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Abstract

A computational method is described that allows the measurement of the signal-to-noise ratio and resolution of a three-dimensional
structure obtained by single particle electron microscopy and reconstruction. The method does not rely on the availability of the original
image data or the calculation of several structures from different parts of the data that are needed for the commonly used Fourier Shell
Correlation criterion. Instead, the correlation between neighboring Fourier pixels is calculated and used to distinguish signal from noise.
The new method has been conveniently implemented in a computer program called RMEASURE and is available to the microscopy
community.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Three-dimensional (3D) visualization of isolated (single)
macromolecules and their assemblies by transmission elec-
tron microscopy has become one of the standard tech-
niques in cell biology to gain insight into the function
and mechanism of molecular machines in living cells
(Nogales and Grigorieff, 2001). This technique, often
referred to as single particle electron microscopy (SPEM),
can be applied in cases not easily accessible by more tradi-
tional techniques, such as nuclear magnetic resonance
(NMR) spectroscopy or X-ray crystallography. It does
not require crystals, it does not impose an upper molecular
mass limit on the structure under investigation, and it can
be applied to only a few pmol of material (see, for example,
Jurica et al., 2004; Sokolova et al., 2001). However, unlike
NMR and X-ray crystallography, the resolution of struc-
tures visualized by SPEM is, so far, limited to about 6 Å
or lower, too low to allow interpretation of the structures
by atomic models. For example, viruses with icosahedral
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symmetry can currently be resolved to about 7 Å resolution
(Bottcher et al., 1997; Laurinmaki et al., 2005; Zhang et al.,
2003; Zhou et al., 2001), the chaperone GroEL (D7 sym-
metry) was solved to about 6 Å resolution (Ludtke et al.,
2004) while the asymmetrical ribosome has been resolved
to about 8 Å resolution (Halic et al., 2006). Furthermore,
a lower limit of the molecular mass exists because a mini-
mum mass is required to generate sufficient scattering con-
trast for the alignment of images of the individual particles
(Henderson, 1995). Assuming perfect images that are only
limited by the electron dose (about 10 electrons/Å2) and
that do not suffer from contrast-degrading effects, a mole-
cule or complex of about 40 kDa should generate sufficient
contrast to align images sufficiently accurately to obtain
3 Å resolution. In practice, however, image contrast is
degraded by electrostatic charging of the specimen, beam-
induced movement, sample drift, and an attenuating
envelope of the contrast transfer function (CTF) of the
microscope. This increases the lower mass limit. For exam-
ple, if the image contrast is degraded 50%, the lower mass
limit would be about 150 kDa.

Despite the increasing popularity of SPEM, the
assessment of the resolution of a reconstruction is still
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Fig. 1. Fourier Transform of a cubic array of densities. The cluster of
small black cubes represents terms in the Fourier Transform neighboring
the term represented by the small red cube. Terms in a shell outlined by the
two gray spheres with radius R and R 0, and their neighboring terms, are
used to calculate the Fourier Neighbor Correlation (FNC).
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controversial. The resolution is a common way to assess
the quality of the reconstruction, particularly when it is
too low to recognize secondary structure. Different resolu-
tion criteria exist (Frank et al., 1981; Harauz and van Heel,
1986; Penczek et al., 1994; Unser et al., 1989, 1987) of
which the Fourier Shell Correlation (FSC, Harauz and
van Heel, 1986) is the most widely used. The resolution
of a reconstruction is often quoted as the point at which
the FSC curve drops below 0.5 (Bottcher et al., 1997) or
0.143 (Rosenthal and Henderson, 2003). The resolution
assessment is further complicated by the fact that the
FSC curve itself can be completely unreliable due to the
over-fitting of noise during the refinement of the recon-
struction (Grigorieff, 2000; Stewart and Grigorieff, 2004).
The term over-fitting refers here to the partial alignment
of noise to the reference used in the refinement. Over-fitting
of noise reduces the overall resolution that can be achieved
in a refinement. Depending on the refinement procedure, it
can lead to FSC values much higher than would be expect-
ed in an unbiased assessment (Stewart and Grigorieff,
2004). The work presented here describes a new method
to assess the resolution of a 3D reconstruction that appears
to be less affected by over-fitting. Previous resolution crite-
ria, including the FSC, must be calculated at the time of
data processing because they need either the raw data or
reconstructions from subsets of the data. In contrast, the
new method can be used on a final reconstruction without
the need for additional data. The new method relies on a
novel correlation function referred to as Fourier Neighbor
Correlation (FNC).

2. Theory

2.1. Fourier Neighbor Correlation

The new resolution assessment method takes advantage
of the correlation between neighboring terms in the Fou-
rier Transform (FT) of a 3D structure. Such correlations
are introduced when the density of a structure occupies
only part of the 3D array of pixels representing it on a
computer (Shaikh et al., 2003). This 3D array usually
has the shape of a cube. The correlation between neigh-
boring terms in the FT of the array can be understood
in the following way: if the cube was filled with random
noise, the terms in the FT would be entirely uncorrelated.
We assume here and in the following that the noise can be
represented by a Gaussian distribution with mean zero
and standard deviation r. A 3D mask is applied that
resets values outside the mask to zero and leaves non-zero
pixels only in part of the cube. This operation can be rep-
resented in Fourier space as a convolution of the FT of
the mask with the FT of the noise. The convolution intro-
duces correlations between the Fourier terms. For a dis-
crete FT we can write

F p ¼ U
V

X
h

F hGhp: ð1Þ
Fp is the Fourier term at point p, V is the volume of the
cube containing the mask, U is the volume enclosed by
the mask, and Ghp is the FT of the mask:

Ghp ¼
Z

U
e2piðp�hÞrdr: ð2Þ

If the random noise inside the mask is replaced by a mac-
romolecular structure, the correlation between Fourier
terms changes (see below) but will not vanish. Eq. (1) still
holds, and is well known in X-ray crystallography where
it is used to determine phases by solvent-flattening (Arnold
and Rossmann, 1986). In the case of X-ray crystallogra-
phy, V represents the volume of the unit cell, U is the vol-
ume of the molecular structure, Fp is the structure factor of
reflection p, and Ghp is the FT of the molecular envelope.

Returning to our example with a mask filled with random
noise, we will now consider what we can say about the corre-
lation between neighboring Fourier terms that result from
the masking. Fig. 1 depicts the FT of an arbitrary volume.
The center of the cube is the origin of the FT. Elements lying
on the sphere shown within the cube all have the same dis-
tance from the origin, and therefore, originate from features
of a certain spatial frequency, i.e., they correspond to a cer-
tain resolution. A cluster of seven cubes is also shown and
represents neighboring Fourier terms within the transform.
To evaluate correlations between neighboring Fourier
terms, we consider only the nearest neighbors. Thus, in
Fig. 1, the red cube in the center of the cluster has six neigh-
bors. We can now evaluate average correlation coefficients
between neighboring Fourier terms by picking a number of
locations and calculating correlation coefficients between
these locations and their neighbors. We refer to this correla-
tion as the Fourier Neighbor Correlation, or FNC. Since,
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later on, we will be interested in evaluating these correlation
coefficients as a function of resolution, we pick terms that lie
within a thin spherical shell centered on the transform origin.
If p = jpj is the distance of point p from the origin, a shell at
resolution R and thickness R � R 0 contains all points with
R 0 < p 6 R. For convenience, we choose the shell thickness
to be always one unit within the discrete FT, or
R � R 0 = 1/L, where L is the length of one side of the cube
containing the mask. The FNC at resolution R is then given
by

FNCðRÞ ¼
P

p2R0<p6R

P
h2NðpÞF pF �hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p2R0<p6R

P
h2NðpÞjF pj2

P
p2R0<p6R

P
h2NðpÞjF hj2

q :

ð3Þ
Here, N(p) indicates the six Fourier terms neighboring
point p (see Fig. 1), and * denotes the conjugate complex
value.
Fig. 2. Plots of the FNC for noise-filled masks of different geometry. (A)
Slice through a noise-filled cube representing the unmasked volume of
180 · 180 · 180 pixels. (B) Slice through the cube after applying a cubic
mask of 100 · 100 · 100 pixels. (C) Slice through the cube after applying a
spherical mask of 120 pixels diameter. (D) FNC plots calculated for the
three volumes shown in (A), (B) and (C). The thin lines enveloping the plot
for the unmasked volume (thick continuous line) indicate the expected
standard deviation of the FNC which is given by 1=

ffiffiffiffiffiffi
N s

p
, where Ns is the

number of terms contributing to the correlation coefficient in Eq. (3).

Table 1
Average Fourier Neighbor Correlation (FNC) for different masks filled with G

Mask Average FNC

Unmasked 0.0005

Cubic mask (side length l = 0.5556) 0.5642

Spherical mask (diameter d = 0.6667) 0.6248

The Fourier Transforms of the masks are given in the third column, and pred
delta. The values for l and d are given in fractions of the width of the cube con
values and the predicted values.
For a cube filled with Gaussian-distributed noise the
FNC will, on average, be zero. For a noise-filled mask
within the cube, the average correlation is given by the
mask transform, Ghp, evaluated at neighboring points,
i.e., jp � hj = 1. Since the amplitudes and phases of the
Fourier terms of the cube filled with noise are uncorrelated
and random, the average FNC will be invariant with reso-
lution R. Fig. 2 shows the FNC calculated for a noise-filled
cube, a noise-filled mask within the cube that has the shape
of a smaller cube, and a noise-filled spherical mask. As
expected, the FNC is approximately constant across the
spectrum. The larger variance of the FNC at low resolution
reflects the smaller number of terms in the corresponding
shells used to calculate the FNC. Table 1 gives the FNC
averaged over the entire spectrum in each case. The table
also lists the FT of the mask in each case, and the expected
average correlation coefficient which is in excellent agree-
ment with the average FNC observed in the plots in Fig. 2.

2.2. Modeling a macromolecular structure

As we shall see later, the FNC calculated for a real mac-
romolecular structure is not constant across the spectrum.
To understand the reasons for this deviation, we consider a
spherical mask that contains Gaussian-distributed noise
with a non-zero average we will refer to as an offset.
Fig. 3 shows the FNC for the same spherical mask used
in calculations for Fig. 2, but with a range of different off-
sets for the noise inside the mask. Depending on the mag-
nitude of the offset, compared with r, the FNC drops to
smaller values at low resolution and oscillates over a cer-
tain resolution range. In the extreme case of an infinite off-
set (a solid sphere without noise), the FSC oscillates over
the entire spectrum. The periodicity of the oscillations is
equal to the periodicity of the mask transform (Table 1).
For a solid sphere, the FT periodically changes its sign.
At resolution values corresponding to points where the sign
changes the FNC will be smaller than at other resolution
values, and this leads to the observed oscillation in the
FSC. For a solid sphere (and masks of any other shape)
filled with noise containing an offset, the average correla-
tion between neighboring Fourier terms is not constant
across the spectrum. Compared with the previous case
where a mask was applied to a cube filled with noise, a
mask filled with a constant value can be thought of as being
the result of masking a cube filled with a constant value.
aussian-distributed noise (see Fig. 2)

Mask transform Ghp Ghp at jp � hj = 1

dph 0Q3
i¼1

sin plðpi�hiÞ½ �
plðpi�hiÞ 0.5643

3 sin pdjp�hj½ �
pdjp�hj½ �3 �

cos pdjp�hj½ �
pdjp�hj½ �2

� �
0.6248

icted FNC values are given in the fourth column. dhp is the 3D Kronecker
taining the mask. There is excellent agreement between the average FNC



Fig. 4. Plot of the FNC for a density map generated from the atomic
model of the 50S large ribosomal subunit (Klein et al., 2001, PDB code
1JJ2). The correlation between neighboring Fourier shells is more or less
constant (about 0.85) across the spectrum. The inset shows a slice through
the structure.

Fig. 3. Plot of the FNC for noise-filled spherical masks with different
offsets in the noise. The arrow points in the direction of increasing offsets.
The offsets in multiples of the standard deviation of the noise are 0, 1/200,
1/20, 1/10, 1/2, 2, and 5. A solid mask was used for the final plot giving the
lowest FNC.
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Unlike in the previous case, the FT of a solid cube of con-
stant value is zero everywhere except at the origin where it
assumes a value equal to the volume of the cube multiplied
by the constant. When masking a cube filled with noise,
correlation was introduced between Fourier terms that
were random and uncorrelated. The correlation between
Fourier terms in the transform of a solid cube is undefined
since the terms are all zero (except at the origin). Therefore,
arguments made for the behavior of the FNC do not apply
in this case. The FNC of a solid mask depends on its FT,
Ghp, evaluated at points p while keeping h = 0, i.e., at point
where jp � hjP 1.

Coming back to the plots shown in Fig. 3, it can now be
seen that the FNC in each plot has two regimes. At low res-
olution it is determined by the FT of the solid mask, while
at high resolution it follows the behavior described earlier
and remains approximately constant. The extent of each
regime depends on the value of the offset. The discussion
of offsets brings us closer to the expected FNC calculated
for a real macromolecular structure. To a first approxima-
tion, such a structure can also be thought of as having a
low-resolution component that produces a constant offset
in the density distribution, while the finer details of the
structure can be modeled as having randomly distributed
density values. Clearly, this approximation represents an
oversimplification of a real structure. The density of a real
structure will, in general, be variable at low resolution due
to the presence of domains that appear as regions of higher
density, separated by regions of lower density. Any flexible
or disordered regions within the structure will also lead to
attenuated density, compared with other regions that are
more ordered (see below). Finally, the density of protein
and nucleic acid differs, leading to density variations in
complexes containing both proteins and nucleic acids
(Spahn et al., 2000). At higher resolution, the density is
not randomly distributed due to secondary structure, such
as a-helices and b-sheets. Furthermore, periodic features in
the structure may give rise to strong Fourier terms at higher
resolution, producing deviations from a constant FNC.
Keeping these potential problems in mind, we look at the
FNC of a 3D density map generated from the atomic mod-
el of the 50S large ribosomal subunit (Klein et al., 2001),
PDB code 1JJ2 using SPIDER (Frank et al., 1996). This
model contains both proteins and nucleic acids and is,
therefore, a good test case for our purpose. The density
was rendered with a pixel size of 2.44 Å, roughly centered
in a box with 180 pixels along each side. The mask trans-
form Ghp (Eq. 2) now describes the envelope of the struc-
ture. Fig. 4 shows the FNC plot for this structure
calculated using Eq. (3). The correlation between terms in
neighboring Fourier shells is more or less constant across
the spectrum (in this case FNC � 0.85). There is significant
deviation from this value only at very low resolution, sug-
gesting that the behavior of the FNC is similar to the
behavior found for the noise-filled spherical mask (see
Fig. 3). This encouraged us to develop the theory further
to allow the measurement of the signal-to-noise ratio
(SNR) of a structure that contains an additional noise
term.

2.3. Measuring the signal-to-noise ratio

For a structure containing an additional noise term we
assume that we have density arising from a macromolecu-
lar structure, such as the 50S large ribosomal subunit (see
Fig. 4). This will be referred to as the signal. The additional
noise is assumed to be background with Gaussian-distrib-
uted density that is entirely uncorrelated with the structure.
This assumption appears to be reasonable for real struc-
tures determined by electron microscopy (Penczek et al.,
2006). We define FNCF as the constant describing the
FNC arising from the structure in the high-resolution
regime, where we expect an approximately constant FNC
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(see Fig. 4). The background (noise) may fill the entire cube
containing the structure, or it may fill only part of it. For
example, the background might be present only inside a
sphere containing the structure, and density values outside
the sphere are set to a constant, i.e., they do not contribute
to the variance of the background. This situation corre-
sponds to most 3D reconstructions calculated from single
particle images, as densities outside a spherical mask are
usually set to a constant equal to the average density of
the background. We will refer to this mask as the back-
ground mask. In the following we also assume that the var-
iance of the noise is, on average, the same everywhere
inside the background mask, or throughout the cube if
no background mask was applied. This assumption may
not be true for reconstructions of real structures, as will
be discussed below. We define FNCN as the constant
describing the FNC arising solely from the background.
If the background fills the entire cube containing the struc-
ture, FNCN = 0 (see Fig. 2). If the background does not fill
the entire cube FNCN > 0 (see Fig. 2).

We rewrite Eq. (3) by replacing the Fourier terms Fp and
Fh by Fp + Np and Fh + Nh, respectively, to indicate the
additional noise term. The FNC is then given by

FNCðRÞ¼
P

p2R0<p6R

P
h2NðpÞðF pþN pÞðF hþN hÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p2R0<p6R

P
h2NðpÞ ðF pþN pÞ

�� ��2P
p2R0<p6R

P
h2NðpÞ ðF hþN hÞj j2

q

�
P

p2R0<p6R

P
h2NðpÞðF pF �hþN pN �hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p2R0<p6R

P
h2NðpÞ jF pj2þjN pj2

� �P
p2R0<p6R

P
h2NðpÞðjF hj2þjN hj2Þ

r

¼FNCF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNRðRÞSNR0ðRÞþFNCN

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSNRðRÞþ1ÞðSNR0ðRÞþ1Þ

p : ð4Þ

In the approximation in Eq. (4), it is assumed that the sums
over cross terms between the signal and the background are
small compared to other terms and can be ignored. The sig-
nal-to-noise ratios (variance ratio of signal and noise)
SNR(R) and SNR 0(R) are given by

SNRðRÞ ¼
P

p2R0<p6R

P
h2NðpÞjF pj2P

p2R0<p6R

P
h2NðpÞjN pj2

ð5Þ

and

SNR0ðRÞ ¼
P

p2R0<p6R

P
h2NðpÞjF hj2P

p2R0<p6R

P
h2NðpÞjN hj2

: ð6Þ

We assume that the SNR does not change significantly
from resolution shell to resolution shell and, therefore,
SNR(R) � SNR 0(R). It follows that

FNCðRÞ � FNCF SNRðRÞ þ FNCN

ðSNRðRÞ þ 1Þ ð7Þ

and

SNRðRÞ ¼ FNCN � FNCðRÞ
FNCðRÞ � FNCF

: ð8Þ

Eq. (8) provides a way to calculate the SNR of a
structure given the average FNC in a resolution shell R

between neighboring terms in the FT of the structure, the
expected correlation coefficients for the noise-free struc-
ture, FNCF, and the noise alone, FNCN. FNCF and FNCN

can be estimated using a masking procedure (see below). It
is important to remember that Eqs. (4), (7) and (8) are only
valid in the regime, where the FNC of the signal is approx-
imately constant. At very low resolution, the FNC depends
strongly on the details of the FT of the molecular envelope,
Ghp, with jp � hj > 1 and the SNR cannot be calculated
using Eq. (8). The SNR in Eq. (8) can be related to the
FSC that is commonly determined between two structures
that are each calculated from one half of the data set to
measure the resolution of the combined structure (Gri-
gorieff, 2000):

SNRðRÞ ¼ 2FSCðRÞ
1� FSCðRÞ : ð9Þ

Therefore,

FSCðRÞ ¼ FNCðRÞ � FNCN

2FNCF � FNCN � FNCðRÞ : ð10Þ

To test the predicted correspondence between the FNC
and FSC given in Eq. (10), the density map generated from
the atomic model of the 50S large ribosomal subunit (see
Fig. 4) was low-pass filtered using a Gaussian (filter radius
1/8.13 Å�1). This map was used to generate two new maps,
each with added Gaussian-distributed noise at a SNR of
1/5. In this simulation, these two maps represent the two
reconstructions usually calculated from the two halves of
an experimentally obtained data set. The FSC between
these two maps is plotted in Fig. 5B. The two maps were
then added to generate a new map with an SNR of 2/5.
This represents the final reconstruction calculated from
the entire experimentally obtained data set. The predicted
FSC (Eq. 10) was calculated for the summed map and is
also plotted in Fig. 5B. To estimate the constants, FNCF

and FNCN, the masking procedure described in the next
section was used. The measured and predicted FSC curves
match almost perfectly, except at low resolution (see
above). Therefore, these simulations validate the approach
described in this section.

2.4. Structural flexibility and disorder

As mentioned above, one reason for variation of density
within a structure may be flexibility or disorder of parts of
the structure. To investigate effects of disorder on the FNC
and predicted FSC, the map derived from the atomic mod-
el of the 50S large ribosomal subunit was used (see
Fig. 5A). Disorder on the periphery of the structure was
simulated by producing a low-pass filtered structure using
a box convolution (operation BC in the image processing
package SPIDER, Frank et al., 1996). The size of the con-
volution box was about 15 · 15 · 15 Å (6 · 6 · 6 pixels).
The densities in the center of this low-pass filtered map
were set to zero using a spherical mask with a diameter
of about 146 Å (60 pixels) and a cosine edge of 15 Å width
(6 pixels, operation MA in the image processing package



Fig. 5. Noise and disorder in a structure. (A) shows a slice through a low-
pass filtered version of the 50S density map shown in Fig. 4. (B) Fourier
Shell Correlation (FSC) between two noisy representations (SNR = 1/5)
of the density map in (A), and FNC-based Fourier Shell Correlation
(Pred. FSC) evaluated for the sum of the two density maps (SNR = 2/5).
The inset shows a slice through the latter map. (C) shows a slice through a
low-pass filtered version of the 50S density map shown in Fig. 4, with
additional low-pass filtering of peripheral domains to simulate disorder
(25% of the total volume of the structure). (D) Same FNC-based Fourier
Shell Correlation as in (B), and FNC-based Fourier Shell Correlation of
map shown in (C) with noise (SNR = 2/5). A drop in the latter FSC is
visible at about 15 Å resolution and above.

Fig. 6. Over-fitting of noise during refinement. The FNC-based Fourier
Shell Correlation (Pred. FSC) and traditional Fourier Shell Correlation
(FSC) for the 50S large ribosomal subunit after refinement and
reconstruction from 30 000 computer-generated noisy projections
(SNR = 1/100) are shown. For comparison, the unbiased FSC (Unbiased
FSC) was obtained by comparison of the refined structure with the
original noise-free density map generated from the atomic model of the
50S large ribosomal subunit (see text). The unbiased FSC shows that the
traditional FSC determined from two halves of the data set suffers from
noise bias. The FNC-based FSC follows more closely the unbiased FSC.
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SPIDER). The opposite mask was applied to the unfiltered
map to select the density inside a sphere with a diameter of
about 146 Å. The two masked maps were then added
together, resulting in a map with more defined density in
the center and smeared-out density on the periphery
(Fig. 5C). The volume of the smeared-out density corre-
sponded to about 25% of the volume of the 50S density.
The predicted FSC (Fig. 5D) is essentially unchanged com-
pared with the structure prior to box convolution. The
main difference occurs at about 15 Å resolution and above
were a slight drop in the FSC can be observed for the
smeared-out structure, consistent with the signal loss at
that resolution. However, there is also a small difference
visible between the two FSC curved below about 30 Å res-
olution, indicating that density variations within the struc-
ture have a small effect on the FNC and predicted FSC at
low resolution.

2.5. Over-fitting of noise

As a final simulated test, the new algorithm was used
with a structure that was reconstructed from 30 000 projec-
tions of the 50S map, filtered using a Gaussian low-pass fil-
ter with a radius of 1/24.4 Å�1. This test was similar to tests
run previously to investigate over-fitting during refinement
(Stewart and Grigorieff, 2004). The pixel size was increased
to 4.88 Å to speed up the calculation. A CTF was applied
to produce images similar to those obtained from an elec-
tron microscope. The CTF did not have an envelope atten-
uating its amplitude towards high resolution. Defocus
values for the CTF varied between 40 and 60 in generalized
units (Wade, 1992). Finally, Gaussian noise was added to
the projection images to give an SNR of 1/100. The para-
meters describing the orientations and positions of each
particle in this data set were perturbed by addition of ran-
dom, uniformly distributed angles with a standard devia-
tion of about 10� and random, uniformly distributed
displacements with a standard deviation of about two pix-
els. Nine cycles of refinement were carried out using the
program FREALIGN (Grigorieff, 2006) and employing a
linear correlation coefficient for the alignment between



Fig. 7. (A) Density histogram of a low-pass filtered version of the E. coli

70S ribosome, solved by single particle electron microscopy (Gabashvili
et al., 2000, EMD code 1003). Slices through the untreated 70S density
map (B), the corresponding structure mask (C) and background mask (D)
are shown.
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the images and the reference. FREALIGN normally uses a
weighted correlation coefficient for the alignment to reduce
over-fitting of noise (Stewart and Grigorieff, 2004). Fig. 6
shows the resulting FSC curves after refinement. The
FSC curve comparing two reconstructions calculated by
dividing the data set in two halves (labeled FSC in
Fig. 6) is close to 1 at low resolution, drops to about
0.25 in the intermediate resolution range, and then increas-
es again to about 0.5 at higher resolution. This behavior is
characteristic for a reconstruction that suffers from over-
fitting of noise (Stewart and Grigorieff, 2004). When com-
paring the final reconstruction with the noise-free structure
used to generate the projections, a second FSC curve can
be calculated and converted to a curve that is equivalent
to the FSC measured between the reconstructions calculated
from two halves of the data (Rosenthal and Henderson,
2003). This curve is also shown in Fig. 6 (labeled Unbiased
FSC) and clearly shows that the resolution of the refined
structure is significantly lower than indicated by the first
curve. Finally, the FSC curve calculated from the FNC is
plotted (Predicted FSC). Although it does not entirely
agree with the unbiased FSC, it is very close and indicates
the correct resolution much more reliably than the tradi-
tional FSC curve. This is an important result because it
suggests that the new algorithm can be used as a more
unbiased resolution measurement for the general evalua-
tion of single particle reconstructions.

2.6. Masking procedure

The values for FNCF and FNCN can be estimated from
noise-filled masks describing the structure and background,
respectively, by calculating the average FNC across the
entire spectrum (see above and Table 1). For the determi-
nation of a tight mask for the structure we developed a pro-
cedure that is based on the density histogram of a low-pass
filtered version of the structure. We will refer to this mask
as the structure mask. As a low-pass filter we chose a
Gaussian-shaped filter with a radius of 1/20 Å�1 to retain
sufficient information about the shape of the structure,
but without finer and noisier detail. This helps in determin-
ing the correct threshold for the structure mask. A typical
histogram of densities sorted into 100 bins is shown in
Fig. 7A, calculated from a filtered reconstruction of the
Escherichia coli 70S ribosome (Gabashvili et al., 2000,
EMD code 1003). There are three distinct regions. At the
low density end is a large peak that contains pixels in the
reconstruction that are part of the background. The histo-
gram has a plateau in the middle region where contributing
densities are above the background, but still clearly below
the density peaks of the structure that represent the stron-
gest features. An appropriate density threshold to define a
binary mask for the structure will lie in this plateau region.
The third region represents the strongest density features
and sometimes shows a second peak, as in Fig. 7A, but
can also simply be the beginning of a steady decline
towards zero.
In a first step, approximate boundaries of the middle
plateau region are established. The second derivative of
the histogram helps in this process. To reduce random fluc-
tuations in the second derivative, a running average over
seven histogram bins is calculated. Starting from the max-
imum in the histogram and approaching higher densities,
the second derivative will have a maximum where the large
peak (the first region) transitions into the plateau region.
This maximum will be taken as the left boundary of the
plateau region. The right boundary of the plateau region
is characterized by a negative second derivative that indi-
cates either an accelerated decline of the histogram towards
zero, or the approach of the second peak in the histogram,
as in Fig. 7A. To avoid picking an accidental negative sec-
ond derivative that may occur at an isolated point within
the plateau region, we require that five points within a con-
tiguous interval of six points on the second derivative are
negative. Although this is a somewhat arbitrary criterion,
it identifies the right boundary of the plateau region very
reliably when testing the algorithm on a number of struc-
tures from the EM database. The density threshold for gen-
erating a binary mask from the low-pass filtered structure is
then picked as the mid point between the two boundaries of
the plateau region. Fig. 7C shows the outline of the struc-
ture mask determined for the E. coli 70S ribosome as an
example.

For the value of FNCN, the part of the cube containing
background has to be determined. This is done by calculat-
ing the local variance at each point outside the structure
mask. The local variance is calculated by including the pix-
el value at a point and the values of all surrounding pixels
(a total of 27 pixels). If a prior mask (the background
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mask, see above) was applied to the reconstruction, the
local variance will vanish outside this mask. The back-
ground mask for the noise is then determined by including
all pixels with a local variance above a certain threshold. In
practice, it was found that a threshold of half the average
variance (not including the volume containing the struc-
ture) led to a good representation of the part of the volume
containing background. The background mask, however,
will also include the volume inside the structure mask since
it is assumed that the noise level of the background is the
same within and outside the structure (see above). The
background mask is then filled with random density values,
similar to the procedure for FNCF. FNCN is calculated as
the average FNC in the FT of this mask. Fig. 7D shows
the outline of the background mask determined for the
E. coli 70S ribosome as an example.

3. Application to experimental data

The algorithms described above were implemented in a
program called RMEASURE. Its only inputs are the den-
sity map of the structure and the pixel size in Å. The out-
puts are FNC and predicted FSC curves. The program
Fig. 8. FNC-based Fourier Shell Correlation (Pred. FSC) and traditional
Fourier Shell Correlation (FSC) for two experimentally obtained recon-
structions. (A) E. coli 70S ribosome (Gabashvili et al., 2000, EMD code
1003), and (B) ryanodine receptor (Samso et al., 2005).
was tested on two experimental cases, the E. coli 70S ribo-
some (Gabashvili et al., 2000, EMD code 1003), and a
recently determined structure of the ryanodine receptor
(Samso et al., 2005). Fig. 8A shows the result for the ribo-
some structure. The published FSC curve drops below 0.5
at 11.5 Å (Gabashvili et al., 2000), and below 0.143 at
about 9.6 Å resolution. The FSC curve predicted by
RMEASURE drops below 0.5 at 12.5 Å, and below
0.143 at 10.4 Å resolution. The predicted curve is, there-
fore, close to the published FSC curve at a resolution above
30 Å, and a resolution measurement based on the predicted
curve would be compatible with the resolution estimate
obtained from the traditional FSC curve. At a resolution
below 30 Å, the predicted FSC curve drops well below
the published curve. A drop at low resolution is also
observed with the simulated data in the previous section
and indicates the low-resolution regime where the FNC
depends on details of the molecular transform. However,
this has no effect on the predicted resolution limits based
on the 0.5 and 0.143 thresholds.

Fig. 8B shows the results for the ryanodine receptor
(Samso et al., 2005). The predicted FSC curve shows even
closer agreement with the traditional FSC curve measured
between two reconstructions from two halves of the data.
Both curves drop below a value of 0.5 at about 13 Å reso-
lution, and below 0.143 at about 10 Å resolution. The pre-
dicted FSC curve again shows a significant drop below
50 Å resolution.

4. Discussion

The new method described here for assessing the resolu-
tion of a reconstruction does not require the original data
used to calculate the reconstruction. It is, therefore, easier
to use and more widely applicable than the more tradition-
al methods. The simulations shown in Figs. 5 and 6 demon-
strate that the FNC and the theoretical considerations
described here provide an accurate method to measure
the SNR of a 3D reconstruction as a function of resolution.
Furthermore, according to the simulation shown in Fig. 6,
this measurement seems to be less affected by over-fitting of
noise in a refined structure compared with the traditional
FSC.

The dependence of the FNC on over-fitting of noise
resulting from refinement of a structure deserves further
discussion. The bias in the FSC measuring the correlation
between two reconstructions calculated from two halves
of the data was recently discussed (Grigorieff, 2000; Shaikh
et al., 2003; Stewart and Grigorieff, 2004). It arises essen-
tially from the partial alignment of the noise in the images
to the reference used in the refinement. The aligned noise
leads to additional artificial correlation between the two
reconstructions calculated from two halves of the data.
Structures that suffer from over-fitting of noise usually dis-
play high-resolution detail that does not correspond with
actual structural features of the sample. In other words,
the refinement procedure ‘‘invents’’ these details. In the
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assessment of the structure, it is often not possible to distin-
guish true structural detail from artifact. Shaikh et al. pro-
posed a cross-validation method in which part of the image
data is excluded from the alignment and refinement. This
approach is, therefore, akin to the free R-factor used in
X-ray crystallography. To make their assessment compati-
ble with other resolution measures, data in entire resolution
zones are excluded. Any correlation observed in these res-
olution zones between reconstructions from two halves of
the data should then be unbiased. As noted by the authors,
it is important that the resolution zones containing the
excluded data encompass sufficiently large intervals in Fou-
rier space to avoid bias from neighboring Fourier terms
corresponding to data that was included in the refinement.
The potential bias is due to the same correlation between
Fourier terms that is used here to measure the SNR of a
reconstruction. The FNC is not based on cross-validation
and it is, therefore, not so obvious why it is less sensitive
to over-fitting. Indeed, the FNC for the signal, FNCF, is
calculated from a mask filled with random noise, completely
uncorrelated with high-resolution detail of the reconstruc-
tion, whether true or not. In the method described here,
the distinction between signal and noise is made by the
masking procedure (see above). Any density inside the
structure mask counts as signal plus noise, whereas any
density outside this mask counts as noise. For the measure-
ment of the SNR, the noise level within the mask is
assumed to be the same as elsewhere in the volume (see Sec-
tion 2 above). If this condition is not met, the calculation of
the SNR will be inaccurate. For example, if the noise level
within the structure mask is higher than elsewhere, part of
the variance of this noise will be counted as signal, and the
measured SNR will be higher than the true SNR. If over-
fitting of noise occurs in the refinement of a structure, noise
in the images within and outside the area of the particle will
be aligned to the reference. This will give rise to additional
features and density variance within and outside the struc-
ture (Grigorieff, 2000; Stewart and Grigorieff, 2004). As
long as the variance increase per pixel is the same every-
where, it will not influence the measurement of the SNR.
This is the main reason for the FNC-based resolution mea-
surement to be less affected by over-fitting of noise. How-
ever, in a reference, the density variance within the
structure is usually much higher than outside the structure.
Therefore, during the alignment of images to the reference,
any features in the images that overlap with the density of
the projected structure will receive a higher weight com-
pared with other features. Therefore, the noise within the
area of the particles receives a stronger bias to agree with
the reference than noise elsewhere in the images (Stewart
and Grigorieff, 2004). This leads to a higher noise level
within the structure than outside it. Therefore, a small bias
in the measurement of the SNR remains, and is indeed vis-
ible in Fig. 6. The use of an appropriate weighting scheme
for the data during alignment can minimize this effect. Such
a weighting scheme was implemented, for example, in the
program FREALIGN (Stewart and Grigorieff, 2004).
The method described here breaks down at low resolu-
tion where the FNC depends on details of the molecular
transform of the structure. Deviations between the FNC-
based FSC and the FSC calculated between reconstruc-
tions each containing half the data can be substantial at
low resolution (Fig. 8A). However, this does not normally
influence the resolution assessment of the structure which is
determined by the SNR and FSC at higher resolution. The
FNC at low resolution can be influenced by several factors,
such as density variations due to flexibility or disorder in
the structure that produce non-uniform resolution (see
Fig. 5C). Problems may also occur if the resolution is
non-isotropic, i.e., it varies with direction within the struc-
ture. Such a variation may, for example, be caused by pre-
ferred views of the particle during data collection, or if the
structure contains strong periodic features. Resolution esti-
mation may also be hindered by tight masking of the struc-
ture resulting in the masks for the structure and the
background to be essentially the same. This leads to similar
values for FNCF and FNCN in Eq. (10) which can then not
be used for calculating the FSC. However, in cases where
masking is not a problem, as with the structures deter-
mined for the E. coli 70S ribosome and the ryanodine
receptor (see Fig. 8), a reasonable FNC-based resolution
estimate can be obtained.

It is worth adding a comment here about the deposition of
3D structures in the EM Database (http://www.ebi.ac.uk/
msd-srv/emsearch/). The deposition of published structures
determined by electron microscopy is strongly encouraged
and a growing number of structures have already been
deposited. For the deposited data to be useful, however, it
is important that structures are deposited without extensive
‘‘editing’’, such as tight masking or filtering with a sharp res-
olution cut-off. Tight masking or filtering removes valuable
information about a structure, such as levels of noise and
background. It also often introduces artifacts, such as sharp
edges where tight masks cut into the density of the structure,
or ripples where sharp filters are used. The deposition of a
structure ‘‘as is’’, unmasked and unfiltered, and possibly a
second structure masked and filtered to the appropriate res-
olution should become the standard.
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