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Abstract

SIGNATURE is a particle selection system for molecular electron microscopy. It applies a hierarchical screening procedure to iden-
tify molecular particles in EM micrographs. The user interface of the program provides versatile functions to facilitate image data visu-
alization, particle annotation and particle quality inspection. The system design emphasizes both functionality and usability. This
software has been released to the EM community and has been successfully applied to macromolecular structural analyses.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Advances in single-particle electron microscopy (EM)
have enabled the visualization of macromolecular struc-
tures at sub-nanometer resolution. This imaging technique
analyzes 2D projections of the target molecule at various
orientations to derive a 3D density model. The method is
applicable to structural analysis of macromolecules with
a mass of 200 kDa or more (Henderson, 1992). In single-
particle EM, data processing begins with particle selection.
The collected particle dataset is then subjected to particle
alignment, particle classification, 3D reconstruction and
model refinement. Conventionally, the particles are identi-
fied by manual annotation, which is difficult to reproduce
and is prone to subjective bias. A computational algorithm
will not only relieve researchers from the laborious and
mundane task, but also generate objective and consistent
results. In this publication, we present a computational
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screening system that strives to produce high quality parti-
cle datasets for EM structure determination.

Automated particle selection has been a subject of active
research in the EM community (Nicholson and Glaeser,
2001; Zhu et al., 2004), and the majority of methods devel-
oped so far can be categorized into two classes: template-
matching and pattern-recognition. The program FindEM
(Roseman, 2003), an example for the template-matching
method, calculates the local correlation between the micro-
graph and a set of predefined references to identify particle
candidates. The program Selexon (Zhu et al., 2003), an
example of the pattern-recognition approach, detects
geometric features (e.g., edges, shapes) of the particles in
the micrograph. Ideally, the goal of algorithmic particle
screening is to fully automatically label particles from
input electron micrographs without error. In practice,
however, it has been recognized that the existing methods
cannot entirely eliminate false-positives and false-nega-
tives, as the algorithms are frequently fooled by edges,
contaminants and other defects in electron micrographs.
User intervention is still indispensable in order to obtain
a high quality particle dataset. Therefore, in order to
increase the efficiency and accuracy of particle selection
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for single-particle EM, improvements should come from
both the algorithm design and software engineering—better
computational algorithms can reduce the manual effort
required for post-editing, and a user-friendly interface can
expedite the process whenever the manual editing is called
for.

The computational screening algorithm presented here
is based on the template-matching method. It employs a
hierarchical approach to improve the success rate of parti-
cle selection. Its user interface provides flexible functions to
facilitate data visualization, particle annotation and quality
inspection. In the following sections, the algorithm and the
program implementation, SIGNATURE, will be intro-
duced first. Its validation based on both synthetic
and experimental micrographs will be presented. At the
end, a few practical issues regarding the application of
SIGNATURE will be discussed.

2. Methodology and validation

The proposed method selects particles from an EM
micrograph according to a template image set defined a pri-

ori. The algorithm includes a set of hierarchical screening
stages using various matrices: (1) the local-density-correla-
tion function (LCF), (2) the spectrum-correlation function
(SCF), and (3) inter-particle distance restraint.

The LCF measures the local density similarity between a
micrograph and a particle template. A mask can be cus-
tomized to exclude regions beyond the template particle.
The LCF follows the formulation by Roseman (2003)
and is rewritten here as

LCFðxÞ ¼ 1

N T rðIxÞ
MT � T ; Ih ix; ð1Þ

where

r2ðIxÞ ¼
1

NT
MT ; I2
� �

x
� 1

NT
MT ; Ih ix

� �2

; ð2Þ

and

A;Bh ix ¼
X

i

Ai � Biþx: ð3Þ

In the above equations, I is the micrograph image and T is the
particle template. MT is the template mask and the term
(MT � T) represents the masked template image. NT is the
total number of effective pixels under the mask MT. It is
assumed that the template image has been normalized to
N(0, 1) (mean=0, s.t.d.=1) under the mask. The term
ÆA,Bæx can be efficiently evaluated via Fourier transform
(FT):

A;Bh ix ¼ FT �1½FT ðAÞ � FT �ðBÞ�: ð4Þ
A relatively high LCF score alone cannot fully justify a
particle’s candidacy, as a good density correlation does
not necessarily guarantee its shape similarity to that of
the template. A more rigorous evaluation of resemblance
is to examine the profile of the correlation function around
the local maxima, since its distribution reflects the shape of
the particle object. For a true particle location, the LCF
pattern should be similar to the auto-correlation function
(ACF) of the template image itself, assuming a clean back-
ground. This comparison can be quantified as yet another
correlation evaluation between LCF and ACF. The auto-
correlation function of an image is the inverse Fourier
transform of its own power-spectrum, hence the name
‘‘spectrum-correlation function’’ (SCF):

SCFðxÞ ¼ 1

NSrðLCFxÞ
MS �ACF; LCFh ix; ð5Þ

where
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1
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; ð6Þ

and

ACFðxÞ ¼ T ; Th ix � Nð0; 1Þ: ð7Þ
The definition of the SCF follows that of the LCF—the
micrograph image Ix is substituted by LCFx, the template
image T by ACF, and the template mask MT by the
ACF mask MS. The ACF in the above equation has also
been normalized to N(0,1).

Even though LCF and SCF appear very similar in their
definition, they are independent metrics in measuring the
similarity between an object and a template. The LCF func-
tion evaluates the intensity agreement between two images,
but does not consider the order of pixel arrangement. There-
fore, for a given template, two objects could have drastically
different shapes, but still share the same LCF value. This
ambiguity can be resolved by the SCF function, which
enforces the intra-pixel relationship of the template (via
auto-correlation) in the image to be matched. The difference
and the complementary property of LCF and SCF can be
illustrated by the following simple example (Fig. 1). A binary
disc (1 inside the disc and 0 for the background) serves as a
template and is matched to two objects: in image-A, half of
the pixels in the original disc are randomly selected and reset
to 0; in image-B, all the pixels in the lower half of the original
disc are reset to 0. A direct LCF calculation (with a tight
mask) produces 0.5 for both cases. The auto-correlation
function of the template and its cross-correlation function
with each of the objects are displayed below the respective
images. Apart from a scaling factor, the cross-correlation
function between the template and image-A is very similar
to the auto-correlation function of the template itself. After
image normalization under the mask, the SCF score is 0.99
for image-A, but only 0.56 for image-B.

To measure the overall quality of the image-template-
matching, an S-factor, ranging between 0.0 and 1.0, is intu-
itively introduced as:

SðxÞ ¼ LCFðxÞ � SCFðxÞ: ð8Þ

Since both LCF and SCF should be high for a true particle
in the image, a high S-factor will consequently be associated
with its location in the micrograph.



Fig. 2. The graphic user interface of SIGNATURE. The image mask, the
particle selection and a floating magnifier are shown overlying the
micrograph display.

Fig. 1. The LCF function measures pixel-wise intensity correlation between two images, but is insufficient in determining the overall shape similarity of the
objects.
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In a complete micrograph screening, a stack of tem-
plates at various orientations are systematically searched.
For each particle template (Ti) at each rotation angle (a),
the LCFi,a and SCFi,a are calculated and consecutively
screened with the user-prescribed thresholds. The S-factors
of image locations passing both tests will be recorded into
the map Si,a(x). Once all the templates have been rotation-
ally searched, the highest S-factor at each pixel in the
micrograph is stored into the map S(x):

SðxÞ ¼ max Si;aðxÞf g: ð9Þ
The local maxima (in a region corresponding to the parti-
cle’s size) of S(x) indicates potential particles.

Because valid particles should be clearly separated, a
distance restraint is applied at the end to avoid any over-
lap. A disc comparable to the diameter of the particle is
drawn around each peak of S(x). Whenever two or multi-
ple discs conflict, all the corresponding peaks will be
removed from the particle selection.

As a further effort to reduce false-positives, an algorithm
termed ‘‘digital-gel-filtration’’, which is a figurative refer-
ence to size-exclusion chromatography, has been imple-
mented. The method originates from the observation that
the total density mass of particle projections should be
invariant of the particle orientation when the image is
properly normalized. In practice, however, because the
image data is often quite noisy, and elastic, weak-phase
electron scattering is merely a theoretical approximation
for EM image formation, there will be a spread in the den-
sity mass histogram of the selected particles. A band in the
histogram can be identified by the user, and the particles
inside the band tend to be more homogeneous. The digi-
tal-gel-filtration function provides a guidance to improve
the overall quality of a particle dataset, and it has been
incorporated as an optional tool.
The above algorithm has been integrated in the program
SIGNATURE, in which all parameters can be modified
through a graphical user interface (GUI, Fig. 2). The
program GUI also supports manual particle selection/in-
spection and provides informative data visualization func-
tions. In addition to the interactive operation, this program
can run in a ‘‘number crunching’’ computing mode that
enables batch-processing and therefore can greatly enhance
productivity through scripting and distributed computing.
In order to reduce false-positives, a pre-screening proce-
dure has also been introduced to automatically mask out
edges and regions with abnormal variance in a micrograph.
The masked area will not be processed in particle screening.
A set of drawing tools enables the user to block out appar-
ent non-particle regions in the micrograph. When the



Fig. 4. Precision test on synthetic EM micrographs.

J.Z. Chen, N. Grigorieff / Journal of Structural Biology 157 (2007) 168–173 171
screening is complete, the selected particles can be sequen-
tially displayed on the GUI at various scales and filtering
levels for the user to make the accept–reject decision.
Another feature of SIGNATURE is an integrated ‘‘particle
stack editor’’, which can be used to display and modify
(extract, delete, resize, etc.) the selected particles. The out-
put from the editor is automatically synchronized with the
particle annotation on the micrograph. At the current
implementation, the selected particles can be exported to
files as both coordinates and image stacks. SIGNATURE
has been tested on Linux (32/64-bit applications), Mac
OS X, and MS Windows platforms. The program website
(including a user manual) is at www.brandeis.edu/
~jzchen/Signature.

SIGNATURE has been validated using both synthetic
and experimental electron micrographs. The synthetic
dataset provides the ground-truth that can be rigorously
controlled. In the precision test, synthetic micrographs
and particle templates are generated from 2D projections
of the EM model of N-ethyl maleimide sensitive factor
(NSF) (Fürst et al., 2003) at various orientations. The
NSF molecule is about 120 Å in diameter, and the map
voxel size is 3.5 Å. Seven projections (15� apart along the
polar angle) are calculated and put into a template stack
(Fig. 3). Four of them (#1, #3, #5 and #7) are used to pro-
duce the synthetic micrographs—multiple copies of each
template are shifted and rotated (between 0� and 180�),
then randomly patched into an empty image array (without
overlapping). Gaussian noise at various levels (SNR mea-
sured by the ratio of variance between signal and noise)
is subsequently introduced. The three unused projections
(#2, #4 and #6) serve as ‘‘decoy templates’’ in the test—
a robust algorithm should be able to unambiguously match
particles in the micrograph to their respective templates. In
the screening, the rotational search step is set at 1�, ranging
from 0� to 360�. The result is summarized in Fig. 4.

Because of image pixelization and noise, it is conceivable
that minor misalignment will occur when compared to the
ground-truth. Since the particle diameter corresponds to
Fig. 3. One synthetic micrograph at SNR = 0.10 and seven template images. T
each particle template is displayed under the image.
�35 pixels in the micrograph, an error within 3-pixel in
translation and 5-degree in rotation will be deemed accept-
able. It is observed from the chart that the algorithm per-
forms well for SNR as low as 0.1: all particles are
correctly recovered from the micrograph and are related
to the appropriate templates. When the SNR decreases to
0.02, templates 1, 2 and 3 sometimes cannot be differentiat-
ed. Still, particles themselves are identified according to the
tolerance level. Because the SNR of experimental cryo-EM
micrographs is normally at or above this level (Frank and
Al-Ali, 1975), and is much higher for negative-stain sam-
ples, this method is sufficiently accurate and is applicable
to experimental EM micrographs. The algorithm has been
further tested with an even lower SNR at 0.01. At that
point, severe misalignments occur, together with both
false-negative and false-positive selections. Although the
error can be mitigated to some extent by experimenting
with the LCF and SCF thresholds, at the level where signal
is overwhelmed by noise, the ‘‘truth’’ is no longer well
defined.

The program has also been tested on the cryo-EM imag-
es of Keyhole Limpet Hemocyanin (KLH), the dataset
used in the ‘‘particle selection bakeoff’’ organized by Zhu
et al. (2004). There are 82 defocus pairs in total, and only
emplates 1, 3, 5, and 7 are used in the synthetic micrograph. The ACF of
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Fig. 5. Particle templates cropped out directly from the cryo-EM test images of KLH. From the left, KLH side-view (the target), KLH top-view,
aggregated KLH particles, and TMV segment. The last three cases are used as ‘‘traps’’ to reduce false-positives.

172 J.Z. Chen, N. Grigorieff / Journal of Structural Biology 157 (2007) 168–173
the far-from-focus images are used in our test. Both top-
views and side-views of the KLH particles are present in
the images, together with TMV filaments and varying
degree of contamination. The goal is to identify only the
clean side-views of KLH. Particle templates are extracted
directly from the test images using an editing function of
SIGNATURE (Fig. 5). In addition to the target (KLH
side-view), a few other instances—a KLH top-view,
an aggregated KLH side-view, and a TMV segment—are
also included in the template set. After the algorithmic
screening, SIGNATURE can exclusively write out those
particles matched to the side-view of KLH for subsequent
analysis. Although SIGNATURE provides versatile manu-
al editing functions, only algorithmic screening is applied in
this test.

Following the evaluation procedure used in the bakeoff,
the particle screening result from SIGNATURE is com-
pared with the manual annotation (by Mouche) included
in the test dataset. For LCF = 0.15, SCF = 0.20, 20 Å
inter-particle distance, and 3� interval in rotational search,
the average false-positive-rate (FPR) over the 82 images is
12.9%, and the false-negative-rate (FNR) is 9.8%. The
LCF/SCF parameters are identified by experimenting on
the first three images to produce the best result. Because
of the uneven quality and contrast of the testing images,
the fixed LCF/SCF thresholds may not be optimal in some
cases. We identified about one dozen such images and
adjusted the thresholds on an individual basis (still without
any manual editing). This extra, but minor, effort improves
FPR to 10.7%, and FNR remains unchanged. These results
compare favorably to the published statistics from the
bakeoff (average FPR = 21.7%, average FNR = 16.2%,
quoted from Table 2, column-4, Zhu et al., 2004). In anoth-
er test designed to determine the effectiveness of the SCF
screening, the SCF stage is turned off (LCF = 0.15,
SCF = 0.0 for all cases), upon which FPR rises to 15.5%,
and FNR drops slightly to 8.1%. This indicates that SCF
indeed contributes to the quality improvement in the
algorithmic particle selection.

SIGNATURE has already been put into practical use in
single-particle EM structural analysis. Since its beta release
in 2004, several research groups have applied the program
for particle screening in studying macromolecular systems,
which include HPV (M. Wolf, personal communication),
DNA origin recognition complex (X. Zhang, personal
communication), ribosomes (C.M. Spahn and R. Beck-
mann, personal communication), human transferrin recep-
tor (Y. Cheng, personal communication), Arp2/3 complex
(O. Sokolova, personal communication), and exon junction
complex (M.E. Stroupe, personal communication).

3. Discussion

When LCF is close to 1.0 in template-matching, the
false-positive rate is normally quite low. However, in EM
particle screening, because the image SNR is well below
1.0, LCF is around 0.2 at the best and a simple LCF thresh-
olding is insufficient in detecting good particles. To
improve the accuracy, we have introduced an SCF function
to complement the LCF function. Since LCF measures pix-
el-wise intensity correlation, and SCF measures overall
shape similarity, the combined function can reduce false-
positives and produce more reliable particle datasets.

By definition, particle selection entails only a binary
decision: YES or NO. The template-matching algorithm
provides further information regarding the in-plane rota-
tion of a particle candidate. Therefore, when the rotational
search is done using a small step size, the method imple-
mented in SIGNATURE can also be used for particle
alignment. 2D projections of a 3D density model from an
initial reconstruction can be used as templates to screen
for a much larger particle dataset. Then, with the known
projection orientation and the in-plane rotation, a better
model can be built and refined. This is ongoing research
and will be reported in a future publication.

Applying SIGNATURE for particle screening requires
pre-defined particle templates, which may come from three
sources: (1) 2D projections from a known, low-resolution
density model; (2) image class-averages of a small dataset
selected by manual annotation; and (3) characteristic parti-
cle images cropped directly from an electron micrograph
(as demonstrated in the test on the KLH particles). Once
an initial model is established, new templates can be gener-
ated from model 2D projections, and repeated screening
can proceed to refine the selection and/or to identify more
particles for another reconstruction at higher resolution.

Particle heterogeneity presents a major challenge to
high-resolution EM structure determination. The task of
sorting particles into homogeneous subsets is often left to
a later stage of data processing (for example, particle clas-
sification). When models of various structural conforma-
tions become available, SIGNATURE can be used to
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differentiate particles from a heterogeneous dataset, and
therefore, improve the efficiency in the subsequent classifi-
cation. To achieve this, several template sets originating
from various models can be used simultaneously in the pro-
gram for particle screening. Upon completion, particles
matched to a specific template subset can be exported as
a homogeneous dataset. This function can also be applied
to reduce the false-positives in particle screening: ‘‘trap
templates’’ can be set and the particles matched to those
templates will be discarded automatically.
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