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The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a
special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral sig-
nal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to
assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usu-
ally includes the noise in the solvent region surrounding the particle and therefore does not accurately
reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle
map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we
devise a novel filter (the ‘‘single-particle Wiener filter’’) to minimize the error in a reconstructed particle
map, if the particle volume is known. Moreover, we show how to approximate this filter even when the
volume of the particle is not known, by optimizing the signal within a representative interior region of
the particle. We show that the new filter improves on previously proposed error-reduction schemes,
including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relation-
ship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated
and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of
existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method,
leading to an efficient and accurate implementation.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In electron cryo-microscopy (cryo-EM), as in X-ray crystallogra-
phy, an important goal of the data processing is to minimize the ef-
fects of noise in a density map. In recent years, cryo-EM has
matured into a tool capable of providing near-atomic-resolution
reconstructions of non-crystalline (single particle) biomolecules
(Grigorieff and Harrison, 2011), thus bypassing certain limitations
of X-ray crystallography (e.g. the requirement that the target mol-
ecule be grown into a crystal) and NMR spectroscopy (which is
limited to highly-concentrated, relatively low-molecular mass
samples). Key advances that led to this breakthrough include the
development of better electron optical systems, as well as
improvements in image processing methodology for three-dimen-
sional (3D) reconstructions of the resulting electron micrographs.

In a high-resolution cryo-EM experiment there will typically be
�104–106 images of the target molecule, each of which suffers
ll rights reserved.
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from high noise levels, and is corrupted by a contrast transfer func-
tion (CTF) of the microscope. After determining the orientations
and positions of each molecule in the images, a reconstruction
algorithm merges the images into a 3D density representing the
molecule. A large body of literature exists on various aspects of
the reconstruction step (Penczek, 2010), but due to its importance
it remains the subject of ongoing investigation.

In this work we address the reconstruction step; specifically, we
seek a method to estimate a so-called ‘optimal’ map, where the
mean-squared error compared to the ideal, unknown noise-free
reference volume is minimized. Several studies have addressed
this problem using different formalisms. At least two studies have
reported implementations of the Wiener filter applied to the prob-
lem of 3D reconstruction of single-particle cryo-EM data (Zhang
et al., 2008; Scheres, 2012). The underlying assumption (either im-
plicit or explicit) in these studies was that this filter should mini-
mize the mean-squared error in the resulting 3D map, with
respect to the signal present in the image data. Similarly, a so-
called ‘figure-of-merit’ (FOM) filtering scheme was proposed as a
post-processing step intended to generate a ‘best map’ (i.e., lowest
mean-squared error) given the data (Rosenthal and Henderson,
2003). The error remaining in a map when subjected to such filter
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schemes has not been carefully scrutinized in these reports, thus
leaving the essential premise of the filters (error reduction) un-
tested. Moreover, we have recently demonstrated that, in order
to minimize error in averages of aligned two-dimensional (2D)
images, the bulk solvent surrounding the particle must be ade-
quately accounted for through the addition of a scale factor. This
resulted in a modification to the Wiener filter which we called
the ‘single-particle Wiener filter’ (SPW filter).

Here we extend our previous results with the SPW filter to the
more involved problem of 3D reconstruction. We test the various
assumptions of our theory by applying the resulting SPW filter to
synthetic and experimentally acquired test data sets.

We find that the resulting algorithm is generally applicable to
reconstruction problems with single particles, and quantitatively
minimizes the error within the particle density map in cases where
neither the conventional Wiener filter nor the FOM filter is as effec-
tive. Our algorithm is the first adaptation of the Wiener filter to
specifically address problems caused by the presence of bulk sol-
vent surrounding the particle. We demonstrate that this approach
leads to better real-space and Fourier space fidelity for recon-
structed maps using a highly efficient Fourier inversion framework.
The SPW filter described here has been implemented in the single
particle software FREALIGN (Grigorieff, 2007) starting with version
8.10.
2. Theory

The Wiener filter (Wiener, 1949) has been applied to both 2D
and 3D cryo-EM image processing problems, with the goal of opti-
mally combining noisy images into a ‘‘best’’ representation of the
noise-free object being imaged (Saxton, 1978; Ludtke et al.,
2001; Zhang et al., 2008; Scheres, 2012). If one can obtain an esti-
mate of the signal-to-noise ratio (SNR) of the Fourier-space repre-
sentation of the data, the Wiener filter will suppress the noise in
poorly measured parts of the Fourier space in order to obtain better
agreement with the noise-free signal. However, the utility of the
Wiener filter is compromised in single-particle imaging applica-
tions by an ambiguity in the definition of the SNR: as noted in Sin-
delar and Grigorieff (2011), the SNR of a particular imaged particle
can be made arbitrarily low just by increasing the field of view to
include more noise in the surrounding solvent area. Thus, the
behavior of the Wiener filter depends on the selected image size,
for a given particle, and in general tends to give over-filtered re-
sults for images of single particles (Sindelar and Grigorieff, 2011).

The above deficiency can be linked to the observation that the
Wiener filter is only guaranteed to be optimal for stationary
processes, where the expected mean and variance of the target
function does not vary under translation (Van Trees, 2001). In fact,
the target function in the currently considered case, a 3D density
map of a single particle, is highly non-stationary: the mean and
variance of the density inside a particle will always be substan-
tially different than the mean and variance in the solvent region.
We therefore seek a modified filter that better captures the proper-
ties of single particles.
2.1. Deriving a 3D ‘‘single-particle’’ Wiener filter

To a first approximation, a large number of randomly oriented
images will contribute a variable number of Fourier space mea-
surements F2D

i;hkl (i = 1, 2, . . . nhkl) to each discrete point shkl in the
3D discrete Fourier transform, or DFT, of the particle map q(r)
(see Appendix A). Here, shkl represents a discrete grid point in the
3D DFT having integer indices hkl, nhkl is the number of measure-
ments for shkl contributing to this grid point. Here and in the fol-
lowing, bold symbols are vectors and italicized non-bold symbols
refer to the length of the corresponding vectors. In particular, shkl

will be the radial spatial frequency corresponding to grid point shkl.
If the SNR of the measurements F2D

i;hkl is available as a function of
shkl, then the Wiener filter supplies a set of linear coefficients that
minimize the average error in the resulting DFT. By Parseval’s the-
orem, the error is also minimized in the corresponding real-space
3D map qW(r) obtained by Fourier inversion. The Wiener expres-
sion (Saxton, 1978) generalized for 3D is (see Appendix A):

FWðshklÞ ¼ DFTfqWðrÞg
Pnhkl

i¼1fCTFi;hklg�F2D
i;hklPnhkl

i¼1 jCTFi;hklj2 þ 1=SSNRðshklÞ
ð1Þ

where CTFi,hkl are the previously estimated CTF values of the micro-
scope for the given Fourier space measurement, accounting for the
image defocus level, astigmatism, etc.

We now derive a modification to Eq. (1) that addresses the spe-
cial properties of single particles. Following our approach for the
case of aligned 2D images (Sindelar and Grigorieff, 2011), we de-
fine a 3D binary enveloping function, env3D(r), outside of which
the target particle density is known to be zero. We then seek the
new set of linear coefficients to the measurements F2D

i;hkl that yield
a real-space map where the error is specifically minimized inside
the envelope. Applying a set of assumptions that are expected to
be reasonable for single-particle cryo-EM data sets (e.g. that the
data set is sufficiently large to yield a well-localized particle
map), it is straightforward to adapt the previously presented 2D
SPW filter to its 3D analog (Appendix A). After including a ‘‘grid-
ding’’ formalism to account for the fact that, in the 3D case, most
Fourier space measurements do not fall exactly on the discrete grid
points shkl (see Appendix B) we arrive at the following expressions
for the 3D SPW filter:

FSPWðshklÞ ¼
Pnhkl

i¼1fCTFi;hklg�F2D
i;hklPnhkl

i¼1 jCTFi;hklj2 þ 1=PSSNRðshklÞ
ð2Þ

with

PSSNRðsÞ ¼ 1
fparticle

SSNRðsÞ ð3Þ

and

fparticle ¼ henv2
3DðrÞir2V ð4Þ

(note that fparticle refers to a fraction of a 3D volume whereas in Sin-
delar and Grigorieff (2011) it referred to a fraction of a 2D image.)
Here and in the following, PSSNR and SSNR are functions of radial
spatial frequency s. They approximate SNR values found at grid
points shkl by averaging over all values in a resolution shell. It is
important to note here that Eqs. (2)–(4), as is the case with the
equivalent 2D SPW expressions, can be applied in the absence of
any specific knowledge about the shape of the envelope function. In-
stead, all that is required is the mean squared value of the envelope
function, fparticle, which is equal to the fractional volume occupied by
the envelope within the boundary of the reconstructed box. Eqs. (2)–
(4) will then minimize the reconstruction error of the particle den-
sity inside the envelope. Below we will describe how to find a ‘‘best’’
value for fparticle that optimizes the map within the particle itself.

2.2. Accurate estimation of the image SSNR by masking

In order to implement Eq. (2) it becomes necessary to obtain an
accurate estimate of the SSNR of the raw data images. The SSNR
can be most accurately obtained from a ‘masked’ FSC calculated
from two volumes each containing half the data (Harauz and Van
Heel, 1986) where solvent noise surrounding the particle is sup-
pressed with a soft-edged mask function envmask. The term envmask

differs from env3D as it usually has a simpler shape such as a sphere
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and therefore contains substantially more volume than the actual
particle volume. As shown by Sindelar and Grigorieff (2011), for
a set of aligned 2D images,

SSNRðsÞ � fmask2D
nsP

h;k2SðsÞ
P

i ¼ 1Nimages jCTFiðh; kÞj2

� 2FRCmask2DðsÞ
1� FRCmask2DðsÞð Þ ð5Þ

where the FRC is the 2D analog of the FSC, formed by comparing
two independently averaged image data sets (Harauz and Van Heel,
1986), S(s) is a resolution shell centered around radial spatial fre-
quency s, and nS is the number of Fourier space pixels contained
within S.

For a 3D data set, the corresponding result is (see Appendix C):

SSNRðsÞ � fmask
nsP

shkl2SðsÞ
Pnhkl

i¼1 jCTFi;hklj2
� 2FSCmaskðsÞ

1� FSCmaskðsÞð Þ ð6Þ

where fmask ¼ henv2
maskðrÞir2V is the mean-squared value of the soft-

edged mask function evaluated over the 3D (real-space) reconstruc-
tion volume. This expression estimates the SSNR found in the raw
data images, including the noise found in the solvent region, and
thus may be combined with Eq. (3) to obtain the PSSNR (assuming
knowledge of fparticle; see below). Here and in the following we
make the assumption that the SSNR does not vary significantly be-
tween images and therefore, an average SSNR for the entire data set
can be assumed. In the Discussion, we will consider the case of var-
iable SSNR in a data set.

2.3. Derivation of a related post-processing SPW filter

The PSSNR term in the denominator in Eq. (2) systematically
down-weights structure factors FSPW where the number of mea-
surements is not sufficient to overcome the measurement noise.
FSPW thus represents an optimal estimate of the true structure fac-
tors (in the least squares sense and ignoring gridding-related arti-
facts), and its calculation requires incorporation of the SSNR found
in the 2D image data during calculation of the final reconstruction.
An alternative scheme has been described that uses a filter based
on an FOM (Rosenthal and Henderson, 2003). Unlike the Wiener
filter and its SPW derivative described above, the FOM filter is
not incorporated directly into the 3D reconstruction step, and is in-
stead applied in a post-processing step after the reconstruction has
been calculated. To compare these filtering methods, we relate
FSPW to unfiltered gridded reconstruction using Eqs. (2) and (A2.6):

FSPWðshklÞ ¼
Pnhkl

i¼1 jCTFi;hklj2Pnhkl
i¼1 jCTFi;hklj2fparticle=SSNRðshklÞ

FLSQ ðshklÞ ð7Þ

where we have left out the small e term from Eq. (A2.6), which is
expected to have a negligible effect on this expression. The above
expression represents a voxel-by-voxel correction to the unfiltered
reconstruction FLSQ. We now substitute our estimate of the SSNR as
a function of the masked FSC given in Eq. (6):

FSPWðshklÞ¼

Xnhkl

i¼1

jCTFi;hklj2

Pnhkl
i¼1 jCTFi;hkl j2þ

fparticle
fmask

1�FSCmask ðshkl Þ
2FSCmask ðshkl Þ

� �
1
ns

P
sh0k0 l0 2SðshklÞ

Pnhkl
i¼1 jCTFi;h0k0 l0 j

2
FLSQ ðshklÞ

ð8Þ

The above expression still requires knowledge of the individual
CTF terms in the 2D image data. To further simplify this expression,
we now assume that the filter is approximately constant within a
given resolution shell. This requires that the sum of squared CTF
values (this can be considered as the effective number of Fourier-
space measurements) is similar for all structure factors within
the resolution shell. This condition will be met when (1) a
sufficiently large number of images have been collected, such that
every point in Fourier space is measured many times by a spread of
defocus values, and (2) there are no strongly preferred orientations
in the data set (note that the presence of astigmatism in the images
would not affect our analysis, under the above conditions). The ex-
pected value of this filter is then

FSPWðshklÞ
D E

¼
Pnhkl

i¼1 jCTFi;hklj2Pnhkl
i¼1 jCTFi;hklj2þ

fparticle
fmask

Pnhkl
i¼1 jCTFi;hklj2

D E
Sðshkl Þ

1�FSCmask ðshkl Þ
2FSCmask ðshkl Þ

FLSQ ðshklÞ
* +

Sðshkl Þ

� 2FSCmaskðshklÞ
2FSCmaskðshklÞþ fparticle=fmaskð1�FSCmaskðshklÞÞ

FLSQ ðshklÞ
� �

SðshklÞ

ð9Þ

where the brackets hiSðshklÞ denote the average value for all possible
instances of the noise in resolution shell S(shkl). The above expres-
sion is expected, upon application to a non-filtered 3D reconstruc-
tion, to optimally filter the density map to reduce noise.

Eq. (9) describes how to obtain an approximation to the SPW
algorithm (Eq. (2)), by defining a post-processing filter to be ap-
plied to the unfiltered reconstruction (FLSQ). This result may be
compared with the FOM filter described by Rosenthal and Hender-
son (2003), which is written in our terminology as:

FFOMðsÞBCrefðsÞFðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FSCmaskðsÞ

FSCmaskðsÞ þ 1

s
FðsÞ ð10Þ

In contrast, we see that in the limit of fparticle = fmask Eq. (9) re-
duces to:

FSPWðsÞ � 2FSCmaskðsÞ
FSCmaskðsÞ þ 1

FðsÞ ¼ C2
refðsÞFðsÞ ð11Þ

Note that while Rosenthal and Henderson applied masks to
their reconstructed volumes prior to calculating the FSC, they did
not explicitly consider the effects of masking in their expressions
for Cref .

2.4. De novo estimation of fparticle from FSC half volumes

The above results indicate that successful application of the
SPW filter requires an accurate estimate for fparticle. However,
fparticle3D is defined by the shape of the solvent envelope of the par-
ticle, which is frequently challenging to obtain in experimental
applications. Here we present a strategy for estimating fparticle

using only information available from the input images. We begin
with the property that the SPW filter minimizes the expected error
within the particle region, compared with a noise-free reference
volume. We further note that the SPW filter minimizes the recon-
struction error everywhere in the particle simultaneously. In other
words, if a chosen value of fparticle minimizes the error in any given
region within the solvent envelope, the error should also be mini-
mized at all other regions within the envelope as well, assuming
equal quality of the map in all regions. Thus, one may restrict the
above error evaluation to a small mask located within a ‘‘core’’ re-
gion of the particle, which is straightforward to establish even
when the solvent boundary is indistinct (see below). If the noise-
free reference volume is available, it is therefore possible to
estimate fparticle by systematically varying this quantity during
application of the SPW filter. The best estimate of fparticle will be
the value that minimizes the error in the ‘‘core’’ region of the fil-
tered reconstruction, with respect to the reference volume. In this
way, fparticle can be estimated without knowledge of the precise
shape of the particle envelope.

In experimental studies, the noise-free reference volume
remains unknown, requiring further modification to the above
strategy. It is straightforward to show, however, that because the
SPW filter minimizes the error with respect to the noise-free
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reference volume, this filter also minimizes the error with respect
to a noisy reference volume (so long as the added noise is random,
and the reference is otherwise unfiltered). For any given
experimental data set, moreover, a noisy reference volume is
readily obtained by gridded Fourier inversion (Eq. (A2.6)). This
observation implies that we may use an experimentally obtained
reference volume in the above estimation procedure for fparticle,
rather than using a noise-free reference, and still obtain the same
result.

We thus arrive at the following scheme for estimating fparticle:
From one half of the data we calculate an unfiltered, noisy esti-
mate, FLSQ, of the reconstruction (Eq. (A2.6)). The second half of
the data is used to calculate a filtered estimate, FSPW in which
we now allow fparticle to vary (Eq. (2)). We subsequently perform
a series of reconstructions using values of fparticle that range from
0 to 1, comparing the real-space cross-correlation coefficient (CCC)
between core regions of the filtered half-data density map and
the unfiltered, noisier half-data map. We then choose the value
of fparticle that optimizes the core region CCC. This value of fparticle

is thus expected to give a SPW filter whose output minimizes
the error in the particle region. Moreover, this value of fparticle is
expected to correspond (at least approximately) to the fraction
of the reconstructed volume that is occupied by particle density
(this property will be tested below). Thus, the procedure just
described will yield an approximation of the SPW filter using only
the images and Euler angles that are standard input in any 3D
reconstruction algorithm.

2.5. FLOW CHART: integrated SPW filter

(A) Insert projections into Fourier volume via box convolution
(equivalent to nearest-neighbor interpolation if box dimen-
sion is 1 � 1 � 1 in voxel units):

� Calculate sum in numerator of Eq. (2), stored on a per-voxel
basis.

� Calculate sum in denominator of Eq. (2), also on a per-voxel
basis (this and the preceding step are identical to the previ-
ously published FREALIGN implementation).

� Gather separate numerator, denominator tallies for two half-
data-set reconstructions, for FSC computation.

(B) Perform Fourier inversion (Eq. (A2.6)) to obtain both half-
data-set reconstructions, and compute the FSC between
the two maps (using a smoothed mask where fmask is conser-
vatively chosen to significantly exceed the volume of the
particle) to obtain a lower bound on the reconstruction
resolution.

(C) Estimate the whole-image SSNR from the masked FSC, by Eq.
(6).

(D) Select a ‘core region’ of the density by low-pass-filtering the
reconstruction several times lower than the resolution lower
bound computed in the last step, and defining the binary
envelope to enclose a small fraction (i.e., �10%) of the fil-
tered reconstruction density.

(E) Perform a series of reconstructions using the second half
data set, according to the formula:
FSPWðshklÞ ¼
Pnhkl

i¼1fCTFi;hklg�F2D
i;hklPnhkl

i¼1 jCTFi;hklj2f=SSNRðshklÞ
where f, representing the unknown quantity fparticle, is varied

between 0 and 1.
(F) Estimate fparticle as the value of f that maximizes the real-
space CCC between core regions of the first (unmodified)
half-data set reconstruction and the filtered reconstructions
generated in step E.

(G) Compute the full-data reconstruction by Eqs. (2)–(4).
2.6. FLOW CHART: post-processing SPW filter

If the SPW filter is implemented with a post-processing filter
rather than as an integrated reconstruction algorithm, any recon-
struction algorithm may be used and fewer steps are necessary:

(A) Obtain unfiltered half-data-set reconstructions and compute
the masked FSC and full-data-set reconstructions.

(B) Define a ‘core region’ of the density, as described in step D in
the integrated SPW procedure.

(C) Apply a series of filters to the second half-data-set recon-
struction, using the following form of the SPW post-process-
ing filter:
FSPWðshklÞ ¼
FSCmaskðshklÞ

FSCmaskðshklÞ þ f=fmaskð1� FSCmaskðshklÞÞ
FðshklÞ

where f, representing the unknown quantity fparticle, is varied
between 0 and 1. Note that this post-processing filter has been
modified from Eq. (9) in order to take into account the reduced
signal-to-noise ratio found in a reconstruction made with half
the data, compared with a full-data-set reconstruction.
(D) Estimate fparticle as the value of f that maximizes the real-
space CCC between core regions of the first half-data set
reconstruction and the filtered reconstructions generated
in step C.

(E) Apply the post-processing SPW filter (Eq. (9)), using the
value for fparticle estimated in part D, to the unfiltered full-
data-set reconstruction step A.

3. Results

3.1. Normalized SSNR estimation via the masked FSC

Eq. (6) predicts that using the FSC to estimate the SSNR for a
reconstructed particle map will yield a result that is inversely pro-
portional to the fraction of solvent that is included in the FSC com-
parison. We tested this prediction using a synthetic data set
composed of noisy projection images of a small (�35 kD) protein
molecule (crystal structure of the kinesin motor domain, PDB ID
1MKJ), from randomly sampled viewing orientations (Fig. 1A, B).
Special care was taken to avoid interpolation artifacts during the
projection process (see Section 6), thus allowing the SSNR charac-
teristic of the projection images to be precisely established a priori
(Fig. 1C). Images were divided into two equal sets and subjected to
gridded Fourier inversion (Eq. (A2.6)) using the exact (known) Eu-
ler angles of the projections in order to compute a pair of 3D recon-
structions from each set, and a third reconstruction for the
combined full image set. We then performed FSC comparisons of
the resulting reconstructions, after multiplying the maps with a
solvent mask. Three different mask sizes were used: a tight binary
mask (Fig. 2E), generated from the reconstruction itself by the
method of Wang (Wang, 1985) with parameters chosen such that
the mask volume was �2� the particle volume (see Section 6); a
looser mask (Fig. 2F), generated from the former mask by applying
a cosine edge smoothing function (mask volume was �5� the par-
ticle volume); and a smoothed spherical mask (Fig. 2G) where the
radius matched the maximum linear dimension of the particle map
(net mask volume was �10� the particle volume).

The results of these FSC calculations (Fig. 3; note that FSC values
are scaled into estimates of Cref using Eq. (9)) illustrate that the
application of masking yields substantially different results, due
to the varying amount of solvent noise eliminated by the masking.
However, we can resolve this discrepancy by defining a quantity
PSSNRfinal that places the SSNR of the reconstruction onto an abso-
lute scale, applying the same logic that was used to derive Eq. (6):



Fig.1. Volume-normalized estimation of the SSNR. (A) Noise-free, interpolation-free projection of kinesin monomer crystal structure (PDB ID 1MKJ), at 1 Å/pixel in a 96 � 96
pixel image. (B) Noisy, CTF-modulated image derived from A with SNR = 0.002. The SNR value is computed from the entire image. Image size is enlarged to 256 � 256 pixels in
order to retain information delocalized by the CTF. (C) Composite SSNR behavior for 1000 synthetic images generated as in panel B (crosses), compared to the idealized SSNR
computed by dividing the rotationally averaged structure factors of the noise-free volume h|F|2i by the mean squared amplitude N2 for the white noise added to the images.
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PSSNRfinalðsÞ ¼
fmask

fparticle
� 2FSCmaskðsÞ
ð1� FSCmaskðsÞÞ

ð12Þ

Following application of Eq. (12), the scaled Cref estimates con-
verge to approximately the same value throughout most of spatial
frequency range (Fig. 3A, B), indicating that Eq. (12) yields a consis-
tent resolution measure.

We cross-validated these estimates by separately computing
the Fourier shell correlation between the noise-free reference vol-
ume and a masked full-dataset reconstruction (we refer to this lat-
ter function as Cref, following the convention of Rosenthal and
Henderson (2003). The resulting Cref curve was scaled to form an
estimate of PSSNRfinal by combining Eqs. 6, 9, and 12, and is also
shown in Fig. 3A–C. The estimates for PSSNRfinal generated from
this latter approach are in excellent agreement with the FSC-gen-
erated estimates. As with the FSC calculations, the Cref calculations
showed smaller fluctuations (indicating higher fidelity) as tighter
masking was applied (results not shown). Thus, while tight mask-
ing is desirable to reduce the random error in the PSSNRfinal esti-
mates, our results demonstrate that the mask size may be
expanded as necessary (e.g. to avoid mask-related artifacts in the
FSC computation; see Section 4) without introducing systematic
under-estimation of the reconstruction resolution, so long as the
values are adjusted by Eq. (6).

Using the known SSNR characteristic of the synthetic images,
we then derived an upper bound for the expected value of
PSSNRfinal for an idealized Fourier inversion algorithm (assuming
no reconstruction artifacts):

PSSNRidealðsÞ ¼ 1=fparticle �
P

shkl2SðsÞ
Pnhkl

i¼1 jCTFi;hklj2

ns
� SSNRðsÞ ð13Þ

This limiting function is defined purely by the signal and noise
characteristics of the data images, together with the number of
images taken, imaging geometry, CTF conditions, and microscope
parameters; all of these values are precisely known for the
synthetic data set used here. As shown in Fig. 3C, the values for
PSSNRideal are in excellent agreement with the Cref function derived
from the conventional Fourier inversion reconstruction. The
estimated SSNR showed higher fluctuations about the known value
in the lowest-resolution shells (corresponding to resolutions lower
than 10 Å), due to the combination of poor statistics (fewer voxels



Fig.3. FSC/SSNR analysis of reconstructed volumes. (A) Applying a generous mask for FSC calculations underestimates the reconstruction quality. A spherical mask (Fig. 2G)
was applied to half-data set reconstructions (Fourier inversion, no filter applied) and the FSC was computed, for the synthetic data set described in Fig. 1. For comparison
purposes, FSC values were then transformed to the equivalent Cref values using Eq. (12) (solid curve). The middle curve (dashed) shows the same FSC values after being
transformed to account for the particle volume via Eq. (13), using 0.023 as the estimated value for fparticle (see text). The lighter dashed curve indicates the ‘true’ Cref values
obtained by masked comparison between the full-data-set reconstruction and the noise-free reference. (B) Decreasing the mask size leads to more accurate estimates for Cref.
The ‘true’ Cref values are carried over from panel A. The heavy solid curve shows the estimates for Cref obtained by performing FSC calculations using the smoothed mask from
Fig. 2F; the heavy dashed curve shows Cref values estimated by FSC using the binary mask from Fig. 2E. (C) Measured SSNR indicates near-optimal reconstruction algorithm.
FSCref (identical to panels A, B) is compared with the ‘‘ideal’’ case where all measurements contribute ‘‘perfectly’’ to signal recovery (see text). The horizontal line at FSCref = 0.5
indicates the nominal resolution of the reconstruction as given by Rosenthal and Henderson (2003). (D) Recovering the data SSNR from masked FSC calculations. The
composite SSNR of the raw data images was estimated from masked FSC calculations via Eq. (6), and compared with the known SSNR characteristic of the synthetic data set
(Fig. 1C).

Fig.2. Masks used for real-space and/or Fourier-space cross-correlation calculations. Representative z slices are shown. (A) Molecular surface mask (fmask = 0.0236). (B–D)
Subdivided pieces of the molecular surface mask in A. (E) Binary envelope mask derived from a reconstruction low-pass filtered to 30 Å resolution (fmask = 0.051). (F)
Smoothed mask derived from E by applying a cosine edge filter (fmask = 0.101). (G) Smoothed spherical mask (fmask = 0.223). (H) Core mask (fmask = 0.0059).
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per shell) and small CTF values at these spatial frequencies, leading
to higher noise variance. These errors, however, did not strongly
affect the performance of the SPW filter (see below) because of
the high overall SSNR of the final reconstruction at low resolution.
The estimated PSSNR also showed a tendency to under-estimate
the known SSNR values at resolutions higher than 3 Å, likely due
to incomplete sampling of Fourier transform by the data. Again,
however, these errors did not significantly affect the performance
of the SPW filter because these errors occurred at spatial frequen-
cies beyond the nominal resolution of the reconstruction (Cref < 0.5,
Fig. 3C). Thus, the agreement between these three different SSNR
estimation methods (FSC-derived, Cref-derived, and ‘ideal’) indicate
that our expressions are self-consistent and quantitative, under the
given (simulated) imaging conditions.
3.2. Estimating the SSNR of the data

We estimated the SSNR in our data set by applying Eq. (6), using
the soft-edged mask in Fig. 2F (fmask = 0.101); we then back-calcu-
lated an estimate of PSSNR for the original data images by applying
Eq. (3). We note that this back-calculation formula is based on the
assumption of a perfect, artifact-free Fourier inversion algorithm,
which our tests indicated was approximately valid (see above).
As shown in Fig. 3D, the resulting estimates for the image SSNR
were in excellent agreement with the known, pre-defined SSNR
characteristic of the synthetic images used in these tests, although
minor deviations below the known value are visible at the highest
spatial frequencies.
3.3. Evaluation of the conventional Wiener filter in a 3D Fourier
inversion reconstruction algorithm

To test the validity of the Wiener filter when applied within a
3D Fourier inversion scheme, we performed a series of 3D recon-
structions using the synthetic data images from Fig. 1 as inputs,
and employing the known SSNR characteristic of the images for
the Wiener filter. As shown in Fig. 4A–B, applying the Wiener filter
within a Fourier inversion scheme filters away high-resolution
noise from the resulting 3D reconstruction, improving the real-
space agreement with the noise-free 3D reference map. To further
test the validity of the Wiener filter within the approximations
inherent in our gridded reconstruction algorithm, we systemati-
cally perturbed the SSNR term in the denominator of Eq. (1) above
and below its true value in order to test whether the mean-squared
error was properly minimized with respect to the reference
volume. This test is mathematically equivalent to applying
Eqs. (2)–(4) using values of fparticle scaled above and below 1, which
is how the results are presented here (Fig. 5A, inset). These
calculations show that, as expected, the error is minimized near
fparticle = 1, although the peak is relatively broad. This perturbation
experiment thus indicates that incorporating the Wiener filter into
a Fourier inversion reconstruction scheme approximately mini-
mizes the mean-squared error of the full 3D reconstruction volume
with respect to the filtering parameters.

Fig. 4B also shows that the 3D density map that results from the
Wiener filter reconstruction appears to be strongly over-filtered,
especially when compared with the output of the SPW reconstruc-
tion methods (see below). This over-filtering results from the Wie-
ner filter’s sensitivity to the noise in the solvent region, such that
the larger the solvent region, the lower the measured SSNR and
hence the greater the over-filtering effect ((Sindelar and Grigorieff,
2011); see Eq. (3) above).
3.4. Single-particle Wiener filter improvement over the conventional
Wiener filter

The above drawback in the Wiener filter can be corrected by re-
defining the reconstruction problem to neglect the reconstruction
error that occurs within the solvent region, and instead to mini-
mize the error within the particle envelope only. The resulting
SPW filter (Eq. (2)) is predicted to minimize the mean-squared er-
ror within an arbitrarily shaped enveloping function characterized
by a fractional volume fparticle, so long as the envelope fully en-
closes the particle. We note that the mask function itself is not a
required input to the SPW filter; instead, fparticle is the only addi-
tional input required (with respect to the conventional Wiener
filter).

To test the performance of the SPW filter within the Fourier
inversion scheme, we applied both the integrated as well as the
post-processing SPW filters to our synthetic image data set. The
resulting density maps (Fig. 4C–D) were visibly improved relative
to the unfiltered or Wiener filtered maps. We tested the SPW fil-
tered maps by real-space cross-correlation comparison with the
noise-free reference volume, confining the comparison within
either (1) a relatively tight binary mask (envelope mask in
Fig. 2E), generated from a moderately filtered reconstruction (see
Section 6); or (2) a large spherical binary mask having a diameter
slightly larger than the longest particle dimension. We then sys-
tematically perturbed fparticle throughout the range from 0 to 3.0
and computed the masked CCC where the comparison was re-
stricted to the defined envelope region. As predicted (Fig. 5A),
the SPW filter reduced the error within both envelopes, for values
of fparticle close to the exactly computed value (env2

3D
) for these

envelopes. For the tight mask, fparticle was estimated as 0.06 vs.
the known value of 0.051; for the spherical mask the estimated va-
lue was 0.19, compared to the known value of fparticle = 0.223.

In contrast, the whole-volume CCC for the map produced by the
SPW filter was not minimized as a function of the SSNR function,
and indeed was substantially lower than the whole-volume CCC
yielded by the conventional Wiener filter (data not shown). Thus,
CCC comparisons indicate that the SPW filter optimizes the error
within the particle envelope, but that this improvement is accom-
plished at the expense of increased noise in the solvent region. The
increased noise in the solvent region, however, is readily removed
by multiplying the reconstruction with the binary particle enve-
lope, yielding a highest-quality map where the error has been com-
pletely eliminated from the solvent region and minimized within
the particle envelope.

These results demonstrate that our modified Wiener filter
expression specifically tunes the noise suppression in the particle
volume defined by fparticle. It follows that fparticle should be made
as small as possible, while still corresponding to an envelope that
fully encloses the particle, in order to completely minimize the er-
ror within the particle region. Below we evaluate our scheme for
empirically determining such a value of fparticle even in the absence
of precise description of the particle shape.

3.5. SPW filter yields improved FSC values relative to other
reconstruction schemes

To assess the Fourier-space signal of the SPW reconstruction
scheme compared with other reconstruction methods, we com-
puted masked Fourier shell correlation functions comparing the
reconstructions with the noise-free reference map. The resulting
Cref curve was increased across the entire spatial frequency range,
relative to the corresponding result for the equivalent unfiltered
reconstruction (Fig. 5B), although the gains were relatively minor.
For comparison, we also evaluated several other published recon-
struction schemes with the identical synthetic data set (Fig. 5C),



Fig.4. Performance of various filters, as indicated by features found in a representative region of the reconstructed maps. Density maps are represented as isosurfaces by UCSF
Chimera (Pettersen et al., 2004). (A) Reconstruction of the dataset in panel C generated by the published Fourier inversion scheme of FREALIGN. Reconstruction is post-filtered
by a 3 Å resolution low-pass filter, corresponding to the nominal resolution as indicated by Fig. 3C. (B) Reconstruction as in panel A, but using a conventional Wiener filter
incorporated into the Fourier inversion scheme. Severe over-filtering is apparent, relative to panel A. (C) Density map generated by the integrated SPW method. (D) Result of
applying the post-processing filter (Eq. (10)) to an unfiltered Fourier inversion reconstruction (Eq. A2.6). To facilitate comparison, the threshold level in this density map was
chosen such that the isosurface contains the identical volume as the map in panel C.
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including back-projection with phase flipping CTF correction
(Frank et al., 1996) and an iterative algebraic method also com-
bined with phase-flipping (Sorzano et al., 2004). These reconstruc-
tions yielded Cref curves similar or lower than our unfiltered,
gridded reconstruction, but falling below the SPW values (Fig. 5C).

3.6. Estimating fparticle

The basis for our method of estimating fparticle is to find the filter
function that maximizes the agreement in a representative ‘‘core’’
region of two half-data set reconstructions (see Section 2). To gen-
erate a ‘‘core’’ mask containing only particle density, we applied a
30 Å low-pass filter to the initial, unfiltered, gridded reconstruc-
tion, then selected a threshold value to define a mask limited to
a subset of the protein interior (Fig. 2H; mask volume was �20%
of the protein envelope volume). We generated a series of half-data
set reconstructions using our synthetic data set, applying the inte-
grated SPW filter to one half-data set reconstruction (Eq. (2)) but
scaling the fparticle3D term systematically from 0 to 1. The second
half-data set reconstruction was generated using the gridded Fou-
rier inversion algorithm without the SPW filter (Eq. (A2.6)). The
SSNR of the data was estimated via. Eq. (6). As shown in Fig. 5D,
maximizing the CCC between the ‘‘core’’ density of the two half-
data-set maps (defined by the central �20% of the kinesin protein
envelope, see Section 6) led to the assignment of fparticle = �0.022. A
similar result was seen for the post-processing version of the SPW
filter (Fig. 5D). For comparison, the volume contained by the
molecular surface defined by the atomic model, which captures
the solvent envelope of a high-resolution structure (see Section 6),
was 0.023. Thus, the simple scheme described here produces an
estimate for fparticle that closely agrees with the ‘‘true’’ value ex-
pected from basic principles.

Similarly accurate estimates of fparticle were obtained with both
the integrated and the post-processing forms of the SPW filter,
although the CCC values were slightly lower in the case of the
post-processing filter (Fig. 5D). We also experimented with differ-
ent ‘‘core’’ mask choices by using the molecular surface itself, or
subfragments thereof (Fig. 2A–D), for the core mask in the fparticle

estimation procedure; these latter experiments (Fig. 5D, upper
dashed curves) indicated that the results of the estimation proce-
dure were relatively insensitive to the choice of core region.

3.7. Application to an experimental high-resolution data set

We tested our filter expressions on a set of papillomavirus
images that were used to obtain a near-atomic resolution 3D
map (Wolf et al., 2010). We used the FREALIGN software (Gri-
gorieff, 2007) to duplicate the methods of Wolf et al., generating
a full-data-set gridded (unfiltered) reconstruction (Fig. 6A) and
two half-data set reconstructions output by the program for the
purpose of computing the FSC function (icosahedral averaging
was performed, but no other averaging was done). We then applied
our estimation scheme for fparticle, varying fparticle until we observed
the maximum real-space correlation (Fig. 6C) between a non-fil-
tered gridded reconstruction (half-data set #1), and the post-fil-
tered SPW map (half-data set #2), restricting the comparison to
small core regions within the protein interior (Fig. 6B). For FSC
computations, we duplicated the mask parameters of Wolf et al.
resulting in a mask in the form of hollow sphere (fmask = 0.26). This
strategy yielded an estimated value for fparticle of 0.075 (Fig. 6C). To
visualize this value of fparticle, we rendered an isosurface of the low-
pass-filtered virus reconstruction, adjusting the threshold until the
enclosed volume was equivalent to fparticle. As can be seen in Fig. 6E
and F, this isosurface tightly encloses the volume occupied by the
virus capsid proteins, indicating that our methods find a reason-
able approximation to fparticle in this case. We also compared the
actual filter function values of the FOM scheme vs. our SPW
post-processing filter (Fig. 6D); remarkably, the filter function orig-
inally obtained by Wolf et al. using the FOM scheme (solid curve)
nearly coincides with the post-processing SPW filter function val-
ues (lower dashed curve). Thus, for this particular instance the
FOM filter closely matches the SPW post-processing filter, at least
for the chosen masking parameters.

4. Discussion

We have used a new theoretical framework to derive a least-
squares solution to the single-particle 3D reconstruction problem,



Fig.5. Validating the SPW filter with masked CCC calculations. (A) Real-space cross correlation coefficients between reconstructions and the noise-free reference volume are
shown for the case of no masking, as well as a spherical mask (Fig. 2G) and a smoothed molecular envelope mask (Fig. 2F). The vertical dashed lines indicate the computed
values of fmask for each case (1, 0.223, and 0.101, respectively). The inset shows a rescaled plot of the ‘no mask’ curve. (B) Estimating fparticle by masked correlation comparison
of core regions in the reconstructed maps. The upper curves show the results from comparing full-data-set reconstructions (integrated SPW method) with the noise-free
reference volume. The lower curves show the results of equivalent masked CCC calculations that compare half-data-set reconstructions. For the lower curves, results from
both integrated and post-processing forms of the SPW filter are shown. The vertical dash line indicates our estimate of fmask (0.023, see text). (C) Single-particle Wiener filter
improves the resolution of reconstructions, as indicated by Cref comparisons. The reconstructed volume was multiplied by the mask in Fig. 2F prior to computing the Cref

values. The ‘conventional FREALIGN’ calculations used the Fourier inversion method (Eq. (A2.6)); for the 2� padded reconstruction, images were padded by zeros. SPW
reconstructions were also computed with 2� padding, applying Eq. (2) either with estimated SSNR values or the known SSNR values (see Fig. 3C). (D) Single-particle Wiener
filter outperforms other reconstruction algorithms. Results of two other algorithms are shown (see text). Unlike in Fig. 3, the Cref values here and in panel C are not scaled to
account for particle volume.
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specifically accounting for the presence of a noisy solvent region of
uniform density. Key to our analysis was the observation that the
SSNR of an image or volume of a single particle is linearly related
to the fractional area/volume occupied by the particle (Sindelar
and Grigorieff, 2011) – a result that enabled us to quantify the ef-
fects of masking on FSC calculations, hence permitting much more
accurate SSNR estimation. We find that the resulting SPW recon-
struction algorithm is closely related to the Wiener filter, from
which it was derived. We also find that the SPW method is closely
related to an FOM weighting scheme proposed by Rosenthal and
Henderson (2003). However, our analysis demonstrates that the
SPW method improves on these two earlier methods. Moreover,
our theoretical treatment connects the earlier methods to each
other, and explains why they fail to produce optimal results under
certain circumstances.

4.1. SPW method is distinct from a Wiener filter

The least-squares method we have implemented here, as
embodied by Eq. (2) (and which we previously described for the
treatment of aligned 2D images (Sindelar and Grigorieff, 2011)),
differs from the classically defined Wiener filter (Saxton, 1978) in
a subtle but important way. In the SPW method, we have intro-
duced the assumption that the density of interest occupies only a
fraction of the reconstructed map, which is otherwise occupied
by a uniform background value. When this assumption is applied
to the problem of 2D or 3D averaging, an approximate least-
squares solution results whose form (Eq. (2)) is nearly identical
to the Wiener filter, but where the SSNR term is scaled by the
inverse of the fractional particle volume, fparticle (Sindelar and
Grigorieff, 2011). Given the approximately linear relationship
found between image area/volume and the SSNR (Sindelar and
Grigorieff, 2011), it is tempting to identify the scaled SSNR func-
tion, 1/fparticleSSNR(s), as the signal-to-noise ratio ‘‘inside the parti-
cle region’’. While this identification is appealing intuitively, it is
not strictly correct because the scaled SSNR function contains
low-frequency terms that describe the overall shape of the particle,
not only its interior. Thus, the PSSNR term in the denominator of
Eq. (2) does not correspond to the signal-to-noise ratio of an actual
image (or volume), indicating that the SPW filter is distinct from a
true Wiener filter. As we have shown, fparticle tends to diverge quite
far from unity in typical single-particle applications (e.g. 0.075 in



Fig.6. Application to an experimental high-resolution data set. (A) Cross-section of the unfiltered and unsharpened papillomavirus map, generated by FREALIGN using the
methods described by Wolf et al. (2010). (B) Core mask function for this procedure was defined by first applying a 15 Å low-pass-filter to the reconstruction in panel A. The
core mask was then defined by choosing a binary cutoff threshold such that 1% of the total reconstruction volume was included (volume occupied by the virus shell was �15%
of the reconstruction volume). (C) Results of our estimation procedure for fparticle, using the post-processing SPW filter. (D) Comparison of post-processing filter functions. The
solid curve depicts the FOM weights used by Wolf et al. (2010) following the scheme of Rosenthal and Henderson (2003), using Eq. (11). The dashed curve depicts the SPW
post-processing weights obtained through Eq. (9). (E) Isosurface of the density map from A, depicting an L1 pentamer on the surface of the capsid. (F) Isosurface from E,
superposed with semitransparent isosurface of the same map (gray), low-pass-filtered to 15 Å and thresholded such that the volume enclosed by the surface is equivalent to
fparticle = 0.075, the value identified by our estimation procedure in panel C.
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the papillomavirus data set considered here), leading to substan-
tially different behavior of the SPW filter compared with the Wie-
ner filter.

4.2. The SSNR estimate includes contributions from image
misalignment and other indirect error sources

Many sources of error can degrade the quality of a 3D recon-
struction. Not only does error arise due to noise in the images
themselves, but also due to errors in the orientation and transla-
tion parameters that have been assigned to the images during
the course of structure refinement. Artifacts and errors in the 3D
reconstruction algorithm itself will reduce the quality of the final
map.

Importantly, the method we have described for estimating the
SSNR of the data images, Eq. (6), does not distinguish between
these various error sources. Because Eq. (6) is a measure of the
consistency between two separate data sets after image processing
is completed, this formula therefore yields a composite description
of most or all sources of signal attenuation and noise. This feature
of Eq. (6) is particularly advantageous in the process of single-par-
ticle orientation and translation refinement, because misalignment
of images is a major source of signal attenuation (and hence reso-
lution degradation) during single particle structure refinement. Eq.
(6) will automatically measure a lower SSNR when images are mis-
aligned. Thus, the SPW filter will behave more aggressively with
poorly aligned images, and will do so in a way to ‘‘optimize’’ what-
ever signal does emerge after summing the current image align-
ment. Our approach, which parallels the Bayesian approach of
Scheres (2012), contrasts with other Wiener filter methods (e.g.
Ludtke et al., 2001) where the SSNR is estimated via separate mea-
surements of the signal strength and noise strength, derived from
the sample itself. This latter approach may lead to suboptimal
behavior of the Wiener filter due to the presence of other,
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undetected error sources during refinement/reconstruction. On the
other hand, our SSNR estimation approach, similar to that of
Scheres (2012), is expected to filter away noise in the map due
to alignment errors; this could in principle lead to faster and more
accurate convergence of alignment parameters during 3D structure
refinement.

4.3. The optimal SPW filter can be estimated without precise
knowledge of the particle volume

Key to the successful application of the SPW reconstruction
scheme is knowledge of both the image SSNR characteristics as
well as the fractional particle volume, fparticle. We have shown
how a combination of masking and FSC computation (Eq. (6)) al-
lows the composite SSNR of the input images to be estimated with
high accuracy. Perhaps more surprising was our finding that fparticle

can be estimated via a real-space comparison of two half-data-set
reconstructions (Fig. 5D), essentially in the absence of any knowl-
edge of the particle/solvent boundary. We note that the accuracy of
the estimate for fparticle depends on a number of factors, including
the availability of an accurate estimate of the image SSNR (e.g.
by Eq. (6)). Indeed, some underestimation of the ground-truth im-
age SSNR by Eq. (6) is apparent in Fig. 3D at higher spatial frequen-
cies. A favorable aspect of our estimation scheme for fparticle,
however, is that it inherently seeks the value which best optimizes
the filter performance (as judged by the measured error between
FSC half-data-set reconstructions). Thus, one expects fparticle to be
underestimated for the data set in Fig. 3, in order to compensate
for the underestimation of the SSNR. Consistent with this predic-
tion, our methods report a value for fparticle that falls slightly below
the molecular volume of the particle (Fig. 5D). Thus, within our for-
malism the fparticle term will function to at least partially compen-
sate for errors in the determination of the image SSNR (insofar as
correction is possible by a scalar factor), in order to better approx-
imate the ‘perfect’ SPW filter.

We note that a potential problem occurs when the FSC compu-
tation is affected by over-refinement which can artificially increase
the FSC (Stewart and Grigorieff, 2004). The increased FSC will in-
crease the estimated SSNR (Eq. (6)) while also artificially increasing
the real-space CCC. However, we would argue that once over-
refinement has occurred, it is no longer possible to distinguish
‘real’ signal from artifactual signal due to noise correlations. The
SPW filter defines ‘signal’ as the information that is consistently
present between two half-data-set reconstructions and optimally
represents this information in a least-squares sense, whether it is
‘real’ or artifact. As such, however, the SPW filter can itself be used
to reduce the possibility of over-refinement, by suppressing noise
in maps produced at intermediate stages during iterative single-
particle parameter refinement. A related approach has recently
been explored by Scheres (2012) with promising results (see be-
low). In addition, the SPW filter can serve as a tool for the user
to diagnose the presence of over-refinement, if the map has
reached a resolution where recognizable features such as second-
ary structure or chain traces would be evident. If the resolution
of the refinement has reached 8 Å, e.g. alpha helices and beta
sheets should be evident in the SPW-filtered map.

4.4. Comparison to previous implementations of the Wiener filter for
3D reconstruction

(Zhang et al. (2008)) incorporated a Wiener filter into their
nearest-neighbor Fourier inversion reconstruction algorithm, thus
yielding an algorithm very similar to ours but lacking the fparticle

term. Thus, although Zhang et al. do not give a detailed analysis
of the effects of noise in their reconstruction algorithm, the expec-
tation based on our analysis is that their implementation would
produce strongly over-filtered maps. More recently, Scheres pre-
sented a 3D reconstruction scheme (Scheres, 2012) within a Bayes-
ian formalism, yielding an algorithm very similar to the filters of
Zhang et al. and in the current work. In Scheres’ method, the term
corresponding to SSNR is multiplied by an adjustable coefficient T,
which was arbitrarily set to 4. Thus, T corresponds to 1/fparticle in
our formalism, and so yields a scheme that is expected to yield
an approximate least-squares solution for the case of a particle that
occupies 1=4 of the reconstruction volume. While Scheres does not
supply a detailed analysis of the reconstruction error as we have
done, the multiplication by T would lead to substantially less
over-filtering than the method of Zhang et al., although the implied
value of 0.25 for fparticle nevertheless seems too high for many (if
not most) cryo-EM images that are analyzed. Importantly, Scheres
selected T not on the basis of minimizing the error found in the
reconstructed map, but rather on a more indirect measure – T
was selected so as to minimize the degree of noise bias that oc-
curred during the course of a refinement loop. In the absence of
more sophisticated schemes for minimizing noise bias, over-filter-
ing the reference volume is expected to reduce noise bias during
map refinement (Stewart and Grigorieff, 2004), so that T = 4 is
probably a reasonable choice for this purpose unless the particle
occupies an exceptionally large fraction of the map volume.

4.5. Post-processing variant of SPW corrects a previously proposed
figure-of-merit scheme

Rosenthal and Henderson (2003) observed that the error in a
reconstructed 3D map is reduced when the structure factors are
scaled by the FSC curve (Cref, or ‘figure-of-merit’) that would corre-
spond to a comparison between the initially reconstructed map
and the true but unknown, noise-free reference volume. In con-
necting our SPW filter to the weighting scheme of Rosenthal and
Henderson, we identified a potentially significant correction to
their formula. As seen by comparing Eqs. 10 and 11, in the limit
of a particle that entirely fills the reconstruction volume
(fparticle = 1) our post-processing filter expression converges to the
square of theirs. In non-limiting cases where fparticle < 1, the correc-
tion factor we derive is more complicated, but easily quantified
(Fig. 7). Remarkably, we find that the FOM scheme yields filter val-
ues fairly close to our corrected expression when fparticle = 0.33.
While this value of fparticle is unrealistic for typical cryo-EM
particles (as noted above), Rosenthal and Henderson compute the
weighting factor using masked FSC calculations, which implicitly
adds a correction factor of 1/fmask to the SSNR estimate for the
reconstruction (see Eq. (6)). Thus, when masked volumes are used
to compute the FSC, the FOM weighting scheme reasonably
approximates a least squares solution when the ratio of the particle
volume to the mask volume (fparticle/fmask) is �0.33. This value is
not unreasonable for typical soft-edged masks used in cryo-EM
applications; e.g. for the papillomavirus data set considered here
(Wolf et al., 2010) we determined the particle/mask volume ratio
to be �0.3 (Fig. 6). Accordingly, the density map produced by
SPW post-processing filter for this case was virtually indistinguish-
able from the FOM weighted map (results not shown).

4.6. Accounting for variability in particle quality and/or noise

One aspect of 3D reconstruction we have not explicitly consid-
ered here is the high variability in image quality that is usually
inherent in a cryo-EM data set. Notably, our expression for estimat-
ing the SSNR of the image data (Eq. (6)) yields a single function that
expresses the composite SSNR of the entire data set. In contrast,
the experimental papillomavirus data set analyzed here contains
particle images with significant variations in quality (Wolf et al.,
2010). We addressed this variability using the identical methods



Fig.7. Comparison between ‘figure-of-merit’ and SPW post-filtering schemes. The
weighting factor is plotted vs. the corresponding value of the masked Cref. The
original FOM scheme of Rosenthal and Henderson (2003) is identical to the masked
Cref, resulting in a straight line. The SPW post-processing filter, given by Eq. (9),
varies according to the ratio of masked fparticle to fmask; examples for four different
ratios are plotted.
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as Wolf et al. (2010): within the FREALIGN refinement program, an
exponential weighting function was applied to each particle Fou-
rier transform (Grigorieff, 2007). While heuristic in nature, the
FREALIGN weighting function adopts a similar mathematical form
as the individual noise terms found in Wiener filter implementa-
tions where particle-to-particle variations in SSNR were explicitly
accounted for (Ludtke et al., 2001; Scheres, 2012). We therefore
anticipate that the SPW formalism could be expanded to include
a formal treatment of variability in particle SSNR.
5. Conclusions

As a variant of the Fourier inversion method, the single-particle
reconstruction scheme presented here is among the most compu-
tationally efficient. Furthermore, we have demonstrated that its
accuracy (by FSC or real-space correlation criteria) exceeds that
of other methods under carefully controlled testing conditions.
Moreover, the theoretical relationships presented here clarify the
relationship between particle size and error minimization, and
are sufficiently general to be applied to other forms of image
analysis.
6. Methods

6.1. Generation of 2D projection images

A randomized set of viewing orientations was generated by first
creating a set of 10000 quasi-uniformly spaced Euler angle triplets
using the ‘‘VO EA’’ command from the SPIDER package (Frank et al.,
1996). This set of 10,000 Euler angles was then randomly sampled
1000 times to simulate 1000 random orientations of the particles.
Projections were then generated using the resulting set of Euler an-
gles. In order to avoid artifacts and/or signal loss at high resolu-
tions due to interpolation, the following projection protocol was
used. The atomic coordinates of 1MKJ were rotated in 3D space
according to specified Euler angles, and subsequently used to gen-
erate a 3D Coulomb potential map (using CP FROM PDB from the
SPIDER image processing package). We then formed a 2D projec-
tion image down the z-axis of the map coordinate system (using
the PJ 3Q command from SPIDER). This projection protocol entirely
avoids interpolation, and is thus predicted to maintain full signal
strength all the way to the Nyquist frequency. This prediction is
confirmed by a comparison of the average signal power in the pro-
jected images as a function of resolution (Fig. 1) to the average
structure factors in the reference volume.
6.2. Contrast transfer function modulation for synthetic images

To ensure proper treatment of the simulated contrast transfer
function (CTF) of the microscope, images were padded to a final
size of 256 � 256 before convolving the noise-free projection
images with the simulated CTF, thus allowing for information delo-
calization (Glaeser, 2007) to a distance of �1 particle diame-
ter = 96 Å from the boundary of the imaged particle. Each
projection image was assigned a random defocus in an approxi-
mately uniform distribution between 0.5 and 1.5 lm. Other
parameters for CTF simulation were: an accelerating voltage of
400 kV, a spherical aberration constant of 4.1 (no CTF envelope
function was modeled). Gaussian-distributed white noise images
were generated using the MO function of SPIDER, and the noise
images were scaled and added to the CTF-modulated molecular
projections in order to produce a final signal-to-noise ratio (com-
puted for the image size of 256 � 256) of 0.002.
6.3. Mask generation

Envelope mask volumes: For the synthetic data set, the known
protein envelope mask volume was computed as the molecular
surface of the 1MKJ coordinate set (Connolly, 1983), using a solvent
radius parameter of 1.6. Experimental solvent mask volumes for
FSC calculations were generated from the reconstructed maps sim-
ilar to the method described in Grigorieff (2007), by applying a
14 Å low-pass filter to the maps and subsequently defining a bin-
ary envelope by selecting a density threshold such that the enve-
lope contained a specified volume. The binary envelope was then
smoothed by a cosine edge mask (edge distance was 14 Å).
6.4. Fourier inversion reconstruction algorithm

The FREALIGN software (Grigorieff, 2007) was used for all 3D
reconstructions, but was modified to separately save to disk the
accumulated sum of CTF-multiplied image data (numerator term
in Eq. (A2.6)), as well as the accumulated sum of CTF squared terms
(denominator term in Eq. (A2.6)). No parameter refinement was
done in FREALIGN; all input parameters were either set to default
values (for the synthetic data set), or taken from the published
refinement (for the virus data set (Wolf et al., 2010)). The interme-
diate data files from FREALIGN were then read into the Octave
open-source numerical analysis package (http://www.gnu.org/
software/octave/doc/interpreter/), where subsequent analysis was
completed.
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Optimal noise reduction in 3D reconstructions of single particles using a volume-

normalized filter 

 

Charles V. Sindelar1 and Nikolaus Grigorieff 2 

 



APPENDIX A:  Adapting the SPW filter from 2D to 3D 

Following the notation of Sindelar and Grigorieff (2011), we consider the case of image 

formation that conforms to the following model: 

         yxnyxmkhyx iii ,,,CTFFT, 1D2     (real space) (A1.1) 

           khNkhMkhyxkhF iiii ,,,CTF,FT, D2D2   (A1.1) 

           (Fourier space) 

where for the i'th image:  is the observed projection density in the image, 

 is the projection of the noise-free 3D Coulomb potential of the particle, ; 

 is the Fourier transform (FT) of 

 yxi ,D2 





m x, y

M h, k

 r

m x, y , corresponding to a central section of 

.  We employ a commonly used noise model in which all noise effects are 

accounted for by a single term,  (this simplification is justified, as noted 

previously (Sindelar and Grigorieff, 2011), by the expected dominance of shot noise from 

the measurement process itself over other noise sources).  

 s F   r 



FT

 yx,ni

 khNi ,  is the corresponding 

FT of .  The contrast transform function term is here written as .  yx,ni )k,(CTFi h

 

Wiener filter for a 3D toy problem 

By the projection theorem (Radon, 1917), the FT of each measured image samples a two-

dimensional plane through the 3D FT of the molecular map (a “Fourier slice”), where the 

orientation of the slice is defined by the viewing orientation for the image (usually 

specified by Euler angles ).  Thus, in principle, a sufficiently large data set of 

image FTs could be used to measure all values in the 3D FT, and inverse FT would 

complete the 3D reconstruction problem.  In practice, the plane defined by a Fourier slice 

 ,,



almost never coincides with the discrete 3D FT (DFT) grid that is utilized in 

computational treatments, so that the discrete grid points themselves are not precisely 

sampled.  We address this problem in the current work by using a “gridding” approach in 

which each measurement on the Fourier slice is averaged with its nearest neighbor on the 

discretely sampled 3D DFT grid, followed by a compensatory post-processing step 

(Appendix B). 

 

For the moment, however, we choose to idealize the reconstruction problem by 

considering a “toy” data set for which each measurement falls exactly on the 3D DFT 

grid.  A large set of randomly oriented Fourier slices will thus provide a variable number 

of noisy measurements, , with CTF values  (i=1, 2, … ) for each value 

 on the 3D Fourier grid (one way to approximate such a case with arbitrary 

accuracy would be to pad the 3D volume to be reconstructed by an arbitrarily large 

amount).  Here, represents a discrete grid point in the 3D DFT having integer indices 

hkl, and is the number of measurements contributing to grid point  

(corresponding to how many Fourier slices contribute to this grid point; this is related to 

the number of interpolated measurements  contributing to a grid point, see below).  

The values of  are related to 

2D
,hkliF hkli,CTF hklN

s

F3D shkl

N



shkl

2D
,hkli

hkl hkl

hkln

F  khFi ,D2  (Eq. (A1.2) but are now assigned to grid 

point .  Thus, this idealized scenario emulates the 3D reconstruction problem, but 

avoids any errors associated with fractional coordinates and “gridding” (see Appendix B).  

To reduce the error when forming a reconstructed map from this ‘toy’ data set, we write 

an expression for the expected squared error: 

shkl



 
    2W=Error rr   (where is the map estimate) (A1.3)

 

W

and solve for a set of linear coefficients that will form an ideally weighted sum of the 

Fourier space data points, minimizing the average error.  In the absence of additional 

information, the least squares estimate is (Saxton (1978), note that this result was 

presented by Saxton specifically for the case 2D images, but readily generalizes to 3D): 
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Here, we have introduced a small constant term,   that prevents division by zero.  For the 

current work we have selected the value  = 0.1, which in our numeric tests was large 

enough to prevent numeric errors but too small to generate any substantial filtering effect 

on the reconstructions, as judged by insensitivity of reconstruction statistics to 

perturbations of   around the chosen value (results not shown).  If estimates of the 

signal-to-noise ratio (SNR) of the data measurements are available, the result is a 

“Wiener filter” (Saxton, 1978), expressed as follows: 
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(bold symbols are vectors and italicized non-bold symbols refer to the length of the 

corresponding vectors).  Here SSNR refers to the spectral SNR of the measured data, 
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ss
ss , and is expressed in terms of the average 

value of the SNR in resolution ring S2D with central radius s and containing 2D grid 



points .  We note that while the measured data come from 2D DFT’s of the 

images, the data also represent measurements of central sections in the 3D DFT of the 

particle.  The SSNR function can therefore be used for Wiener filtering in 2D (Saxton, 

1978) as well as 3D (Eq. (A1.5)).  Furthermore, it is important to realize that the SSNR 

refers to the measured data before averaging to obtain a reconstruction.  The above 

expression for the Wiener filter differs from the form presented earlier for the case of 2D 

image averaging (Saxton, 1978) only by its extension to 3D coordinates, and by allowing 

the number of Fourier samples  to vary from voxel to voxel. 
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Single-particle Wiener filter for the 3D toy problem 

 

As was previously observed for the 2D case (Sindelar and Grigorieff, 2011), the overall 

SNR of a 3D map of an isolated single particle depends on the bounding box dimension.  

The noise energy in the box increases proportional to the total box volume, while the 

signal energy (due to the particle) remains constant.  Consequently, SSNR cannot be 

consistently defined and application of Eq. (A1.5) leads to progressively greater over-

filtering of the resulting particle density as the bounding box size is increased.  We 

emphasize that this over-filtering effect is a natural consequence of the error-minimizing 

property of Eq. (A1.5): as the box size grows, the noisy solvent region increasingly 

dominates the error sum, thus requiring a stronger filter in order to minimize the mean-

squared error at all points in the volume (see Sindelar and Grigorieff (2011)). 

 

As we did previously for the 2D case, we address the above problem with the Wiener 



filter by reframing the problem to optimize the density of a single particle reconstruction: 

we now seek the filter that minimizes the error within the particle region only, utilizing a 

binary enveloping function that excludes the solvent region: env3D r 

             2SPW
3D

2SPW
3D envenv=Error rrrrrr   (A1.6)

 

Unlike 
 
in Eq (A1.5),  represents the estimate that minimizes the error 

inside the envelope.  We may now proceed identically as was done for the 2D case in 

order to obtain a modified filter expression, by assuming several conditions are 

approximately satisfied.  Briefly, we assume that (1) a sufficiently large amount of data 

was collected such that the map estimate 

 rW  rSPW

 rSPW  is approximately localized within the 

binary enveloping function; (2) the noise found in the data has relatively modest 

frequency dependence and (3) the particle radius is non-negligible relative to the box 

dimension.  Repeating the derivation in Sindelar and Grigorieff (2011) but substituting 

3D functions in place of 2D functions leads to the following approximate solution for the 

least squares linear filter expression: 
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As with the 2D single-particle Wiener filter, this 3D version compensates for the 

presence of extra noise energy in the solvent region by scaling up the SNR term.  The 



principal difference between the 3D and 2D incarnations of the filter is that here  is 

computed over a 3D envelope function, defining the relative proportion of solvent in the 

reconstructed box.  As shown in Fig. A.1, we validated Eqs. (A1.7) – (A1.9) via numeric 

tests of synthetic noisy 3D data sets (embodying the “3D toy problem”, above), and 

confirmed that the reconstruction error was minimized with respect to , as we 

demonstrated previously for the analogous 2D case (Sindelar and Grigorieff, 2011). 
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Figure A.1  Validation of the SPW filter using a 3D ‘toy’ data set.  Values of  

were generated by adding randomly generated white noise to structure factors taken from 

the 3D FFT of the same noise-free synthetic volume used in other computations here (see 

Methods).  No CTF modulation was considered (  were all equal to 1).  The 

number of measurements per Fourier voxel, , was made identical (for each hkl) to the 

number of interpolated measurements  found in our gridded reconstructions made 

from noisy 2D projection images. 

2D
,hkliF

i,hklCTF
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A.  Unmasked cross correlation coefficients between the noise-free reference volume and 



a series of reconstructions generated using Eq. (A1.7), with varying values of .  The 

correlation is maximized at = 1, which corresponds to the original Wiener filter, Eq. 

(A1.5).  Thus, these calculations show that the Wiener filter yields the minimum overall 

error (including the solvent region), with respect to scaling of its SSNR term. 

fparticle

fparticle

B.  Masked cross correlation coefficients between the noise-free reference volume and 

the same series of reconstructions as in panel A (mask from Fig. 2E was used).  The 

correlation is maximized at = 0.10, which is identical to the value of fparticle fmask  we 

compute for the chosen mask.  Thus, the SPW filter minimizes error within the defined 

mask region, for the given mask size. 

 



 

APPENDIX B:  Extending the SPW theory for gridded 3D reconstruction 

The i’th image in a cryo-EM data set, following DFT and rotational transformation according to 

the known or estimated Euler angles (   , , ) (describing the projection direction), consists of a 

list of discrete measurements that lie on a plane in 3D Fourier space: 

        khNkhMkhkhF iii ,,,CTF,2D   (A2.1)
 

Due to the arbitrary orientation of this plane, the coordinates  of the measurements rarely 

coincide with the 3D grid points s .  Thus, a series of such images will yield an irregular cloud 

of point measurements spread throughout 3D Fourier space (up to the Nyquist sampling limit of 

the images). 

si,hk

hkl

 

In order to apply the 3D inverse DFT, this measurement cloud must be extrapolated onto the 3D 

cubic grid of DFT coordinates.  The gridding method (Penczek, 2010) accomplishes this 

extrapolation by convolving the cloud of measurements with a “kernel” function (for example, a 

Gaussian function with a half-width of a few Fourier pixel dimensions), followed by sampling of 

the resulting blurred function on the DFT grid.  This combined operation effectively gathers all 

measurements within a specified radius onto a given DFT grid point, as a weighted average.  A 

subsequent inverse DFT operation yields a real-space map whose values are, due to the 

preceding convolution operation, effectively multiplied by the inverse DFT of the kernel 

function (which we will refer to as the point-spread function or PSF).  Thus, to undo the effects 

of the convolution/sampling step, the final step of gridding is a division of the real-space map by 

the PSF, yielding an approximation of the desired molecular map. 

 



Here we implement a very simple form of gridding in which the kernel function is a 3D rectangle 

function Rect (namely a cube having a linear dimension equal to the Fourier grid spacing).  Thus, 

the initial (convolution) step in the gridding process estimates the quantity  

        )Rect( grid ssss FF hklhkl  . (A2.2)
 

Here,  is the 3D Dirac delta function.  In order to account for non-uniform measurement 

density in Fourier space, we normalize the convolution sums at each voxel by dividing by the 

number of measurements nhkl that contribute to these respective locations.  In the case of ideal 

images (in the absence of noise and having an ideal CTF equal to unity for all s), the first step of 

our gridding implementation would therefore be a straight average of nearest neighbor 

measurements for each grid point shkl 
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The tilde in D2~
jF  symbolizes the Fourier terms of a noise-free idealized image that is not affected 

by CTF modulation to distinguish it from the Fourier terms  of a noisy experimental image 

(see below).  We will use the abbreviated notation defined by Eq. (A2.4) in the following and 

throughout the main manuscript, for all sums that result from the convolution with the rectangle 

function Rect. 
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We note that the approximation in Eq. (A2.3) results from a general difficulty encountered in 

gridding algorithms to account for irregular sampling of the FT.  While values of the FT F of the 

noise-free volume are evenly distributed between the discrete 3D grid points s , the results of 

the convolution described by Eq. (A2.4) must be weighted to account for the irregular sampling.  

The simple weighting by 

hkl

hkln1  (Eq. (A2.3)) will tend to skew the estimate  towards 

values of F found in the most densely measured regions near a given .  To compensate for 

this effect, additional weighting terms (proportional to the local measurement density) can be 

introduced within the sum in Eq. (A2.3) in order to yield a more accurate estimate of the 

convolution in Eq. (A2.2) (Penczek et al., 2004).  However, such “gridding weights” are not 

necessarily beneficial in the presence of large amounts of noise, particularly when F varies 

slowly through the extent of the kernel function; moreover, schemes to estimate the local 

measurement density add substantial algorithmic complexity.  We therefore opted not to 

implement gridding weights in our scheme, and instead padded images and volumes by a factor 

of two in order to reduce the variability of F on the scale of the kernel function size (equal to the 

grid spacing, for the rectangle kernel function used here). 

 hkls F grid
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Application of Eq. (A2.3) by itself for 3D reconstruction is commonly referred to in the literature 

as nearest neighbor interpolation (Penczek, 2010).  However, having connected Eq. (A2.3) to the 

convolution product in Eq. (A2.2), we may now proceed to the second stage of gridding.  

Following inverse DFT of , the effects of the kernel convolution may be reversed by 

dividing the resulting map by the PSF, in this case equal to a sinc function (the inverse DFT of 

the rectangle function): 
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where L is the linear dimension of the volume and x,y,z are the components of r. 

 

We now modify our expression for  to account for the presence of CTF modulation and 

noise by adapting Eq. (A1.4) to form the least squares estimate for the series of measurements 

tallied in Eq. (A2.3): 
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As before (Eq. (A1.4)), we have introduced a small constant term,  . 

 

Following the example of Eq. (A1.5), we may also adapt Eq. (A2.6) to form a filtered estimate of 

the first gridded reconstruction step: 
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(a similar expression can be written for ).  The above expression yields the linear 

transformation of the data having the least squares expected error.  However, the error is not 

minimized against  itself but rather for 

SPWF

F s  Rect(s)F s  .  Thus, after applying the final 

gridding correction (division by the sinc function, Eq. (A2.5)) the error in the final gridded 

reconstruction is no longer strictly minimized; instead, the gridding correction boosts noise 

levels near the volume boundaries (results not shown).  In order to mitigate this issue, we padded 



all images and volumes by a factor of two, so that the sinc correction factor remained close to 

one in the vicinity of the particle (the maximum value of this correction is at the original volume 

boundary, which becomes +/- L/4 after 2-fold padding, so that the correction factor would be 

sinc
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APPENDIX C:  Estimating the image SSNR from masked FSC calculations 

 

Following the approach given by Sindelar and Grigorieff (2011) for aligned 2D images, we 

begin by expressing the expectation value of FSCmask s   in terms of the signal and noise 

components from two noisy half data set reconstructions, each multiplied in real space by the 

soft-edged masking function envmask r : 
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where S denotes a one Fourier voxel thick shell with central radius s;  and  are noise 

components with the same variance, corresponding to Fourier terms of the first and second 

reconstruction (respectively); and  is the FT of .  If we assume that  and  

are uncorrelated, which can be achieved by performing independent 3D structure refinement on 

the two half data sets, then Eq. (A3.1) reduces to 
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where we have used the following: (1) the noise-free map  r  is unchanged by the mask 

multiplication, hence      sFsFs maskENV , (2) the noise terms are uncorrelated with the 

signal terms; and (3) the noise is now represented by a N, which stands for an arbitrary 

realization of the noise in a half data set reconstruction.  If we now assume that the noise term 

varies slowly in s compared with the  smaskENV  term, as is expected for single-particle cryo-

EM data sets (Sindelar and Grigorieff, 2011), then the right-hand term in the denominator of Eq. 

(A3.2) can be approximated as: 
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Rewriting the above expression in terms of the SSNR of the reconstruction, 
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combining the two half data sets) we now arrive at the following expression: 



 FSCmask s  

SSNRfinal s 
fmask

SSNRfinal s 
fmask

 2
 (A3.5)

 

We rewrite the above result to express the SSNR in terms of the masked FSC: 

 SSNRfinal s   fmask

2 FSCmask s 
1 FSCmask s 

 (A3.6)
 

which is the 3D analog of the result for 2D images (Sindelar and Grigorieff, 2011). 

 

To relate SSN  to the SSNR of the images, we refer to Eq. (A2.6), which expresses the 

gridded FT  as a weighted sum over Fourier space measurements from individual images.  

Similar to the case of aligned 2D images (see Sindelar and Grigorieff (2011)), the noise variance 

in  reduces proportional to the sum of squared CTF terms.  Thus, to recover an estimate of 

the data SNR we can write 
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(A3.7)
 

Here it is worth repeating the observation made in Appendix A that the 2D image DFT’s are 

equivalent to central sections of the 3D DFT, so that the SSNR in either case is also equivalent.  

We note that this last step involves an additional approximation, related to the fact that the 

summed Fourier terms in Eq. (A2.6) are an estimate of the continuously varying FT F convolved 

over a rectangle kernel function.  Consequently, the noise-free signal component in  is 

attenuated somewhat and so the SSNR from Eqs. (A3.6) – (A3.7) will be underestimated.  The 

two-fold padding we employed in our reconstruction algorithm, however, reduces this variability 

over the extent of the kernel function, increasing the accuracy of the SSNR estimate. 
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