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Structure of the respiratory NADH:ubiquinone oxidoreductase 
(complex I) 
Nikolaus Grigorieff 

Three-dimensional structures of NADH:ubiquinone 
oxidoreductase (or complex I) from the respiratory chain of 
mitochondria and bacteria have been recently studied by 
electron microscopy. The low-resolution structures all reveal a 
characteristic L shape for complex I; however, some of the 
differences among these structures may have important 

implications for the location of the functional elements of 
complex I, for example, the ubiquinone-binding site. 
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Abbreviations 
30 three-dimensional 
EPR electron paramagnetic resonance 
Fe-5 iron-sulfur 
FMN flavin mononucleotide 
I P iron-sulfur protein 
NADH nicotinamide adenine dinucleotide 

Introduction 
Nicotinamide adenine dinucleotide:ubiquinone oxidoreduc­
tase (NADH:ubiquinone oxidoreductase or complex I) is the 
entry point for electrons into the electron transport chain of 
mitochondria. It is located in the inner mitochondrial mem­
brane and catalyses electron transfer from NADH to the 
quinone pool. The intrinsic redox components involve one 
noncovalently bound flavin mononucleotide (FMN) [1], at 
least six electron paramagnetic resonance (EPR)-detectable 
iron-sulfur (Fe-S) clusters [2-4,5"] and at least two distinct 
protein-bound species of quinone [5",6---8]. Electron transfer 
is coupled to proton translocation from the matrix, across the 
membrane, into the intermembrane space, with 4-5 protons 
transferred per NADH [9-17]. The proton gradient estab­
lished by complex I and by the subsequent complexes in the 
respiratory chain (cytochrome c:ubiquinone oxidoreductase 
or complex III and cytochrome c oxidase or complex IV) is 
utilised by ATP synthase to synthesise ATP from ADP and 
inorganic phosphate. 

Complex I has been studied in mammalian cells (reviewed 
in [18]), plants (reviewed in [19]), fungi (reviewed in [20] for 
Neurospora crassa) and bacteria (reviewed in [21]). Table 1 
lists the subunit composition of the Escherichia coli, N. crassa 
and bovine enzymes and indicates homologies among sub­
units. The bovine enzyme has a combined molecular mass 
of more than 900 kDa [22]. It consists of 43 different sub­
units, each of which has been characterised, except for a 

10 kDa subunit [23] that seems to be part of hydrophobic 
subcomplex I~ (see below). Seven of the hydrophobic sub­
units are encoded in mitochondrial DNA and the remainder 
are nuclear gene pro9ucts. TheN. crassa enzyme has at least 
35 different subunits, which can be detected by gel analysis 
[24]. Their combined molecular mass is about 700 kDa 
[25,26]. Seven subunits are encoded in mitochondrial DNA 
and are homologues of the proteins encoded by bovine 
mitochondrial DNA. Sixteen of the known nuclear-encoded 
subunits have bovine homologues (Table 1), although some 
of them have not been sequenced. Complex I from E. coli 
has a combined molecular mass of about 530 kDa and was 
first determined to have 14 different subunits [27]. Seven 
are homologous to the mitochondrially encoded subunits. 
The remaining subunits are homologous to nuclear-encoded 
subunits of the bovine and N. crassa enzymes. Recently, it 
was found that the E. coli genes nuoC and nuoD are fused 
and that the protein products form one subunit, NuoCD 
[28,29]. Genes nuoC and nuoD are also fused in Buchnera 
aphidicola [30]; however, they are not fused in Paracoccus 
denitrificans [31], Thermus thermophilus HB-8 [32] and 
Rhodobacter capsulatus [33], thus encoding 14-subunit 
enzymes. These 14 conserved subunits form a minimal 
ensemble for complex I [34]. 

Substantial progress has been made in the past four years in 
the understanding of the function of respiratory complexes 
with the determination of the atomic structures of com­
plex III [35-37] and complex IV [38-42]. To date, however, 
the atomic structure and detailed reaction mechanism of 
complex I are unknown. Over the past two years, the three­
dimensional (3D) structures of the N. crassa [43"",44""], 
E. coli [44""] and bovine enzyme [45""] have been deter­
mined to 28 A, 34 A and 22 A resolution, respectively, by 
electron microscopy. These structures will be reviewed 
here, together with recent results from studies using 
NADH oxidoreductase inhibitors to map the structure of 
the ubiquinone-binding site(s) in eukaryotic enzymes. 

The three-dimensional structure of complex I 
Bovine complex I can be dissociated into two subcomplex­
es, known as Ia and 1~, containing 23 and 17 ,subunits, 
respectively [46]. Subcomplex Ia (molecular mass 
540 kDa) contains mostly hydrophilic subunits, including 
those that bind NADH and FMN, and all the Fe-S clus­
ters that have been defined by EPR (reviewed in [5"]). 
Homologues of seven of its subunits are present in a small 
form of the N. crassa enzyme that is produced by inhibit· 
ing mitochondrial protein synthesis with chloramphenicol 
[47]. For example, both of them contain the 51 kDa FMN­
binding subunit and they can both transfer electrons from 
NADH to quinones. Subcomplex Ia also contains Fe-S 
cluster N-2, however, whereas the small form of the 
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N. crassa enzyme does not [18]. It is generally accepted 
that cluster N-2 participates in the electron transfer reac­
tion of complex I, as the direct donor of electrons to 
membrane-bound ubiquinone [48,49]. Subcomplex Ia 
retains a few hydrophobic subunits, but mostly they are 
hydrophilic, suggesting that most of the subcomplex lies 
outside the membrane [46]. 

The first structural information on complex I was obtained 
from the N. crassa enzyme by electron microscopy of two­
dimensional crystals and noncrystalline, detergent­
solubilised preparations (single particles) of complex I 
[25,50]. It revealed the characteristic L shape of the 
enzyme, with one arm of the L embedded in the inner 
mitochondrial membrane (the hydrophobic membrane 
domain) and the other arm projecting from the membrane 
into the mitochondrial matrix (the hydrophilic matrix 
domain). The membrane domain was shown to be elon­
gated, with a constriction approximately halfway between 
its two ends. The matrix domain appeared to be more 
globular, with a thin finger-shaped extension on one side. 
The two domains were studied separately and their orien­
tation within the intact complex was not determined. 

The recent work on the 30 structure of complex I 
[43"",44"",45""] was carried out with detergent-solubilised 
protein and single-particle image analysis. Compared with 
crystallographic techniques, the single-particle approach 
has the advantage that crystals are not needed and the 
attainable resolution is .not limited by disorder that could be 
present in a crystal. This technique gives rise to some prob­
lems, however, that may be important for the interpretation 
of the 30 structures. For example, the resolution may be 
limited by variability among images of individual particles. 
Artefacts may be produced both by uneven staining of dif­
ferent domains of the protein particle and by flattening of 
the particle upon drying, as well as by electron-beam­
induced changes in the chemical composition of the stain 
[51,52]. Therefore, to obtain higher resolution, the protein 
is usually embedded in ice (electron cryomicroscopy [53]), 
where it is kept hydrated and its structure preserved. With 
membrane proteins, the presence of detergent in 
hydrophobic parts of the protein may add to or subtract 
from the density of the protein, depending on its density 
relative to that of the ice, thus giving rise to other artefacts. 

Figure 1 shows the 30 structures of the E. coli, N. crassa and 
bovine enzymes, as published by Guenebaut et al. 
[43"",44""] and Grigorieff [45""]. All the structures display 
the characteristic L shape initially determined for the fun­
gal complex. The orientation of the N. crassa 3D structure 
with respect to the inner mitochondrial membrane was ver­
ified by antibody labelling the 49 kDa subunit [43""], 
which is part of the iron-sulfur protein (IP) located in the 
matrix domain. The orientation of the E. coli complex was 
determined by the alignment of its 30 structure with the 
N. crassa structure [44""]. The orientation of the bovine 
complex was established using three lines of evidence. 

Table 1 

Subunits of complex I in the E. coli, N. crassa and bovine 
enzymes. Some subunits of complex I from N. crassa have not 
been identified and sequenced. The nuclear-encoded subunits 
are listed according to their apparent molecular mass, as 
determined by SDS PAGE, starting with the largest subunit. 
The location of bovine subunits in subcomplex Ia (mainly 
hydrophilic) or I~ (hydrophobic) is indicated in the last column. 
Eight subunits were not detected in either subcomplex 
(marked as ND), but are subunits of the intact enzyme. Subunit 
SDAP is present in both subcomplex Ia and 1~. 

E. coli N. crassa Bovine 

Nuclear-encoded Location 
subunits 

INuoG [27] 78 kDa [851 75 kDa (IP) [86] Ia 
NuoF [27] 51 kOa [851 51 kOa (FP) [87] Ia 
NuoO* [27] 49 kOa [88] 49 kOa (IP) [89] Ia 

? 42 kOa [59] Ia 
40 kOa [90] 39 kOa [59] Ia 

NuoC* [27] 30.4 kOa [91] 30 kOa (IP) [92] Ia 
NuoE [27] 24 kOa [93] 24 kOa (FP) [94] Ia 

? 822 [95] I~ 
Nuol [27] 21.3c kOa [96] TYKY [97] Ia 

12.3 kOa [98] POSW [95] I~ 
NuoB [27] 19.3 kOa [20] PSST [99] Ia 

20.8 kOa [1 00] PGIV [101] Ia 
? ASHI [95] I~ 
? SGOH [95] I~ 
? 818 [95] I~ 
21 kOa [102] 18 kOa (IP) [95] Ia 
? 817.2 [23] NO 
? 817 [95] I~ 
? 815 [95] I~ 
14.8 kOa [1 03] 814 [95] Ia 
? B14.5a [104] NO 
? B14.5b [104] NO 
29.9 kOa [1 05] 813 [95] Ia 
? 15 kOa (IP) [95] Ia 
10.5 kOa [1 06] 88 [95] Ia 
? 812 [95] I~ 
? 13 kOa (IP) [95] Ia 
? (1 0 kOa)t I~ 
ACP [107] SOAP [108] Ia and I~ 
9.3 kOa [58] 89 [95] Ia 
? MLRQ [95] Ia 
? 10 kOa (FP) [1 09] Ia 
? AGGG [95] I~ 
? MWFE [95] Ia 
? MNLL [95] ·~ ? KFYI [95] NO 
21.3a kOa [55] 
21.3b kOa [57] 
20.9 kOa [56] 
17.8? kOa [58] 

Mitochondrially 
encoded subunits 

NuoH [27] N01 [110] N01 [111] NO 
NuoN [27] N02[110] N02 [111] Ia 
NuoA [27] N03 [112] N03[111] NO 
NuoM [27] N04 [113] N04[111] I~ 
NuoK [27] NOL4 [114] N04L [111] NO 
Nuol [27] N05 [114] N05[111] I~ 
NuoJ [27] N06 [115] N06[111] NO 

*The E. coli genes nuoC and nuoD are fused and proteins NuoC and 
NuoO form one subunit, NuoCO [28,29]. tThis subunit has not been 
identified, but it seems to be part of hydrophobic subcomplex I~ [23]. ?, a 
homologous subunit has not yet been reported;-, a homologous subunit 
is not present; NO, not detected in subcomplex Ia or 1~. FP, fiB;voprotein. 
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Figure 1 

First, the two arms of the bovine 30 structure share fea­
tures with theN. Ollssa compl ex, as determined by Hofhaus 
eta!. [50] in 1991 , namel y the constric tion in the membrane 
domain and the globular structure of the matrix domain , 
with its fin ge r-shaped extension. The fin ger-shaped exten­
sion of the arbitraril y ori e nted mat ri x domain of the 1991 
3D structu re of N. crassa complex I pointed away from the 
membrane. In the bovine 30 structure, this extens ion 
forms a narrow connection (stalk) between the matrix 
domain and membrane domain . Second, th e orientation of 
the bovine complex was corroborated by estimates of the 
mol ecular masses associated with each domain , based on 
their fractiona l volume. Thus, the molecul ar masses of the 
membrane domain and the matri x domain (including the 
stalk) were determined as 370 kOa and 520 kOa, respec­
tively [4s ••] . The estimated mass of the matri x domain 
agrees very we ll with that of subcomplex Ia, which is main­
ly hyd rophilic, but retai ns some hydrophobicity. The 
hyd rophobicity is assumed to be associated with the stalk, 
which is in contact with the membrane. A third line of evi­
dence for the orientation of the bovine complex is based on 
an image of the edge of an ice-embedded tubular crystal of 
complex I from N. crassa [50] . In this image, th e matrix 
domains of a row of complex I units are seen to project from 
the membrane edge. An ave rage calcu lated from 70 of these 
domains clearly shows a narrowing between the matrix 
do main and the membrane domain that wou ld be consis­
tent with the presence of a sta lk. Further evidence for the 
orientation of the bovine complex re lati ve to the N. crassa 
complex might be obtained from cross-correlation anal ys is 
of the two 30 structu res; however, this has not been done. 
The outcome of such an analys is is likel y to be stron gly 
influenced by dissimilarities between the two structures 

Three·dimensional structures of complex I 
from E. coli, N. crassa (as determined in 1998 
by Guenebaut eta/. [44••]) and bovine heart 
[45••]. Successive views are rotated by 90° 
about a vertical ax is. The position of the lipid 
bilayer, as determined from two·dimensional 
and tubular crystals of the N. crassa enzyme, 
is indicated by two broken lines. The 
structures show the characteristic L shape of 
complex I, with one arm of the L embedded in 
the membrane (the membrane domain) and 
the other arm projecting from the membrane 
(the matrix domain). The E. coli and bovine 
structures both show a narrowing between 
their membrane and matrix domains (the stalk) 
that is not visible in the N. crassa complex. 
The resolutions at which these structures 
were determined are 34 A (E. coli), 28 A 
(N. crassa) and 22 A (bovine). 
Representations of the E. coli and N. crassa 
structures were kindly prepared by Vincent 
Guenebaut. 

that are related ma inl y to the different embedd ing media 
(ice and stain) and differin g subunit compositi ons. 
Although, in view of the ev ide nce presen ted , it seems 
unlikel y that the assignment of the membrane and matri x 
domains in the bovine 30 structure in Figure 1 is incorrect, 
an unambiguous ass ignm ent will require more d irect evi ­
dence, for example, from immunol abclling of subunits or a 
highe r resolution 30 structure. 

The stalk 
T he sta lk has a diameter of about 30 A [4s••] and is a fea­
ture of bovine comp lex I that is also observed in the E. coli 
e nzy me, but not in th eN. crassa e nzyme (Figure 1) [44••]. 
On the basis of the hi gh degree of homology shared by the 
subunits of the N. crassa and bovine enzymes, however, it 
seems reasonable to expect an equa ll y high degree of sim­
ilarity between their 30 structures. The bovine model 
appears to be in good agreement with th e 1991 30 struc­
ture of the N. amsa enzyme [SO], providing that the 
globul ar domain in thi s structure is rotated through 1800 
about an axis parall e l to the me mbrane. Furthermore, the 
image of the edge of the tubular crysta l of N. crasso com­
plex I [50] suggests that the N. aassa com plex also has a 
sta lk-like feature that connects the matri x domain with the 
membrane domain. Th e 30 structure of N. allssa com­
plex I presented by Guenebaut eta/. in 1997 (Figure 2) 
[43••] shows a large cavity corresponding to a location in 
the bovine complex that is c lose to the stalk . Thi s cavity 
reduces the ave rage density in its vicinity and may have 
led to the appare nt sta lk-like fea ture th at is vis ibl e in the 
tubul ar crysta l. The cavity is somewhat hidden ins ide the 
matri x domain and was made visible in Figure 2 using a 
partiall y transparent structure. 
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Some of the observed dissimilarities between the bovine and 
N. crassa 3D structures might be the result of a difference 
between the subunit composition of the two complexes. The 
N. crassa enzyme has four subunits that show no apparent 
homology with subunits from the bovine enzyme (Table 1). 
Furthermore, the content of the 42 kDa subunit in the 
preparation of purified bovine complex I, as analysed by 
SDS PAGE, appears to be reduced [46,54]. The presence of 
the four additional subunits in theN. crassa enzyme and the 
(partial) absence of the 42 kOa subunit in the bovine 
enzyme would account for a total of about 120 kDa molecu­
lar mass difference between the 30 structures of these two 
complexes. The partially hydrophobic character of these 
subunits [55-59] would be consistent with their location near 
both the membrane and the stalk. In addition, the observed 
differences might be related to subunits that have not yet 
been identified in the N. crassa complex. The 200 kOa mol­
ecular mass difference between the bovine and N. crassa 
complexes is less likely to explain the dissimilarities in the 
stalk region, as this would give rise to additional density in 
the bovine complex, in contrast to the observed structures. 
Rather, the additional mass of bovine complex I appears to 
be associated with its globular matrix domain, which is sig­
nificantly larger than that of theN. crassa enzyme (Figure 1 ). 
Lastly, as explained earlier, such differences might also be 
accounted for by stain artefacts. If the stalk is a genuine fea­
ture of complex I, then, in the case of the N. crassa enzyme, 
the stain might not have penetrated completely the narrow 
gap between the matrix domain and the membrane domain. 
As pointed out in [43••] , residual lipid or detergent might 
appear as additional density in the structure. The invisibility 
of the stalk in stain preparations would be in agreement with 
the lower resolution 30 structure of bovine complex I shown 
by Grigorieff [45••], which was also calculated from images of 
negatively stained protein and which does not display a stalk 
either. In the E. coli complex, the narrow gap associated with 
the stalk appears to be absent (Figure 1), making stain exclu­
sion less of a problem. A clearer assessment of possible 
differences between the bovine and N. crassa enzymes will 
be possible when all of the subunits of theN. crassa enzyme 
have been identified and sequenced. 

The stalk is likely to be part of the electron transfer path­
way linking the NADH-binding site in the matrix domain 
with the membrane domain, which is thought to have at 
least one ubiquinone-binding site. Electron transfer in pro­
teins occurs through either tunnelling over larger distances 
(up to 20 A) from one redox centre to the next or move­
ment along covalent bonds (for a review, see [60]). To 
promote electron transfer in a specific direction and to pre­
vent the capture of electrons by other redox acceptors, 
which are present in the aqueous and membrane phases, 
there must be a layer of insulating protein surrounding the 
electron pathway. It is thought that this layer should be at 
least 17 to 20 A thick to be effective [60,61] . With a diam­
eter of 30 A, the stalk would provide just enough space for 
insulation. The location of complex I relative to the mem­
brane is only approximately known from Hofhaus eta/. [50] 

Figure 2 

Three-dimensional structure of complex I from N. crassa, as 
determined in 1997 by Guenebaut eta/. [43••] . The structure is 
resolved at 35 A and is similar to that determined in 1998 (Figure 1 ). It 
shows a large cavity separating the matrix domain from the membrane 
domain, however, that may be the location of a ubiquinone-binding site. 
The cavity was made visible using a partially transparent structure 
[43••]. Kindly prepared by Vincent Guenebaut. 

and, therefore, it is also possible that the stalk gains further 
insulation from the lipid bilayer. 

The location of Fe-S cluster N-2 and the 
structure of a ubiquinone-binding site 
The structure and specificity of ubiquinone binding at one 
site or at multiple sites have been the subject of recent stud­
ies [ 62-68], as well as of earlier studies (reviewed in [ 69, 70]), 
using a large variety of NADH oxidoreductase inhibitors 
and ubiquinone analogues. It is now widely accepted that 
there are at least two ubiquinone-binding sites [7,8,71-74], 
but their location within the complex remains largely 
unknown. It has been concluded from spin-spin interaction 
observed by EPR that the distance between one of the 
ubiquinone-binding sites and Fe-S cluster N-2 is only 8 to 
11 A [75,76]; however, the interpretation of this observation 
is disputed by others [77]. The proximity of cluster N-2 and 
a ubiquinone would be consistent with the transfer of elec­
trons from cluster N -2 to membrane-bound ubiquinone. As 
cluster N-2 is part of subcomplex Ia [46] , which coincides 
largely with the matrix domain and stalk (see above), it is 
probable that this cluster is also located close to, if not with­
in, the stalk. The subunit binding cluster N -2 has been 
suggested to be either TYKY (21.3c kDa inN. crassa, Nuoi 
in E. coli) [77-79] or PSST (19.3 kOa inN. crassa, NuoB in 
E. coli) [76,80,81]; both are protein components of subcom­
plex Ia, but the precise location of either cluster within 
subcomplex Ia is unknown. 

Enzyme inhibition by a number of bulky substrates 
[65,66,82], some of which have little structural 
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Figure 3 

Three-dimensional structure of bovine complex I, with the stalk region 
and sections of the matrix domain and the membrane domain that are 
close to the stalk shaded in dark grey. Together, they indicate the 
volume of the complex that may house iron-sulfur cluster N-2 and a 
ubiquinone-binding site. The position of the lipid bilayer is indicated by 
two broken lines. 

correspondence with ubiquinone or the classical complex I 
inhibitor rotenone, suggests that the ubiquinone-binding 
site is fairly nonspecific and located inside a large cavity 
[66,82]. The cavity may stabilise the intermediate redox 
product ubisemiquinone [69,83]. If Fe-S cluster N-2 is 
indeed within the vicinity of the stalk, one might expect 
such a cavity to be located near the stalk. one of the com­
plexes in Figure 1 is resolved sufficiently to be confident 
that such a cavity would be visible; however, a promising 
site may be identified according to the structural informa­
tion presented so far. This si te would be located close to 
Fe- S cluster N-2, somewhere between the hydrophilic 
matrix domain and the hydrophobic membrane domain. 
Based on the bovine 30 structure, this would include the 
side of the matrix domain facing the membrane domain, the 
stalk and a section of the membrane domain close to the 
stalk (Figure 3). This location between the hydrophilic and 
hydrophobic domains of the complex would be consistent 
with an amph ipathic character of the binding site; however, 
the narrow gap between the matrix domain and the mem­
brane domain in the bovine 30 structure represents a fairl y 
open cavity whose structure may deviate from that in the 
in vivo complex. Evidence for such a difference between 
in vivo and purified bovine complex I is based on two obser­
vations. The first relates to the apparent difference between 
the 30 structures of the N crassa and bovine enzymes 
(Figures 1 and 2). As explained earlier, the absence of the 
stalk in the 30 structure of N crassa complex I may indicate 
the presence of additional subunits in thi s area of the com­
plex. The 1997 30 structure of N crassa complex I [43••] 
clearly revea ls a large cavity at the interface between the 

membrane domain and the matrix domain (Figure 2). A 
large cavity was also found in the small form of N crassa 
NAOH oxidoreductase [50] , which is largely identical to the 
matrix domain of complex I [47] . This cavity is close to the 
finger-shaped extension of the subcomplex that may corre­
spond to the stalk in the bovine complex, as discussed 
earlier. Thus, the bovine 30 structure, as well as the 1991 
and 1997/1998 structures of the N crassa complex, is consis­
tent with the idea of a large cavity at the membrane-matrix 
interface. A second line of evidence for additional subunits 
in the stalk region of in vivo bovine complex I derives from 
the finding that the ubiquinone reductase activity of the 
purified complex is partially or completely rotenone insen­
sitive [18,46]. This suggests a major modification of the 
ubiqu inone-binding site in the purified complex that could 
be related ei ther to the absence of phospholipids or to miss­
ing subunits, or both [46,54]. The 42 kOa subunit would be 
a possible candidate for such a missing subunit, as its 
reduced content in the purified complex is significant 
enough to be readily visible by SOS PAGE [46,54]. 

Recently, the 49 kOa bovine subun it has been implicat­
ed in ubiquinone binding [84]. T he 49 kOa subunit is 
part of the matrix domain, but is close to the membrane 
domain [43••]. Its participation in ubiquinone binding 
would support the view of a binding pocket that must be 
in contact wi th the hydrophobic membrane domain, but 
is also lined with subunits from the matrix domain. Such 
a binding pocket wou ld also be cons istent with the 
altered ubiquinone-binding characteristics of subcom­
plex Ia and th e small form of N. crassa NAOH 
oxidoreductase. The location of other ubiquinone-bind­
ing si tes remains unknown. 

Conclusions 
The low-resolution 30 structures of mitochondrial and 
bacterial complex I place constraints on the possible loca­
tions of functional units of the enzyme. T he 
determination of the precise locations of most of the sub­
units of complex I has to await further structu ral studies, 
for example, using immunolabelling or fractionation into 
a number of small er subcomplexes. Neverthe less, some 
of the vis ible features at the current level of resolution 
may be ide nti fied as functional elements. Thus, the thin 
sta lk connecting the matrix domain with the membrane 
domain in the bovine complex appea rs to be close to 
Fe- S cluster N -2 and one of th e ubiquinone-binding 
sites. C lea rly, a higher resolution structure wou ld shed 
light on many of the currently investigated topics, for 
example, the structure, location and number of 
ubiquinone-binding sites and Fe-S clusters. Higher reso­
lution may be obtained from crysta llograph ic studies, for 
example, using a wate r-soluble subcomplex [29] . 
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