer
function (CTF) was applied, in analogy to images
obtained from an electron microscope. The CTF
did not have an envelope attenuating its amplitude
towards high resolution. Defocus values for the
CTF varied between 40 and 60 in generalized units
[26]. Finally, Gaussian noise was added to the
image to give an SNR of .

To test the performance of the algorithms in a
refinement, the parameters describing the orienta-
tions and positions of each particle in the
simulated data sets were perturbed by an addition
of random, uniformly distributed angles with a
standard deviation of about 10° and random,
uniformly distributed displacements with a stan-
dard deviation of about two pixels. During the
refinement, the particles were masked using a
circular mask with a radius of 37 pixels. Fig. 1C
shows the results of 9 cycles of refinement, as
described above, for the data set derived from the
two cubes. The resolution of the final structure was
measured by the FSC between the refined structure
and the original, noise-free model used to generate
each data set.

For both data sets, all refinement runs improved
the resolution of the structure significantly over
the initial structure calculated using the perturbed
particle parameters. All refinement algorithms had
converged after about 5 cycles, and there was no
further change in the reconstruction. The different
refinement algorithms differ, however, in the
resolution they are able to achieve, with the

algorithm using the phase residual (Eq. (3)) the
worst and that using the weighted correlation
coefficient (Eq. (19)) the best.

As explained above, we expect the weighted
correlation coefficient to produce less over-fitting
than the linear correlation coefficient or the phase
residual. To assess the degree of over-fitting, the
resolution of the final structure is also determined
using the commonly used method of calculating
the FSC between reconstructions from two halves
of the data sets. The FSC plots for each refinement
run are plotted in Fig. 1D. In contrast to the true
resolution calculated against the noise-free original
structure shown in the previous plots, the in-
dicated resolution is now highest for the algorithm
using the phase residual (Eq. (3)), and lowest for
that using the weighted correlation coefficient (Eq.
(19)). Clearly, the weighted correlation coefficient
leads to the smallest degree of over-fitting. A more
quantitative measurement of the degree of over-
fitting can be obtained by converting the FSC
between the two reconstructions from two halves
of a data set into an expected FSC¢ a reconstruc-
tion from the entire data set would have with a
perfect reference structure. Rosenthal and Hen-
derson [27] showed that this conversion is given by

FSC¢ = +/2FSC/(1 + FSQ). (20)

They argue that a realistic resolution cut-off for
a structure is a value for the FSC of 0.143,
corresponding to 0.5 for the FSCc, or an SNR of
the final structure of 1. The value of 0.143 replaces
the often quoted cut-off value of 0.5 for the FSC.
Fig. 1E compares plots of the FSCc, as well as the
actual FSC curves evaluated between the final
reconstructions and the noise-free model with the
two cubes used to generate the data set, for the
refinement using the weighted correlation coeffi-
cient. The agreement is striking, suggesting that
there is very little over-fitting using the weighted
correlation coefficient.

To confirm the improved alignment of the
particles using the weighted correlation coefficient,
histograms of the absolute differences between the
true angles for each particle and the angles after 9
refinement cycles are shown in Figs. 1F-H, for the
refinement runs using the phase residual, linear
correlation coefficient and weighted correlation
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coefficient, respectively. As expected, the histo-
gram is widest for the phase residual and
narrowest for the weighted correlation coefficient.

As a final refinement test using the two cubes,
the angles were completely randomized, and 9
cycles of refinement were carried out using as the
first reference the reconstruction resulting from the
randomized particle orientations. Although this
first reconstruction looked almost spherical, rea-
sonable structures emerged (not shown) when
using the linear or weighted correlation coefficient,
but not with the phase residual. The FSC curves
evaluated between these structures and the noise-
free model (not shown) gave a value of 0.5 at a
resolution of 0.14 for both correlation functions
although the weighted correlation coefficient gave
slightly higher FSC values. As before, FSC curves
between reconstructions from two halves of the
data set indicated significant over-fitting for the
linear correlation coefficient and little over-fitting
for the weighted correlation coefficient. The
randomization experiment shows that the chance
of converging onto a point that is completely
off the global optimum depends strongly on
the choice of the target function used in the
refinement.

In an attempt to better understand how the
over-fitting occurs, one cycle of refinement was
performed on the data set originating from the two
cubes, using the two cubes as a noise-free
reference. The noise-free reference ensures that
any error in the alignment is solely due to the noise
in the data set. The FSC between the structure
resulting from this single step of the refinement
and the noise-free reference is shown in Fig. 2A for
each refinement algorithm. Surprisingly, the re-
finement using the phase residual (Eq. (3)) gives
the highest resolution whereas that using the linear
and the weighted correlation coefficients give the
poorest resolution. The very nature of over-fitting
means, however, that part of the good agreement
between the refined structures and the reference
comes from the agreement between the reference
and the noise component of the data.

Since the test data set was computer-generated,
unlike experimental data, both the noise compo-
nent and the signal component for each image are
known exactly. Using this knowledge, the 3D

reconstruction can be disassembled into the con-
tributions from the noise and the signal, which add
together to form the reconstructed model. For an
unbiased alignment and reconstruction, the noise
should be unaligned and bear no correlation with
the signal. By using the alignments from the test
data set we can reconstruct a 3D model using only
the signal from the data set images and another 3D
model using only the noise that was added to the
images in the data set. Figs. 2B-E show cross-
sections through the reconstructions from the
noise images for each of the alignment algorithms,
together with slices through the noise-free refer-
ence structure for comparison. As expected for the
alignment of noisy data, the reconstructions from
the images containing the noise component clearly
display some of the features of the reference
structure. This is most visible for the alignment
using the phase residual (Eq. (3)) and least visible
for the alignment using the weighted correlation
coefficient (Eq. (19)). Closer inspection of the
noise reconstruction reveals that there is some
amplification of edges in the features, indicating
that the over-fitting is more severe at high
frequencies where the SNR is low. Fig. 2F shows
FSC plots between the noise reconstructions and
the noise-free reference, confirming the different
degrees of over-fitting for the three alignment
algorithms at high resolution. At low resolution,
there is a significant noise bias also for the
alignment that used the weighted correlation
coefficient. As explained above, this is expected
since at low resolution the absolute value in Egs.
(18) and (19) will not prevent bias due to the
strong signal. The same analysis is shown in Fig.
2G for the signal component of the aligned data
set. The signal component shows the opposite
trend: The alignment based on the phase residual
shows the lowest FSC whereas that based on the
weighted correlation coefficient shows the best
FSC across the entire resolution range. Therefore,
even though the reconstruction from the aligned
images that contain signal and noise showed the
best agreement with the reference when using the
phase residual, and the worst agreement when
using the weighted correlation coefficient, the
accuracy of the alignment was worst with the
former and best with the latter.
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Fig. 2. Analysis of the noise bias. Panel A shows FSC curves between refined structures and the noise-free reference (the two cubes)
after one cycle of refinement against the noise-free reference, using the three different refinement functions. Cross-sections through the
3D reconstructions calculated from the aligned noise images are shown in panels B, C and D, using the phase residual, linear
correlation coefficient and weighted correlation coefficient, respectively, in the alignment. The slice in panel B shows mainly the edges
of the reference structure, indicating over-fitting especially at high resolution. The noise replica in panel C also has low-resolution
components. The replica in panel D is weakest, indicating the least over-fitting. Panel E shows a cross-section through the noise-free
reference, for comparison. FSC curves between noise reconstructions and the noise-free reference are shown in panel F. The over-
fitting of the noise at high resolution is strongest for the refinement using the phase residual (PRES), and weakest for that using the
weighted correlation coefficient (weighted). At low resolution where the signal in the test data set is strong, this order is reversed. Panel
G shows FSC curves between the corresponding signal reconstructions and the noise-free reference. The over-fitting of the noise in the
refinement using the phase residual (PRES) and linear correlation coefficient (CC) leads to a larger error in the image alignment,
resulting in a lower resolution of the reconstruction, compared with the alignment using the weighted correlation coefficient (weighted).

The simulations described for the test structure resolution differs between the two structures, and
containing the two cubes was repeated with the the second structure served as a validation for
structure containing the eight small spheres (not the results obtained for the first structure. As

shown). The distribution of the signal across expected, the weighted correlation coefficient
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performed best, with the highest resolution ob-
tained in the refinement tests, and the least over-
fitting visible in the noise reconstructions.

8. The Fourier shell correlation as a resolution
measure

As discussed above, the commonly used FSC as
a resolution measure for structures derived from
single particles can display a significant bias
towards artificially high correlation values. The
plots in Fig. 1E, comparing the FSCc with the true
FSC between the refined structure and the noise-
free reference, suggest that the reduced over-fitting
by the weighted correlation coefficient avoids
significant bias in the FSC calculated between
reconstructions from two halves of the data set.

Additional simulations were carried out using
the eight spheres as a test structure. A band-pass
filter was applied to the structure, setting all
Fourier terms to zero in the resolution shell
between 0.24 and 0.33. As before, a data set
containing 30,000 randomly oriented projections
with an SNR of 5—10 were calculated. Due to the
band pass filter, the images contained only noise
in the masked resolution shell; signal was only

»
| 4

Fig. 3. FSC as a resolution measure. Panel A shows FSC
curves between two 3D reconstructions from two halves of the
data set derived from the eight spheres (Fig. 1B), after
refinement using the three different refinement functions. The
data set was band-pass filtered such that no signal was present
at a resolution between 0.24 and 0.33. The absence of signal in
this resolution interval is clearly reflected in the FSC curve
resulting from the refinement using the weighted correlation
coefficient (weighted). The other alignment functions lead to
significant over-fitting in this resolution interval. In panel B, the
FSC curve between the refined structure and the noise-free
reference (labeled model weighted) is compared with the
predicted FSC curve (labeled FSCc weighted, Eq. (20)) based
on the FSC curve between the two 3D reconstructions from two
halves of the data set in panel A. Panel C shows FSC curves
between two 3D reconstructions from two halves of the data set
containing pure noise, after refinement using the three different
refinement functions. The curves indicate significant over-fitting
for the refinement using the phase residual (PRES) and the
linear correlation coefficient (CC). The FSC curve resulting
from the refinement using the weighted correlation coefficient
(weighted) remains close to zero across the entire resolution
range, as would be required for a reliable resolution measure.

present outside this mask. This type of test was
introduced by Shaikh et al. [28]. Again, 9 cycles of
refinement were carried out using the phase
residual, linear correlation coefficient and
weighted correlation coefficient. The FSC plots
between reconstructions from two halves of the
data set are shown in Fig. 3A, and a plot of
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the FSCc and the true FSC between the refined
structure using the weighted correlation coefficient
and the noise-free reference are shown in Fig. 3B.
As before, the FSC between reconstructions from
two halves of the data set indicate significant over-
fitting for the refinement runs using the phase
residual (Eq. (3)) and linear correlation coefficient
(Eq. (2)). The FSC plot for the refined structure
using the weighted correlation coefficient, how-
ever, indicates no significant signal in the masked
resolution shell, consistent with its true FSC
between the refined structure and the noise-free
reference.

Ideally, a resolution measure such as the FSC
would indicate the absence of signal in data that
contains only noise. A further test was carried out
with a data set containing 30,000 images of pure
Gaussian-distributed noise. Fig. 3C shows plots of
the FSC between reconstructions from two halves
of the data set using the three different alignment
functions. The plots for the refinement runs using
the phase residual (Eq. (3)) and linear correlation
coefficient (Eq. (2)) show significant correlation
across the entire resolution range. This result was
also obtained in refinement runs in 2D using
simulated noise [10]. The FSC plot for the
refinement using the weighted correlation coeffi-
cient (Eq. (19)) indicates essentially random
correlation, as would be expected from a reliable
resolution measure.

9. Comparison with the maximum likelihood
algorithm

One of the most promising alignment algo-
rithms that is capable of dealing with extremely
small SNRs is the direct maximum likelihood
algorithm, as demonstrated for alignments in a
plane by Sigworth [17]. The main drawback of this
algorithm is the necessity to integrate over the
entire parameter space which is feasible for
alignments within a plane (three parameters) but
currently impractical for alignments in 3D (five
parameters). The refinement algorithms discussed
in the previous section were tested on one of the
data sets used in Sigworth’s study to compare their
performance at a very small SNR. The data set

used contained 4000 images of a projection of a
bacteriorhodopsin trimer, sampled at 1.5 A/pixel,
and with an SNR of 5L (z=0.07 in Sigworth’s
study [17]). In-plane rotations of the trimer in the
images were uniformly distributed, and their
displacement from the center of the image had a
Gaussian-distribution with a standard deviation of
10 pixels. The noise-free bacteriorhodopsin trimer
and one member of the noisy data set are shown in
Figs. 4A and B, respectively. As shown in Ref.
[17], an alignment using a linear correlation
coefficient (Eq. (2)) does not lead to any recogniz-
able features in the final averaged structure. We
found the same to be true when using the phase
residual as the alignment function (Eq. (3), not
shown). Fig. 4C shows the refined structure of the
bacteriorhodopsin trimer, after 3000 refinement
cycles using the weighted correlation coefficient
(Eq. (18)) and step filtering. In this refinement, it
was necessary to perform 2 cycles of alignment
using Eq. (18) without the absolute value to allow
an initial rough centering of the bacteriorhodopsin
trimers. This step is normally not necessary since,
as discussed above, we assume that the refinement
procedure starts with a rough structure that was
determined by other means, and therefore, that the
particles are already roughly centered. Further-
more, after centering, a mask was applied to the
images to mask out noise near the image
boundaries. The large number of refinement
cycles, compared with only 274 used in the
maximum likelihood procedure [17], that were
needed before convergence was reached is partly
due to the fact that the alignment in each cycle
involved only a local maximization of the weighted
correlation, contrasting with the integration over
the entire parameter space in the maximum
likelihood procedure.

According to the Fourier ring correlation (FRC)
in Fig. 4D, features of the trimer in Fig. 4C are
resolved up to a resolution of about 0.11,
corresponding to 0.07A~'. The resolution after
refinement using the maximum likelihood algo-
rithm was significantly higher, about 0.2 (0.13 AT,
[17]), indicating its superior performance to that
using the weighted correlation coefficient. Part of
this superior performance might be due to the
additional information about the distribution of



A. Stewart, N. Grigorieff | Ultramicroscopy 102 (2004) 67-84 81

T T T T T
0.8 I- -
0.6 - —

U

o4

(a5
0.4 |- B
0.2 =1

0 ] | T /\L allA
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
(D) Resolution [A™]

Fig. 4. Performance of the refinement algorithm using the weighted correlation coefficient and step filtering, when applied to data with
extremely low SNR. Panel A shows the noise-free structure used to generate 4000 images with random displacements and rotations
(courtesy of Fred Sigworth, [17]). Noise was added to these images to give an SNR of ﬁ. An example of the resulting images is shown
in panel B. Panel C shows the refined structure after 3000 refinement cycles. Panel D shows the FRC curve between the refined

structure and the noise-free reference.

the displacements of the trimers from the image
center that was used by the maximum likelihood
algorithm. Nevertheless, although the weighted
correlation coefficient given in Eq. (18) is a
significant improvement over the linear correlation
coefficient and the phase residual, further im-
provement in refinement procedures can be ex-
pected with the implementation of the maximum
likelihood algorithm in 3D.

10. Discussion

In the refinement of 3D structures obtained
from images of single particles, one of the main

challenges is to obtain the best possible alignment
of all images. For an optimal alignment, it is
important to find appropriate weights for parts of
the data that share similar SNR values. The
weighting of the data ensures that the alignment
will follow the strong parts of the data, and it
reduces the influence of the weaker data that is
normally found at the high-resolution end. Be-
cause the weighting depends on the correlation
between the image and the reference, and therefore
is determined both by the actual SNR present in
the data, as well as the accuracy of the alignment,
it will change during the alignment of the image. If
we assume that the alignment will lead to a better
agreement between the image and the reference at
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high resolution, the weight of this part of the data
is increased during the refinement. Apart from the
particle position and orientation, the CTF and
magnification of a particle will also determine the
agreement between the image and the reference,
and they can be included in the refinement.
The adjustment in the weighting is similar to a
multi-resolution refinement algorithm where the
resolution of the included data is gradually
increased as the refinement progresses. Such as
strategy has been shown to have a superior
convergence radius, compared with a single
resolution approach [29].

Our approach differs from a previously de-
scribed approach [30] where a fixed cut-off for the
data was introduced, based on the correlation of a
modeled CTF with oscillations visible in the power
spectrum of the raw images. A fixed cut-off has the
advantage that noise that lies beyond the cut-off
cannot introduce errors in the alignment. How-
ever, the CTF oscillations in an image are not
always a good indicator for the signal preset in the
data (see for example, the power spectrum from
images of 2D crystals, [31]). Even if the signal is
weak, and therefore, does not give rise to
recognizable CTF oscillations in an image power
spectrum, it can be extracted from the image
provided the molecule or complex is properly
aligned, such as in a 2D crystal. A procedure that
uses a fixed cut-off would be limited in resolution
by this cut-off.

The convergence of the single-step algorithm is
much faster than that using the step filtering. Part
of the reason for the slow convergence of the latter
is scaling of the step by the inverse spatial
frequency in our current procedure. A more
sophisticated scaling method should also take into
account the SNR of the refined 3D structure to
allow faster convergence for parts of the data that
are more reliable. This will be addressed in a future
publication. The weighting of image data at the 3D
reconstruction stage has not been explored here.
Weighting schemes, again based on an SNR
estimate, have been proposed [32] and should
further improve the resolution and convergence of
the refinement.

An important consequence of the weighting is
the reduction of over-fitting of the data. Over-

fitting results in sub-optimal refinement and
produces an over-optimistic resolution estimate
of the FSC and spectral SNR [33,34]. The FSC
curves for the refinement using the weighted
correlation coefficient (Eq. (19)) in Figs. 1E and
3B still show a small degree of over-fitting but the
estimated resolution of the refined 3D structures
according to an FSC cut-off of 0.143 does not
differ much from the 0.5 cut-off for the FSC
between the refined structure and the noise-free
reference. We expect that a refinement using a
maximum likelihood algorithm would ecliminate
this residual over-fitting and yield an even more
accurate FSC resolution estimate.

The FSC provides only a measurement of the
average resolution. If parts of the structure are
disordered, undergo conformational changes, or
the reconstructed volume has segments that do not
actually contain any part of the particle but only
noise, the FSC will underestimate the resolution in
the ordered parts of the structure. Empty parts of
the reconstructed volume can be masked to
remove noise (solvent flattening). Flexible or
disordered parts of the structure, however, cannot
simply be masked but should be weighted accord-
ing to their degree of disorder. Such a real-space
weighting would not only improve the accuracy of
the FSC resolution estimate but also serve as a
real-space filter in the alignment, to enhance the
influence of the well-ordered parts of the structure
on the alignment. The real-space weights could be
derived from a variance-based real-space SNR
measurement in the structure.

11. Conclusions

The two key features of the algorithm described
here are that the weighted correlation function for
alignment is chosen to optimize the fit of the data
to the model by adapting to the resolution
dependent SNR at each iteration, and that the
optimizer does not distinguish between positive
and negative correlation, ensuring that purely
noise-driven alignment with the model will con-
tribute both negatively and positively to the
reconstruction and so will not be reinforced in
the next round.
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The incorporation of the weighted correlation
function for alignment into the FREALIGN
program [14] has improved our ability to reach
high resolution in structures derived from images of
single particles, even if these are small (for example,
the transferrin receptor [35]). The computer model
experiments above show this to be due to lower
sensitivity to noise in the alignment process.
However, it is also clear from this work that an
implementation of the direct maximum likelihood
method for the full five-parameter alignment
problem should do better. This is particularly
relevant in attempts to improve resolution by
combining very weak signals from data sets with
tens or hundreds of thousands of images.
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Appendix A

Following Rosenthal and Henderson [27], we set
F1 =S+ N1 and F2 =S+ N2, for the Fourier
components of the particle image and reference,
respectively. S is the signal component common to
both, and N1 and N2 are the respective noise
components. The correlation coefficient between
the two is then given by

ce— SUS 4 N1)(S + N2)
VI IS+ NIPYIS + N2P

For uncorrelated noise and both images scaled
equally, this simplifies to

oo XISP
S ISP+ NP
SNR

= —— A2
1 +SNR (A-2)

(A.1)

with SNR = 3" |S|?/ 3 [N|?> and N equal to one of
the noise components. Eq. (A.2) is equivalent to
Eq. (9) in the main text. If the reference does not
contain noise, N2 = 0 and

XS+ NDST
IS+ NP ISP

INE
/SIS + N1J?
_ > ISP
ISP+ INT
SNR
1 + SNR’
which is equivalent to Eq. (10) in the main text.

CC

(A.3)
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