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Abstract We present an approach to study macromolecular assemblies by detecting component

proteins’ characteristic high-resolution projection patterns, calculated from their known 3D

structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in

vitreous ice with high specificity and determines their orientation and location precisely.

Simulations show that high spatial-frequency information and—in the presence of protein

background—a whitening filter are essential for optimal detection, in particular for images taken

far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed

randomly among binding locations, inside rotavirus particles. Based on the currently attainable

image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm

thick samples of dense biological material.

DOI: 10.7554/eLife.25648.001

Introduction
Cells depend on specific interactions between their molecular components. Because protein-protein

interactions require that proteins be in close proximity, and often require binding in specific configu-

rations, it could be of great benefit to know, for a particular cell, where all its proteins were at one

point in time and how they were oriented. Given sufficient precision, this information would not only

tell us which proteins are interacting (or, conversely, which are unlikely to do so), but would also

allow us to understand better how higher-order, cooperative modes of molecular assembly lead to

specific cellular activities and functional states. Much could be inferred from atomic-resolution snap-

shots of cells, although this is known to be impossible due to radiation damage (Breedlove and

Trammell, 1970; Henderson, 1995; Glaeser, 2008). What is possible, however, is the detection of

unlabeled proteins in cells on the basis of template matching.

Template matching applied to electron cryo-microscopy (cryo-EM)-based tomograms aims to

determine whether certain proteins are present in experimental images by comparing computed

protein templates, derived from solved atomic models, to 3D reconstructions of samples. This

approach has made it possible to map the 3D locations and orientations of individual ribosomes

(Ortiz et al., 2006; Pfeffer et al., 2015) and proteasomes (Asano et al., 2015) in thin regions of

unstained frozen-hydrated cells. The optical resolution of a tomogram (~4 nm; Oikonomou and Jen-

sen, 2016) allows the 3D locations of individual structures, once detected, to be determined accu-

rately. Detectability is limited, however, to structures large enough to be distinct in shape at this

resolution; in practice, only a few protein complexes in the megadalton range have been detected

reliably using information in tomograms alone (but see Beck et al., 2009; Kühner et al., 2009).

Template matching in tomograms is difficult in crowded regions of cells because nearby macromole-

cules can obscure the protein-of-interest’s outline and thus interfere with detection
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(Frangakis et al., 2002; Grünewald et al., 2003; Beck et al., 2009; Asano et al., 2016). Use of a

protein’s fine internal structure for template matching should allow more robust detection, but also

requires higher resolution.

Here we introduce an approach to determine the locations and orientations of proteins in

crowded environments by using the high-resolution information that is now available in single cryo-

EM images. The approach is based on the fact that–at a sufficiently high spatial resolution–the pro-

jected (2D) potential of a protein, and thus the pattern of phase shifts imparted on the electron

wave as it passes through the sample, is unique for a particular protein and projection direction. Pro-

jection-matching concepts have been used in single-particle analysis (SPA) to select (Penczek et al.,

1992; Huang and Penczek, 2004) and align (Grigorieff, 2007) particle images, although low-resolu-

tion templates are preferred in order to limit bias in any resulting reconstructions (Henderson, 2013).

Different from the SPA case, which aims to determine new high-resolution structures, we are here

concerned with using existing high-resolution structural information for the unambiguous detection

of single proteins, which is not affected by template bias.

We find that effects of macromolecular background are greatly reduced by using close-to-focus

images and matched filtering, both of which suppress low-frequency information. We show experi-

mentally that we can reliably detect proteins down to a size limit of 150 kDa in vitreous ice. Simula-

tions that include a macromolecular background suggest that this limit should increase to 300 kDa in

a 100 nm thick tissue slice. Even better detectability might be achieved using higher-resolution refer-

ence structures. Experiments involving viral proteins in intact rotavirus particles demonstrate detect-

ability in the presence of protein and nucleic acid background.

Results

Detection of proteins in isolation
One way to determine whether there is a (target) protein of known identity and orientation at a par-

ticular location in an image is to compare the spatial distribution of detected electrons around that

location to what is expected for the protein in that orientation and at that location. The expectation

value for the electron count in each pixel can be calculated directly from the known three-dimen-

sional arrangement of atoms in the target and the optical parameters of the electron microscope

(Rullgard et al., 2011; Vulović et al., 2013). By suitably varying the projection direction we can gen-

erate a set of two-dimensional templates that represent all possible electron distributions (for a

given resolution) that this protein could produce in such an image (Figure 1—figure supplement 1).

Whether an image is likely to contain the target can be established by cross-correlating the image

with that template. Cross-correlation allows a match to be detected even when multiple proteins

overlap in projection as long as the image-intensity modulation is approximately equal to the sum of

the individual proteins’ contributions, as is the case for weak-phase objects (e.g. ref. Reimer and

Kohl, 2008, p. 316). Cross-correlation is able to extract matching information even if individual pix-

els are dominated by noise as long as the spatial resolution of the microscope as such is preserved,

which is the case when using motion-corrected electron movies (Brilot et al., 2012; Li et al.,

2013a).

Searching a single cryo-EM image for a target protein with a high-resolution reference structure

requires cross-correlating millions of templates (see Materials and methods, Figure 1—figure sup-

plement 1), each corresponding to a different orientation of the target with an image (typically

megapixel-sized), or in other words, searching a space of location-orientation combinations (LOCs)

with more than 1012 entries. Since the computational cost of a search goes up linearly with the num-

ber of templates, we chose a set of orientations spaced as evenly as possible, thereby minimizing,

for a given number of orientations, the largest rotation that is necessary to bring any orientation into

alignment with a member of the set. Unlike in Euclidean space, where a regular grid pattern with dis-

crete translational symmetry fulfills this criterion, no simple solution for this problem exists in orienta-

tion space (Saff and Kuijlaars, 1997) and, after considering several approaches, we settled on a

method based on the Hopf fibration (Yershova et al., 2010) (Materials and methods). In a set of

» 2.4 � 106 orientations generated in this way, the incremental rotation angle between one set

member and its closest neighbor was 1.88 degrees. Out of 10,000 random orientations, none
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required a rotation of more than 1.51 degrees to bring it into alignment with one of the members of

the Hopf set (Figure 1—figure supplement 2).

After confirming in simulated images that correlation-based projection-matching can correctly

identify proteins and determine their locations and orientations (data not shown), we tested whether

this could also be done in experimental images. We acquired pairs of images of apoferritin (PDB:

2W0O) embedded in vitreous ice, the first image acquired close to the Gaussian focus, where we

expected the best detectability given the optical properties of the microscope (see below), and the

second image at a more typical underfocus of 2000 nm or more, which readily allowed us to recog-

nize likely target molecules by eye.

For images taken close to focus, where the target molecules are not detectable by eye

(Figure 1a), there were typically only a small number of orientations for which the corresponding

cross-correlograms (CCGs) contained any (and when they did, only a few) pixels with values of the

SNR (the ratio of the peak height and the standard deviation of the CCG noise [Saxton and Frank,

1976], Materials and methods) that were exceptionally high, i.e., substantially exceeded those

expected for a Gaussian noise distribution (Figure 1b). High-value CCG pixels were typically clus-

tered at locations that—in high-underfocus images—were encircled by the dark ring typical for apo-

ferritin (Figure 1d). The angular differences within the set of orientations associated with a cluster of

high-valued CCG pixels were less than three degrees away from the best-detected orientation after

taking into account the octahedral symmetry of apoferritin (97.9% of values both >7.32 and within

one pixel of any peak, N = 17 peaks).

The sharp dependence of the CCG value on orientation suggested that our search procedure is

highly specific to a particular protein structure. To confirm this we searched the image for a decoy

protein, GroEL (PDB: 1GRL), of comparable size and molecular weight but otherwise unrelated to

apoferritin (Figure 1c,d). For GroEL the amplitude distribution of CCG values lacked the high-ampli-

tude tail seen for the target, and instead followed the distribution expected when cross-correlating

a set of Gaussian-noise templates with an image also containing Gaussian white noise (Figure 1e).

Radiation damage
Without radiation damage, the SNR should increase with the square root of the accumulated elec-

tron exposure because both the peak height and the noise variance increase linearly with the expo-

sure. However, electrons that pass through the sample also destroy structural information, at first

mostly at high spatial frequencies but eventually across most of the spectrum (Glaeser and Taylor,

1978; Glaeser, 2008; Grant and Grigorieff, 2015). In our experiments, we found that the SNR

(averaged over the ten largest distinct peaks in one image) initially increased at approximately the

expected rate (with an exponent of 0.508 ± 0.033), but levelled off at an exposure of around 1000

electrons per nm2 (Figure 2a).

Molecular-weight dependence
Next we explored how the molecular weight (MW) of the target affects the SNR, which we expected

to increase with the square root of the MW since the signals due to different parts of the target

structure add coherently (and thus linearly), while the noise should add incoherently and thus grow

with the square root. To test this, we created a number of model structures that contained only a

subset of the atoms in the original apoferritin structure. For each of these fragments, which ranged

in molecular weight from 50 to 200 kDa, we calculated templates using the orientations that had

provided optimal matches for the whole protein and the other 23 orientations linked by octahedral

symmetry. Then, cross-correlating the fragment templates with the experimental images, we found

that the average SNR varied with the MW as expected (Figure 2b, fitting y = a*(MW)a to the CCG

values for the 5 � 24 fragments and the full template yielded a = 0.508 ± 0.009 and

a = 0.514 ± 0.003 for experimental and simulated images, respectively; two particles). This sug-

gested that we should be able to detect proteins down to a MW of roughly 150 kDa when using an

SNR of 7.32 as the detection threshold, which should generate about one false alarm (CCG values

above the threshold due to noise) per image of 18502 pixels (Materials and methods). To confirm

this, we performed full searches (using our standard set of orientations) for three of the fragments

(200, 150, and 100 kDa). We found, respectively, 259, 58, and 10 CCG values >7.32, of which most
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(256, 56, and 8) were within 0.3 nm of locations where peaks had been detected using the full-pro-

tein templates (440 kDa; Figure 2—figure supplement 1).
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Figure 1. Protein detection in vitreous ice. (a) From the left: apoferritin structure, template at 220 nm underfocus, image of a single apoferritin in ice at

220 nm underfocus with 1200 electrons/nm2. (b) Cross-correlograms (CCGs), left to right: template five degrees rotated around z-axis from best

orientation, template at best orientation, maximum intensity projection (MIP) across all template orientations. (c) GroEL (decoy) template at 220 nm

underfocus, single CCG, and MIP. (d) Image at 2200 nm underfocus. Orange octahedrons indicate the orientation and location of CCG peak values

from a full search of an image of the same area at 220 nm underfocus taken before the displayed image. Traces along right and top edge: horizontal

and vertical projections of the maximum across orientations (orange: apoferritin, blue: GroEL; blue traces offset by 1.5 SNR units for clarity). Note the

dark rings, which presumably correspond to apoferritin particles (the large round objects are gold particles). The boxed region indicates the image

region used for (a), (b), and (c). (e) CCG value survival histograms (number of CCG values above a given SNR) for apoferritin (orange), GroEL (blue), and

as expected for Gaussian noise (crosses). Scale bars are 5 nm for images and 1 nm for surface plots in (a)-(c), 5 SNR units for surface plots in (b), and 10

nm and 3 SNR units in (d). The top and bottom ends of the amplitude scale bar in (d) correspond to SNRs of 10 and 13, respectively.

DOI: 10.7554/eLife.25648.002

The following figure supplements are available for figure 1:

Figure supplement 1. The process.

DOI: 10.7554/eLife.25648.003

Figure supplement 2. Distribution of residual orientation mismatches for a test set of 10,000 random orientations.

DOI: 10.7554/eLife.25648.004
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Mismatch sensitivity
Some or all target proteins in an image might remain undetected if the wrong microscope parame-

ters are assumed or if the search-space is undersampled with respect to orientation or position. To

determine how well we need to know the experimental defocus and magnification, and how densely

we need to sample location and orientation, we mapped for both experimental and simulated

images how the peak height in the CCG varied with these parameters. We found (Figure 2c–e) that

a reduction in the SNR by 20% was caused by a positional misalignment of 0.15 nm in experimental

images (0.13 nm in simulations), a focus mismatch of 21.0 nm (15.5 nm), or a magnification error of

1.9% (1.6%). The sensitivity to errors in template orientation depends on the rotation axis. While for

the axis perpendicular to the image plane (z-axis) a mismatch of 0.95 degrees (0.89 in simulations)

was sufficient for a 20% drop in SNR, for an axis parallel to the image plane 1.92 degrees (1.34)

were needed (Figure 2f). The lower sensitivity for rotations around an in-plane axis is likely caused
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Figure 2. Detection sensitivity. (a,b) CCG values at the correct location and orientation vs. electron exposure for the particle’s full structure (a), and vs.

the MW (b) for partial structures. The ten (panel a) or two (panel b) particles with the largest SNRs in Figure 1(d) were used. Individual and averaged

values are shown in gray and blue, respectively. Gray lines show fits to the averages (see Results). (c–f) Peak correlogram values vs. lateral position,

focus mismatch, scale factor (magnification) mismatch, and orientation mismatch, all normalized to the maximum. Dashed lines are from simulations,

solid lines from experiments. Traces in (c–f) are averages of two particles.

DOI: 10.7554/eLife.25648.005

The following figure supplements are available for figure 2:

Figure supplement 1. Detection using template fragments.

DOI: 10.7554/eLife.25648.006

Figure supplement 2. Sensitivity to template errors.

DOI: 10.7554/eLife.25648.007
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by the foreshortening of the atomic movements as their z-components are lost upon projection.

Using simulations, we also explored the effect of the focus setting on detection and found that at

2000 nm underfocus the peaks in the CCG flare out towards a broad base but still possess a sharply

defined maximum (Figure 3a) with a peak SNR quite comparable to that seen for much smaller

defocus values. This means that, at least for isolated target proteins, the detectability did not

depend strongly on the defocus.

Protein background (simulations)
How is detection affected by other objects in the sample, such as proteins located above or below

the target? While in brain tissue only about 10% of the mass density is due to lipid and protein

(McIlwain and Bachelard, 1985) with the remainder being mostly water, it is likely that other pro-

teins will interfere with the detection of a target protein much more strongly than water at the same

projected mass density because proteins resemble each other more than they resemble vitreous

water. We explored this situation by simulating, at 70 nm and 2000 nm underfocus, images of a syn-

thetic sample that contained apoferritin as the target protein, and a background of randomly ori-

ented and placed BSA proteins at an average density of 37.5 kDa/nm2. The apoferritin target could

not be detected by eye in either image, yet searching the 70 nm image yielded a clear peak at the

correct location albeit with reduced SNR compared to the background-free case (14.4 vs. 16.9).

Template matching was, however, no longer able to reliably detect the target in the 2000 nm image

(Figure 3a, Figure 3—figure supplement 1).

We suspected that the reason for this difference is that the defocus setting profoundly affects the

contrast transfer function (CTF). As the defocus becomes smaller, low spatial frequencies are increas-

ingly suppressed, the number of phase reversals is reduced, and the suppression of high spatial fre-

quencies, which is caused by the fact that the illumination is only partially coherent, becomes much

less severe (Figure 3b). To determine which of these effects, if any, are responsible for the observed

behavior, we first simulated images as they would be generated by a (hypothetical) phase-plate

microscope (PPM) with a CTF that is constant in both amplitude and phase (except for the 90 degree

phase shift due to the phase plate everywhere but near zero spatial frequency) and thus attenuates

neither high nor low spatial frequencies. In simulated PPM images the target protein was neither visi-

ble by eye nor could it be detected by cross-correlation (Figure 3a, Figure 3—figure supplement

1). This was somewhat surprising because PPM images contain nearly all the phase-contrast informa-

tion that is available; no information is lost to partial coherence or to phase reversals. This suggested

that the loss of detectability against protein background seen for simulated PPM and large-defocus

images is caused by low-spatial-frequency noise that happens to be suppressed by the close-to-

focus CTF.

For simulations that included protein background, the image noise was dominated by low-fre-

quency components, both at 2000 nm defocus and for the PPM (Figure 3c). This suggested that to

optimize detection one needs to use the full matched-filtering concept (McDonough et al., 1995),

which includes, in addition to template matching, a whitening filter that flattens the power spectrum

of the image noise, maximizing detectability against a spectrally inhomogeneous background. Our

whitening filter comprised the reciprocal square root of the radially averaged power spectral density

(PSD; Figure 3c), and was applied by Fourier-space multiplication to both the transformed image

and template before calculating each cross-correlation (Materials and methods).

We found that whitening, in fact, restored detectability: CCGs now showed strong and narrow

peaks at the correct locations (Figure 4a). Detectability was best (SNR = 20.5) for the PPM followed

by 70 nm (SNR = 14.3) and 2000 nm (SNR = 7.7) underfocus. For the PPM and for 2000 nm underfo-

cus, the whitening filter strongly suppressed low-frequency information (Figure 4b). These simulation

results confirm that a major reason for compromised detectability in strongly defocused images is

that there the CTF, unlike in close-to-focus images, does not suppress the low-frequency noise that

dominates images with a high density of macromolecules.

We also confirmed that a substantial part of the difference in SNRs between 70 and 2000 nm

underfocus was due to illumination-coherence effects by repeating some of the simulations with

completely coherent illumination. This increased the SNR at 2000 nm by 42% (from 7.7 to 10.9), but

only by 8% at 70 nm (from 14.3 to 15.4). The remaining difference in SNR is likely due to the fact

that near the Scherzer focus (70 nm defocus) the CTF remains very high in a part of the spatial fre-

quency range that provides much information (Figure 3b).
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Figure 3. Detection against background. (a) Simulated images of a single apoferritin in ice without (left) and with (right) a dense protein background

(BSA at 37.5 kDa-nm�2), at 70 nm and 2000 nm underfocus as well as for a perfect phase-plate microscope (PPM). To the right of each image the

corresponding maximum-projected CCG from a full orientation search is shown. (b) Squared contrast transfer functions (CTFs) for 70 nm (green) and

2000 nm (red) underfocus, and squared whitening filters for 70 nm underfocus (black) and the PPM (purple). (c) Power spectral densities for the

Figure 3 continued on next page
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We also explored the SNR for a whole range of defocus values from 500 nm overfocus to 2000

nm underfocus (Figure 4b). Within this range, the best SNR was seen at 70 nm. Against a protein

background the SNR varied strongly with defocus near the Scherzer setting and then fell steadily

with focus distance (Figure 4b), mitigated somewhat by whitening. In contrast, a background com-

prising randomly placed carbon atoms, which produced a spectrally flat noise distribution (data not

shown), reduced protein detectability uniformly for all defocus settings (Figure 4b). Why don’t

coherence effects reduce the SNR at large underfocus without protein background (Figure 4b)?

One possibility is that a gain in low-frequency information, which is eliminated by the whitening filter

in the protein-background case, compensates for the loss of high-frequency information caused by

the coherence envelope.

We next determined how much different spatial frequencies contribute to target detectability by

removing all spatial frequencies above a variable frequency threshold and observing the effect this

has on the SNR (Figure 5a,b). For an isolated apoferritin molecule in vitreous ice, the average SNR

for five of the particles in the experimental image increased until it reached a value of about 12 at a

spatial frequency of 3 nm�1 after which it essentially stayed constant. In a simulation using the same

parameters the SNR closely followed the experimental curve up to a resolution of 2.4 nm�1 beyond

which it diverged upward to reach a value of 17.6 at 5.2 nm�1. The difference could be due to resid-

ual magnification or focus mismatch, uncorrected sample drift, or astigmatism in the experimental

data (Figure 5a). In simulations with protein background (Figure 5b), the SNR for matched-filter

detection reached maximum values of 14.7 and 8.3 at defocus settings of 70 and 2000 nm, respec-

tively. The PPM outperformed both settings throughout.

Why does the SNR rise only slowly beyond 3 nm�1 even in simulations, where factors such as

residual astigmatism, focus mismatch or uncorrected sample motion, all of which suppress high-fre-

quency information, do not play a role? We suspected low-pass filtering of the reference structure to

be responsible. When instead of using for each atom the B-factor listed in the PDB entry, which are

on average 19.6 Å2 (corresponding to Gaussian low-pass filter with s ¼ 3.2 nm�1) we used a uniform

value of 5 Å2 (s ¼ 6.3 nm�1), the SNR curves (all without ice) no longer plateaued. The values

reached at the highest frequency (5.2 nm�1) increased by 37.3% for the PPM and by 33.8% and

19.9% for 70 nm and 2000 nm underfocus, respectively (Figure 5b).

What ultimately matters for detectability is the trade-off between precision (the fraction of appar-

ent detections that are correct) and recall (the fraction of targets detected). Using full searches of

simulated images of a synthetic sample containing 50 apoferritin proteins at random locations and

orientations together with a BSA background, we determined precision-recall curves (PRCs) for a

number of different conditions. Again and largely independent independent of the SNR threshold

(which is varied to generate the PRC) images close to focus performed best, even when assuming

perfect illumination coherence (Figure 5c).

Protein background (experiments)
To test whether single proteins can be detected in actual cryo-EM images of densely protein-packed

biological samples, we analyzed images of rotavirus double-layered particles (DLPs), some taken

specifically for this study and some from a prior study (Grant and Grigorieff, 2015). Rotavirus DLPs

are 70 nm in diameter and have at their core a densely-packed double-stranded RNA genome

(Estrozi et al., 2013). The genome is contained inside a protein shell assembled in perfect icosahe-

dral symmetry from two protein types, the inner capsid protein, VP2 (120 copies, approximately 90

kDa each), and the outer capsid protein, VP6 (780 copies, 45 kDa each), which together form 60

Figure 3 continued

apoferritin template alone (light blue) and for simulated images of the protein background alone using the PPM (black), at 70 nm underfocus (green),

and at 2000 nm underfocus (red). Spatial scale bars are 10 nm for the images and 2 nm for CCGs. SNR bars are 5 and 2 SNR units for left and right

columns in (a) respectively.

DOI: 10.7554/eLife.25648.008

The following figure supplement is available for figure 3:

Figure supplement 1. Full-search CCG MIPs for simulated images of apoferritin with BSA background, 2000 nm underfocus (Figure 3a, right column),

without (a) and with (b) pre-whitening.

DOI: 10.7554/eLife.25648.009
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Figure 4. Optimized detection. (a) Whitened templates and simulated images together with the corresponding

maximum-projected CCGs for apoferritin with a BSA background of 37.5 kDa/nm2 (same as in Figure 3a right

except for whitening). (b) SNR vs. defocus for simulated images of apoferritin, all with 50 nm of ice but only some

with BSA background (black, green, orange), with whitening (green, orange), with randomly scattered carbon

Figure 4 continued on next page
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asymmetric subunits (ASUs, 720 kDa, Figure 6 inset). In addition to these structural proteins, each

DLP contains at least two enzymatic proteins, VP1 (at least 11 copies, 115 kDa each) and VP3 (at

least 11 copies, 90–100 kDa each), which together are responsible for synthesizing and capping sin-

gle-stranded RNA molecules before they are extruded into the infected host cell (Ogden et al.,

2014). The projected density of biological macromolecules in the DLP is around 20 kDa nm�2 across

most of the particle, which is similar to the density (20–30 kDa nm�2) expected for a 100 nm-thick

section of tissue (Ellis, 2001). Because of the icosahedral symmetry, the orientation and projected

location of each of the 60 ASUs can be predicted from the location and orientation of the entire DLP

and can thus be used to assess the detection performance.

We first analyzed images from 10 DLPs, five each taken near (270–310 nm) and far (1400–1600

nm, Figure 6a) from focus. In high-defocus images, DLPs are easily detectable by eye (Figure 6a).

When searching these images for ASUs, using the full set of Hopf rotations and a whitening filter, we

found that most (93.3% for 1400–1600 nm defocus and 99.7% for 270–310 nm defocus) of the CCG

values above the detection threshold occurred within 0.5 nm and five degrees of the expected loca-

tions and orientations (Figure 6b). The superiority of images taken close to focus, a central predic-

tion of our simulations, persists along most of the precision-recall curve (Figure 6c).

Constrained searches
The number of pixels where the noise alone generates CCG values above a given threshold

increases with the number of independent LOCs searched while the threshold needed to obtain a

certain detection rate decreases as the molecular weight of the target falls (Figure 2b). This means

that for proteins below a certain size a meaningful search of the entire LOC space is no longer possi-

ble, which puts many proteins out of reach. Our data (Figure 2b) suggest that the size limit is around

150 kDa for isolated targets, and should be about twice that with protein background, which

reduces the SNR by about 30% (Figure 4b). While prior information about the location or orientation

of the target does not reduce the chance that for a particular LOC the detection threshold is

breached by the noise, it does reduce the total number of false alarms because fewer LOCs need to

be searched and thus should allow the detection of much smaller targets.

We explored this idea by performing a constrained search for VP1, an RNA-dependent RNA poly-

merase that binds to the inner surface of the DLP capsid (Estrozi et al., 2013). Given that we know

the LOCs of all ASUs, the number of LOCs that need to be searched is reduced from about 1012 to

below 103. The search was based on a hybrid molecular model (PDB: 4F5X) that combines the struc-

ture of VP1, as determined by X-ray crystallography (PDB: 2R7O), and an independently determined

structure of the ASU (PDB: 3KZ4, see also Materials and methods). The dataset contained 4,178 DLP

images (Grant and Grigorieff, 2015), taken at focus settings between 300 and 1900 nm. First, we

determined possible LOCs for VP1 by searching with a template set based on only the ASU portion

of the hybrid model. We retained only those DLPs (3,296) where we found all 60 ASUs when using a

threshold that returned one false alarm per image (750 by 750 pixels). Then, using only the VP1 por-

tion of the model, we searched only those LOCs that agreed exactly with the orientation of one of

the ASUs and were within one pixel (0.1 nm) of its location.

Using a threshold of 2.03, which yielded, on average, 0.059 false alarms per ASU LOC for a set of

control templates (Materials and methods), we found 9.63 VP1s per DLP. Assuming 11 bound VP1s

per DLP, about 2.9 (0.059 � (60-11)) of those should be false alarms leaving 6.73 true positives, a

recall of 71.2%. The prevalence of vertices that contained one detected VP1 was substantially larger

(and those with zero, two, or three substantially smaller) than the binomially distributed prevalence

one would expect for independent binding and what one gets with the binding sites randomly shuf-

fled within each DLP (Figure 6d). This is consistent with the assumption that steric hindrances pre-

vent the binding of more than one VP1 per vertex (Estrozi et al., 2013).

The SNR of 2.28, estimated from CCG histograms (Materials and methods), is smaller than the

value of 2.98 that one gets by extrapolation from 7.45, the mean peak value seen when searching

Figure 4 continued

atoms (18.7 kDa-nm�2) as background (gray), and with perfect illumination coherence (orange). Scale bars are 10

nm for images and 2 nm and 2 SNR units for CCGs.
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Figure 5. Resolution dependence and performance. (a,b) SNR vs. low pass-filter cut-off; (a) for five of the particles in Figure 1d (individual trace: thin

gray, average: thick black) and the average of two simulations (dashed) using the same optical parameters as for two of the experimental particles; (b)

for simulated images using the protein background, whitening and B-factors as in the PDB file (thick traces) or B = 5 Å2 (thin traces) and ice or no ice as

indicated. (c) Simulated-image precision-recall curves for 50 randomly oriented and positioned apoferritin molecules with 37.5 kDa-nm�2 of BSA

background at underfocus values as indicated. Full orientation searches with whitening and standard imaging parameters were used, except in one

case, which used perfect illumination coherence (2000 nm, PC). (d) CCG value survival histograms (number of CCG values above a given SNR) from full

searches of simulated images with parameters as indicated. Crosses: Gaussian noise (same as Figure 1e).

DOI: 10.7554/eLife.25648.011

The following figure supplement is available for figure 5:

Figure supplement 1. Survival histograms for various simulated image and template-matched conditions as in Figure 5d, additionally showing results

for a PPM and a 2000 nm underfocus image that was not whitened (all other traces reflect whitening).

DOI: 10.7554/eLife.25648.012
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Figure 6. Application to rotavirus. (a) Left: rotavirus DLPs imaged at 1590 nm underfocus with 1600 electrons nm�2. Right: surface-rendered electron

density of the DLP with one ASU highlighted in green. (b) MIP CCGs from searches for the ASU in images taken at 1590 nm and 270 nm underfocus,

respectively. Top: regions around an ASU peak and (only for 270 nm) the corresponding image region with inner and outer capsid edges indicated by

dashed lines. The corresponding region in the 1590 nm image is indicated by the dashed square in a). Below: maximum projections over all

Figure 6 continued on next page
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for ASUs, using the square-root dependence of the SNR on the molecular mass (Figure 2b). This is

likely due to differences between the X-ray-derived and the in situ structure of VP1 (see below).

Note also that even 2.98 is still substantially smaller than 4.3, the value expected using the SNR of

around 6.16 seen for an apoferritin fragment with about the same MW as VP1 (100 kDa, Figure 2b)

and taking into account the roughly 30% reduction in SNR caused by the macromolecular back-

ground (Figure 4b).

The ability to detect individual VP1s allowed us to reconstruct, by direct Fourier inversion (Grigor-

ieff, 1998), the structure of VP1 bound to one of the five sites at the fivefold vertex. We used for

each image only the shifts and orientations of the LOCs at which VP1 molecules, assumed to belong

to a single class, were detected (Grigorieff, 2007), but did not use further refinement of positions

or orientations or assume any symmetry. The resulting potential distribution includes a well-resolved

VP1 molecule attached to one of the five possible binding sites near an ssRNA exit portal

(Figure 6e). Unlike detection, reconstruction can be affected by template bias, but the differences

between our VP1 structure and the structure used to generate the templates, which are most numer-

ous near the contact to the capsid (Figure 6e, Supplementary file 1) and include an a-helix in close

contact with both the polymerase and the exit portal (Figure 6e, red arrow), cannot due to template

bias (Henderson, 2013) as they are not part of the template. This helix could well be part of the

RNA-capping enzyme VP3, whose structure (Brandmann and Jinek, 2015; Ogden et al., 2015) con-

tains a helix of appropriate length and is proposed to reside near VP1 (Gridley and Patton, 2014).

In addition to proteins, the reconstruction also shows structural features in the nucleic acid

regions of the density map near VP1 that were not seen in icosahedrally symmetric reconstructions

(Estrozi et al., 2013) (Figure 6e).

Discussion
We have shown that high-resolution template matching can detect—with high selectivity—proteins

of known structure in single cryo-EM images and determine—with high precision—their orientation

and projected location. When combined with whitening this approach can detect moderately sized

proteins even when they are surrounded by a high density of other proteins, as is the case when try-

ing to detect components of individual macromolecular assemblies and determine their spatial

arrangement. While some of the issues that arise are also encountered when determining molecular

structures by single-particle averaging, the need to ensure high sensitivity and high selectivity in the

presence of a dense background of other biological macromolecules is not one of them. We found

that operating close to focus helps in the detection of target proteins first by suppressing low spa-

tial-frequencies (which are critical when picking particles for single-particle averaging) caused by the

presence of other proteins and, second, by preserving high frequency information crucial for sensitiv-

ity and selectivity. While the suppression of low frequencies can also be achieved by filtering the

acquired images, the irreversible loss of high-frequency information that occurs due to partial-coher-

ence effects becomes more severe at larger defocus and was responsible for the degraded detec-

tion sensitivity seen in simulated large-defocus images.

While the inclusion of higher spatial frequencies in both templates and in the image improves the

detection sensitivity (Figure 5b), it also exacerbates the differences between a particular reference

structure (usually determined in a non-native context such as a crystal) and its conformation in situ

Figure 6 continued

orientations and one spatial direction and the expected peak locations (black traces). (c) Precision-recall curves for detection of the ASU; five DLPs each

acquired with an underfocus between 1440 and 1590 nm (red) and between 270 and 300 nm (green). (d) Prevalence of the number of VP1 polymerase

proteins per fivefold vertex detected in a constrained search (dark blue) and after randomly permuting vertex labels (gray, crosses) and for a binomial

distribution with the same mean detection rate (dashed, circles). (e) Density map from a VP1 detection-triggered reconstruction of a rotavirus DLP: i)

MIP of a 1 nm thick subset (extent indicated by white vertical bars in (ii). Note the polymerase to the left of the RNA exit channel in the capsid. ii)

Orthogonal MIP of a different subset (location indicated by white vertical bars in (i). iii) average over a 0.5 nm thick subset (location indicated by gaps in

white vertical bars in (i). Note the presumptive RNA helix wrapped around the polymerase. iv) and v) MIPs of the difference between reconstructed and

a simulated potential based on PDB:4F5X (projected ranges given by white vertical lines in (v) and (iv), respectively). Red arrow indicates possible VP3

helix. Scale bars are 10 nm in (a), 5 nm and 3 SNR units in (b) and 5 nm in (e).

DOI: 10.7554/eLife.25648.013
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(Figure 6e, Supplementary file 1). Searches may, therefore, need to include template sets for a

whole range of possible conformations. Finally, magnification and focus will need to be estimated

more precisely and the orientation, in particular, sampled more densely.

Without prior knowledge about their location and orientation but otherwise optimal conditions

we can detect proteins with a molecular weight above about 150 kDa when suspended in vitrified

ice. Whether detection of proteins above 300 kDa is possible in 100 nm-thick slices of vitrified bio-

logical material should be testable with the help of modern cryo-sectioning techniques (Al-

Amoudi et al., 2007).

How does our detection sensitivity compare to the ultimate limit, given by the number of scat-

tered electrons? At 300 keV and an exposure of 1000 electrons/nm2, a single apoferritin molecule

scatters about 1436 (Materials and methods) electrons elastically, of which about 20% are available

at a resolution of 0.4 nm. Taking into account that due to the oscillation in the CTF only half of those

are usable we expect a SNR of »12 ((1436 � 0.2 � 0.5)0.5), which is close to what is seen (Figure 1).

If all scattered electrons could be used, the SNR would increase to almost 38. The minimal molecular

weight—assuming perfect electron-optical resolution, a B-factor of 0, no background, and a SNR of

about seven needed for detection—would then be around 16 kDa.

Detection of the rotavirus RNA polymerase and the mapping of the occupied binding sites inside

the virus capsid (Figure 6d–e) illustrates how one can analyze partially stochastic protein assemblies,

in which a ligand protein (here, VP1) binds at only some of the available binding sites on a molecular

host (the virus capsid). Such assemblies play an important role, for example, during the establish-

ment and control of synaptic function. Often the structures of key components and their interaction

partners are known, but whether in a particular synapse this interaction is utilized may be impossible

to determine by conventional methods yet might yield to this type of analysis. If the steric constraints

of the interaction are known (Figure 6d–e), even ligands below the unconstrained detection limit

should be detectable.

Materials and methods

Specimen preparation
Apoferritin samples were prepared to a final protein concentration of 0.25 mg/mL in PBS from

horse-spleen apoferritin (#A3660, lot #SLBF8335V, Sigma-Aldrich, St. Louis, MO) and contained 15

nm gold particles (#1115, Nanoprobes, Yaphank, NY). A 3 mL aliquot of the solution was applied to

a freshly glow-discharged (60 s. at 15 mA, Easiglow, Ted Pella, Inc., Redding, CA) holey carbon sup-

port grid (#CF-1.2/1.3–4C, Protochips, Morrisville, NC) and plunge frozen using a Vitrobot Mark two

(FEI; 5 s. blotting time, blotting force 5, 85% relative humidity). The sample was then transferred

into liquid nitrogen and stored until imaging.

Microscope alignment and calibration
Electron cryo-microscopy was performed on a transmission electron microscope (TEM) operated at

300 kV (Titan Krios, FEI, Hillsboro, OR) in parallel illumination mode. The objective aperture was

removed and the condenser aperture was set to 70 mm, the spot size to 4, and the illuminated area

diameter to 1.70 mm. State-of-the-art low-dose procedures were used to limit sample exposure dur-

ing microscope alignment and low-magnification (40X-1700X) inspection of the sample, which pre-

ceded each high-resolution imaging session. Particular attention was paid to positioning the

specimen near the microscope’s eucentric focus as well as to minimizing astigmatism and coma,

using the objective stigmator controls and coma-free alignment tools in the Titan User Interface

(FEI).

Reference images to calibrate the direct electron detector (DED) pixel dark current and gain were

acquired immediately before each set of experiments with the column closed (for dark current) or by

imaging an open square (for gain reference). Exposure rates were estimated for the illumination and

detection configurations used for high-resolution image acquisition of each sample (see below) and,

when necessary, the spot size and beam intensity settings were changed to keep the rates below

five electrons pixel�1 s�1, in order to limit coincidence losses to around 6% (Li et al., 2013b). Micro-

scope and DED were controlled by SerialEM (Mastronarde, 2005) and Digital Micrograph (K2 Sum-

mit, Gatan, Inc., Pleasanton, CA). Image data were recorded as movies with an exposure time of 25
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msec per frame at a nominal magnification of 59,000 in counting mode, which resulted in a sample-

referred pixel pitch of 0.0482 nm. The dark current was subtracted at the point of acquisition.

Data pre-processing
Movies were gain-corrected by multiplying all frames by the gain reference. A pixel location was

considered ‘hot’ if it had a mean value of more than seven times the standard deviation above the

mean of all pixels in the movie. Each hot pixel was set to the mean of the eight surrounding pixel val-

ues in each frame. Typically, fewer than 20 out of 1.4 � 107 pixels were hot. Each frame in the movie

was then cropped to a centered square, down-sampled by a factor of two using Fourier cropping,

and real-space cropped to a final size of 1850 � 1850 pixels.

To estimate the motion-correction shifts for each movie frame, the down-sampled movies were

low-pass filtered with a cosine-edge mask rolling off between 4.6–4.8 cycles nm�1 and then analyzed

with a custom algorithm that progressively incorporated movie frames into a registered stack (R)

while also iteratively refining the alignment of frames within R. As a first step, movie frames 10–30

(of 40) were each cross-correlated against their higher-index neighbors. Of the pair that yielded the

cross correlogram (CCG) with the highest peak value, the frame with the higher index became the

first frame of R. In every iteration step, each movie frame was correlated with the sum of all frames

in R, excluding the frame itself. The frame with the highest CCG peak among those not yet in R was

aligned to the frame sum and incorporated into R. The alignment of any frame already in R was

adjusted if the cross-correlation peak amplitude had increased compared to the last iteration. This

iterative re-adjustment was continued for at most 100 iterations even after all movie frames had

been incorporated into R, until the sum of all cross-correlation peak amplitudes re-occurred. Shift

values were determined by 20-fold Fourier padding a 10 � 10 pixel region around the cross-correla-

tion peak and taking the location of the maximum. Motion-correction shifts were then applied with

sub-pixel resolution as linear phase shifts in Fourier space to the gain-corrected and down-sampled

but unfiltered movie frames. Starting from the beginning of the movie, movie frames were then

summed until an accumulated electron exposure of 1200 or 1600 electrons/nm2 for apoferritin or

DLP images, respectively, was reached. Gold fiducial particles in apoferritin images were masked

after these processing steps by substituting all pixel values in those regions of the image with the

mean value of the remaining image pixels.

Template generation
Templates were computed using the structural information in the target’s PDB coordinate file

retrieved from the RCSB Protein Data Bank (RRID:SCR_012820). Unless stated otherwise, all

protein atoms in the file were included using the atom coordinates, structure (B) factors, and occu-

pancy values given in the PDB file. The electrostatic potential map for the target structure was calcu-

lated using the TEM-Simulator software package (v. 1.3, ref. [Rullgard et al., 2011]), with the

potential around the protein set to that of the solvent ( » 4.875 V for water). To avoid aliasing arti-

facts from the sharply peaked atomic potentials we used a voxel pitch of 0.0125 nm for the initial

potential calculation, except for the full DLP capsid (PDB:3KZ4) and BSA (PDB:4F5S) where the val-

ues were 0.05 nm and 0.025 nm, respectively. We used only the real part of the potential and pad-

ded the data with the solvent potential value to fill a cube that was just large enough to contain the

structure, subtracted the solvent potential, and resampled the cube (by Fourier cropping) at the

sample-referred detector pixel size, Dx, of the corresponding experimental data. To obtain the scat-

tering potential we multiplied the electrostatic potential by me qeleDx= 2p�h2
� �

, where qe is the elec-

tron charge, and me = 1.446�10�30 kg and le = 1.97�10�12 m are, respectively, the mass and

wavelength of the electron at 300 keV. To avoid ‘ghosting’ artifacts we zero-padded the volume to

between two and three times the linear molecule size while keeping the molecule centered.

Projections of the scattering potential were generated using the Fourier projection-slice

method (Levoy, 1992). The values, a kð Þ, on the slice plane were obtained by cubic-spline interpola-

tion and used to calculate the exit wave ( exit ¼ eiF
�1

a kð Þ½ �) and the wave at the detector:

 det ¼ F�1 F  exit½ � CTF kð ÞMTF kð Þ½ �, where CTF kð Þ is the contrast transfer function of the micro-

scope and MTF kð Þ the modulation transfer function of the detector, which was modeled as

described in ref. (Rullgard et al., 2011). F and F�1 denote the Fourier transform operation and its

inverse, respectively. Combining MTF and CTF correction improved computational efficiency but
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required the assumption that the detector intensity varies approximately linearly with the phase shift.

The expectation value of the intensity (rate of electron arrival) at a pixel is given by j detj2 times the

average expected rate of electron arrival (taking into account the exposure but not the attenuation

by the sample). The contrast transfer function we used was CTF kð Þ ¼ �sin � kð Þð ÞE kð Þ; using an aber-

ration function � kð Þ ¼ ple k � f
¼
� k� Csl

2

e jkj
4=2

� �

and, to account for the finite illumination coherence

(ref. Reimer and Kohl, 2008, pp. 230), an envelope function,

E kð Þ ¼ exp � plejkj2CcDE

4V
ffiffiffiffiffiffiffiffiffiffi

ln 2ð Þ
p

 !2

�
pCsl

2

e jkj
3�pf

¼
jkj

� �2

a2

i

ln 2ð Þ

0

B

@

1

C

A
:

Cs and Cc are the spherical and chromatic aberration coefficients, respectively, DE is the energy

spread of the source, ai is the illumination aperture, and f
¼
is a matrix describing defocus and astig-

matism, which was estimated from the image using the software package CTFFind4 (Rohou and Gri-

gorieff, 2015). For experimental images, Cs and Cc were both assumed to be 2.7 mm, ai was set to

50 mrad (consistent with what was used by ref. (Vulović et al., 2013) after taking into account the

different current density), and the MTF parameters were chosen to yield a performance curve similar

to what was reported for the very detector we used (Ruskin et al., 2013)

ða¼ 0; b¼ 0:935; c¼ 0; a¼ 0; b¼ 0:64Þ.

Image simulations
Simulated micrographs were generated using either TEM-Simulator or a custom procedure. When

using TEM-Simulator, both phase and amplitude contrast were included and the images were simu-

lated at twice the final resolution and then downsampled to a pixel-size of 0.0965 nm by Fourier

cropping. Typical parameters files for TEM-simulator are provided in Supplementary file 2.

The custom procedure, which did not account for ice and used only phase contrast, was as fol-

lows: for each of the protein species included in the simulation, the scattering potential map was first

calculated from the PDB file as described above (see Template generation). For each of the copies

of the protein in the virtual sample, the map was rotated to the desired orientation, projected onto

the image plane, zero-padded to the edges of the desired image region, and shifted to the specified

location in the plane. The sum (Spp) of all the projected protein potentials was then used to calculate

the exit wave ð exit ¼ eiSppÞ, from which the expected intensity distribution on the detector was calcu-

lated as described above. For the PPM the CTF was set to unity for all pixels with |k| � 0.1 cycles

nm�1 and to the imaginary unit, i, everywhere else. The actual pixel values in a simulated image

were obtained by multiplying the expected pixel intensity (which varies around one) by the exposure

(expressed as electrons/pixel) and then replacing these values with values drawn independently for

each pixel from a Poisson distribution with a mean corresponding to the expected electron count for

that pixel. Unless noted otherwise, the microscope parameters used for the generation of templates

to search a particular simulated image were the same as those used to generate that image. When

coherent illumination was assumed, CC;DE, and ai were all set to zero, and the MTF parameters to

the values for perfect transmission.

Searching the images
CCGs were calculated as follows: we padded the template to the image size with its own mean

value, subtracted the mean from the image and the template, and calculated the Fourier transforms,

obtaining IF and TF. When we used a whitening filter in a search, the filter, which comprised the

reciprocal square root of the radially averaged power spectral density (PSD) for the image

(Figure 3c), was calculated and applied to the image and all templates. The low-pass filter used to

calculate variable-frequency cutoff curves (Figure 5a,b) was applied at this stage. The filtered Four-

ier-space data and template were normalized so that their real-space distributions had a mean of

zero (by setting the pixel at the origin to zero) and a standard deviation of one, yielding ~IF and

~TF. The CCG was then obtained as F�1 ~IF � ~T�
F

� �

, where * denotes the complex conjugate. Through-

out, a FFT normalization was used that preserved the quadratic norm, i.e., the sum over the squared

absolute values.
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A full (orientation) search consisted of calculating CCGs between one experimental or simulated

image and a set of 2,359,296 templates, each corresponding to a different orientation of the protein

in space. The orientations were generated by an algorithm based on the Hopf

fibration (Yershova et al., 2010). Orientations were represented by unit quaternions and were con-

verted into rotation matrices where needed. The following results were stored: for each CCG value

larger than a given threshold (for most searches equal to 5) the value and the corresponding LOC;

for each orientation the maximum CCG value and its location; for each location, the maximum, the

mean, and the variance of the distribution of CCG values across all orientations; a histogram of all

CCG values. One full search (including the generation of the templates) of a single 1850 � 1850

pixel image required approximately 1000 CPU-hours using compute nodes with 2.7 GHz Intel Sandy

Bridge E5-2680 processors and 8 GB of RAM.

Precision-recall curves
Precision-recall curves were determined by comparing the ground-truth LOCs to locations and orien-

tations in the list of all CCG values larger than five. For DLP images, only those elements in the list

were considered that fell within 32.5 nm of the DLP center. Parsing the list in order of descending

CCG value, we incorporated an element from that list into the list of true positives whenever the ele-

ment’s LOC fell within both five pixels and three (simulations) or five (experiments) degrees of any

ground-truth LOC (see below) but only if no previously examined element had already met those cri-

teria for that particular ground-truth LOC. If the element’s LOC was not close to any ground-truth

LOC it was incorporated into the list of false positives but only if it was not close to any LOC already

in that list, using the same distance criteria. The true positive and false positive counts (ntp and nfp)

for a particular threshold were then determined by simply counting the elements in the correspond-

ing lists with CCG values above that threshold. Each time an element increased ntp, the recall was

calculated as the ratio between ntp and the number of ground-truth LOCs and the precision as ntp /

(ntp + nfp). Precision-recall curves representing multiple datasets (as in Figure 6c) were calculated as

the mean of all datasets’ precision values at a given recall.

To determine the ground-truth LOCs for a particular DLP image, the image was cropped closely

(65 pixel margin) and searched using a complete set of ASU templates (PDB: 3KZ4, one copy of

chains A-O) generated using our standard set of orientations. For each group of neighboring pixels

with at least one CCG MIP value >7.11 the orientation corresponding to the highest-valued CCG in

that neighborhood was expanded into a full icosahedrally symmetric set with 60 elements. All such

sets of orientations were combined and then clustered using a rotation threshold of three degrees.

From the largest cluster we selected the element with the largest CCG value and searched the

neighborhood of its orientation in 0.31 degree increments using templates based on the full DLP

capsid structure (PDB: 3KZ4) and a whitening filter. The orientation that gave the largest CCG peak

was thereafter used as the particle’s orientation.

To determine the expected ASU locations in a DLP image, we calculated the 3D coordinates for

the center of mass of each ASU reported in the PDB file and rotated them about the particle center

to the particle orientation, and projected them onto the image plane. The shift of this pattern rela-

tive to the center of the image was calculated as follows: we generated ASU templates at the 60 ori-

entations obtained by expanding the particle’s orientation into a full icosahedrally symmetric set.

These templates were then whitened and cross-correlated with the whitened image. The resulting

CCGs were then combined into a maximum intensity projection (MIP) and cross-correlated with a

location reference image. The location of the maximum in that CCG corresponds to the pattern shift

vector sought. The location-reference image was created by shifting a discrete-delta-function image

(where the pixel at the center was set to one and all other pixels were set to zero) with subpixel res-

olution to the expected locations of all ASUs whose CCG included a value above 5.47

(¼
ffiffiffi

2
p

erfc
�1

2= 60� 850
2ð Þð Þ, see SNR) in the combined MIP and maximum intensity projecting the

resulting images.

Rotavirus VP1 reconstruction
Capsid-bound VP1 molecules were detected as follows. A dataset consisting of 4,178 DLP images

(defocus range 300–1900 nm) that had been acquired and pre-processed (including frame-align-

ment, exposure filtering, and magnification distortion correction as described in Grant and
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Grigorieff, 2015) was used. First, using for each DLP the orientation and defocus from a list gener-

ously provided by T. Grant, we performed a search for the 60 ASUs (target structure PDB: 4F5X, one

copy of chains A-O only) constrained to the 60 orientations consistent with the DLP orientation pro-

vided. Only those images (3,296 of 4,178) where each of the 60 ASUs could be detected within a

radius of five pixels (0.5 nm) of its location expected given the orientation of the entire DLP were

kept for further analysis, using the coordinates of the CCG peaks instead of the locations expected.

The search for VP1 LOCs was performed by cross-correlating the image with a set of 60 tem-

plates generated using only the VP1 fragment of the structure (PDB: 4F5X, one copy of chain W

only) with all B-factors set to 100.0 Å2 and at the orientations expected. The locations were con-

strained to a 1-pixel radius (five pixels per CCG) of the detected ASU locations. CCGs were cor-

rected for variations in mean and variance with the radius from the center of the DLP, which were

estimated by searching with control templates (the real templates rotated by 180 degrees around

the center of mass in the squared template image), binning the CCG values generated according to

the distance of the corresponding pixels from the DLP center, calculating for each bin the mean and

standard deviation, and radially smoothing the results using a 5-pixel wide 1st-order Savitzky-Golay

filter.

The searches for VP1 yielded a set of 2 � 3296 � 12 � 5 � 5 CCG values (Supplementary file 3),

which represent five values (for the predicted pixel and the four closest pixels) for each of the five

possible VP1 locations in each of the 12 five-fold vertices in each of the 3,296 particles using two

templates (target and control). To produce Figure 6d, all potential VP1 locations for which the maxi-

mum across the pixel-neighborhood (the last index of Supplementary file 3), was above 2.03 were

counted as detected VP1s. To produce the VP1 reconstruction (Figure 6e) we used a higher thresh-

old (2.56) to reduce the number of expected false alarms to one per DLP, and furthermore counted

a VP1 as detected only if no other VP1 was detected at the same vertex. For each detected VP1 in

the dataset (15,265 in total), we generated a copy of the original image, padded it to 2048 � 2048

pixels, shifted it to position the associated ASU at the center pixel, and together with the expected

orientation and defocus, incorporated it into a set that was then provided as input to a development

version of Frealign (Grigorieff, 2007), which was used to calculate the reconstruction directly, using

no refinement, classification, or imposed symmetry.

The 3D difference map comparing the experimental reconstruction to a model was generated in

Diffmap (http://grigoriefflab.janelia.org/diffmap). The real part of the electrostatic potential map of

the DLP-VP1 complex used in this comparison was generated at 0.05 nm voxel pitch using TEM-

simulator (Rullgard et al., 2011), for PDB: 4F5X, with 60 copies of chains A-O and one copy of chain

W, with all B-factors in chain W set to 100.0 Å2. The map was then rotated to the expected orienta-

tion, and aligned with the reconstruction by 3D cross correlation.

To estimate the missed-target rate for a given threshold in the constrained search for VP1, we

used the fact that all alarms are false when using the control template. With 11 VP1s per 60 potential

locations, there are only 49 locations left for a false alarm to occur. This means that when searching

with the real template the average number of false alarms that we need to subtract from the number

of detections (nd) to get at the number of true detections (ntp) is only 49/60 times as large as that for

the control template (nfp). The recall rate (one minus the missed target rate, rfn) is then the number

of true detections divided by the number of target occurrences (11) and

rfn ¼ 1� nd � nfp
49

60

� �

=11:

SNR
How do we know, given a set of image pixel intensities, what the likelihood is that there was an

actual target molecule at a particular location? One approach is simply to ask: for which threshold

(#) is the likelihood that a CCG pixel value > # represents an actual target equal to 50%? This occurs

when the rate of false alarms becomes equal to the number of targets expected in the image. For

one target per full search, with about 1013 LOCs, the false-alarm rate should be 10�13 per examined

LOC. For Gaussian noise this occurs when ð1013 ¼ erfc ð#=ðs
ffiffiffi

2
p

ÞÞ=2Þ, which requires the threshold in

the CCG to be about 7.34 times the SD.

The SNR was calculated as the ratio of the CCG value and the standard deviation, s, of the CCG

noise, which follows the convention adopted by (Saxton and Frank, 1976; Sigworth, 2004) but
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differs from other definitions of SNR also used in the cryo-EM field (Frank and Al-Ali, 1975;

Unser et al., 1987; Grigorieff, 2000). For full searches, which yielded large numbers of CCGs

(>1012), s was estimated by fitting y ¼ ae� x�x0ð Þ2=2s2

to the histogram of all CCG values. For full

searches of rotavirus DLP images, the resulting SNR values were further normalized by subtracting

the mean of the SNR values for all orientations at that location and dividing by their SD.

SNR values in the constrained search for VP1 were corrected as described above (see Rotavirus

VP1 reconstruction). To estimate the SNR for the detection of VP1 we determined the SNR that

made the following distributions most similar: first, the distribution of the maxima over the last

(neighborhood) index of the 2 � 3296 � 12 � 5 � 5 CCG matrix that resulted from the restricted

search for VP1 (above, also Supplementary file 3); second, results from a search that used control

templates, modified by adding the SNR value to one randomly selected pixel for one randomly

selected potential VP1 location in each of a randomly selected 11-member subset of the 12 vertices

in each DLP. The similarity between distributions was assessed by summing the squared differences

of mean, variance, and skewness.

Total number of electrons scattered
To calculate a rough estimate of the total number of electrons scattered by a single apoferritin mole-

cule we added the electron scattering cross-sections (NIST Electron Elastic-Scattering Cross-Section

Database: Version 3.2, http://www.nist.gov/srd/nist64.cfm) of all 32760 hydrogen, 20904 carbon,

5832 nitrogen, and 6288 oyxgen atoms at 300 keV, which at an exposure of 1000 electrons-nm�2

yields 734.0, 1031.2, 1305.0, and 1420.3 electrons (out of a total of 1435.9 total forward scattered

electrons) into aperture half-opening angles of 9.75, 15, 30, and 100 mrad, respectively. 9.75 mrad

corresponds to a resolution of 0.2 nm.

Unless stated otherwise, all calculations were implemented using custom scripts written in Matlab

R2013a (Mathworks) and executed on individual workstations or on Sandy Bridge nodes of the Jane-

lia Compute Cluster (Intel E5-2680 2.7 GHz, Scientific Linux 6.3). The search code was compiled for

single-threaded CPU usage using the Matlab Compiler Toolbox (v. 5.2).

Code availability
Compiled and source code written in Matlab to calculate reference structures (scattering potential

matrices) from Protein Data Bank-formatted models, and to search for these structures in images by

cross-correlation, are available for download at https://github.com/jpr-smap/smappoi.

git (Rickgauer, 2017).
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interleaved with sections through a simulated DLP based on the model used for VP1 template gen-

eration (even frames). Voxel size is 0.1023 nm.
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. Supplementary file 2. Sample input files for TEM-simulator v.1.3 (Rullgard et al., J. Microscopy 243

(3):234–256, 2011) to calculate expected intensity distributions at the detector, and expected output

files. Images generated by TEM-simulator and used here were downsampled twofold, to a pixel size

of 0.0965 nm, by Fourier cropping before substituting each pixel intensity with a new value drawn

from a Poisson distribution with the same mean. Further details of the included files are provided in

README.txt in the. zip folder.
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. Supplementary file 3. CCG values from the constrained VP1 search. Indices for the five-dimensional
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#3 the center pixel and 1, 2, 4, and 5 the adjacent pixels.
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. Supplementary file 4. Results from full searches described in the main text (see Supplementary file

5 for file names and descriptions). Each file contains a matrix of the 100,000 highest CCG values in

descending order (column 1) and the corresponding LOCs (columns 2–7). Locations in the image

(columns 2 and 3, in nm) are given as x and y distances from one corner pixel. Template orientations

(columns 4–7) are given as the four sequential elements of a unit quaternion vector q. An equivalent

rotation matrix, R, may be calculated from this representation as:
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. Supplementary file 5. List of files included in Supplementary file 4. Columns Df1, Df2, and aast pro-

vide defocus parameters (Rohou and Grigorieff, 2015) assumed in template generation.
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gorieff N, Harrison
SC

2012 Location of the dsRNA-dependent
polymerase, VP1, in rotavirus
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Publicly available at
the RCSB Protein Data
Bank (accession no:
4F5X)

Lu X, Harrison SC,
Tao YJ, Patton JT,
Nibert ML

2008 Crystal Structure of VP1
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ujacz A, Bujacz G 2012 Crystal Structure of Bovine Serum
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Publicly available at
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Bank (accession no:
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