
*For correspondence: niko@

grigorieff.org (NG); andrei.

korostelev@umassmed.edu (AAK)

Present address: †Mayo

Medical School, Rochester,

United States; ‡Department of

Biochemistry and Biophysics,

University of California, San

Francisco, United States; §School

of Medicine, University of

California, San Francisco, United

States

Competing interest: See

page 17

Funding: See page 17

Received: 18 April 2016

Accepted: 18 July 2016

Published: 19 July 2016

Reviewing editor: Rachel

Green, Johns Hopkins School of

Medicine, United States

Copyright Loveland et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Ribosome.RelA structures reveal the
mechanism of stringent response
activation
Anna B Loveland1,2,3,4, Eugene Bah1,2†, Rohini Madireddy1,2, Ying Zhang1,2,
Axel F Brilot3,4‡§, Nikolaus Grigorieff3,4,5*, Andrei A Korostelev1,2*

1RNA Therapeutics Institute, University of Massachusetts Medical School,
Worcester, United States; 2Department of Biochemistry and Molecular
Pharmacology, University of Massachusetts Medical School, Worcester, United
States; 3Department of Biochemistry, Brandeis University, Waltham, United States;
4Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham,
United States; 5Janelia Research Campus, Howard Hughes Medical Institute,
Ashburn, United States

Abstract Stringent response is a conserved bacterial stress response underlying virulence and

antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp,

allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate

deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of

E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA

accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100

Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the

central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the

30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto

elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center

rearrangements are coupled with the step-wise 30S-subunit ’closure’, providing insights into the

dynamics of high-fidelity tRNA decoding.

DOI: 10.7554/eLife.17029.001

Introduction
RelA/SpoT homolog (RSH) proteins play a central role in bacterial stringent response—a major

stress-response pathway and key driver of bacterial virulence and antibiotic resistance (Neid-

hardt, 1987; Gentry et al., 2000; Pizarro-Cerda and Tedin, 2004; Dalebroux et al., 2010a;

Gao et al., 2010; Nguyen et al., 2011; Dordel et al., 2014). In response to environmental stress,

such as nutrient deprivation, RSH proteins synthesize small-molecule ’alarmones’ collectively referred

to as (p)ppGpp (i.e., guanosine pentaphosphate and guanosine tetraphosphate; [Cashel and Gal-

lant, 1969] and reviewed in [Potrykus and Cashel, 2008a; Atkinson et al., 2011]). Accumulation of

(p)ppGpp activates transcription of genes required for stress response, inhibits transcription of

genes required for replication and growth, and reformats the transcription of metabolic genes

according to the stress condition (Polakis et al., 1973; Mittenhuber, 2001; Magnusson et al.,

2005; Jain et al., 2006a; Kuroda, 2006; Wang et al., 2007; Ferullo and Lovett, 2008;

Potrykus and Cashel, 2008a; Traxler et al., 2008; Dalebroux et al., 2010a; Dalebroux et al.,

2010b). Inactivation of RSH proteins in pathogenic bacteria dramatically reduces pathogenicity and

bacterial load in the host, up to ~10,000-fold for Salmonella Typhimurium (Na et al., 2006;
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Sun et al., 2009; Dalebroux et al., 2010a; Vogt et al., 2011). Understanding the molecular mecha-

nism of RSH activation may therefore guide the development of new antibacterial therapeutics.

In E. coli, RelA synthesizes alarmones in response to amino acid deprivation (Cashel and Gallant,

1969; Haseltine et al., 1972). When the supply of amino acids becomes limiting, binding of cognate

but uncharged (deacylated) transfer RNA (tRNA) to the A (aminoacyl-tRNA) site of the 70S ribosome

activates RelA (Haseltine and Block, 1973; Richter, 1976; Wendrich et al., 2002). The

70S.RelA.deacyl-tRNA complex triggers RelA to transfer a pyrophosphoryl group from ATP to GTP

or to GDP to form pppGpp or ppGpp, respectively (Haseltine and Block, 1973; Sy and Lipmann,

1973; Wendrich et al., 2002). RelA also binds to the ribosome in the absence of deacyl-tRNA, but

this binding does not stimulate (p)ppGpp synthesis (Haseltine and Block, 1973; Ramagopal and

Davis, 1974; Wagner and Kurland, 1980; Wendrich et al., 2002).

RelA, a 744 amino-acid protein (~84 kDa), consists of functionally distinct halves. The N-terminal

half (amino acids 1–380) includes a pseudo-hydrolase (inactive-hydrolase) domain (aa 1–200) and the

(p)ppGpp synthetase domain (aa ~201–380). A crystal structure of the N-terminal half of the Strepto-

coccus equisimilii RelA homolog RelSeq (aa 1–385) showed that the synthetase domain belongs to

the nucleotidyltransferase superfamily and identified the catalytic residues (Hogg et al., 2004). The

C-terminal half of RelA (aa ~400–744) and other RSH proteins is thought to control the synthetase

activity of the N-terminal region (Schreiber et al., 1991; Gropp et al., 2001; Yang and Ishiguro,

2001a; Mechold et al., 2002; Avarbock et al., 2005; Jain et al., 2006b). Dimerization (Yang and

Ishiguro, 2001a) or oligomerization (Gropp et al., 2001; Avarbock et al., 2005; Jain et al., 2006b)

of free (ribosome-unbound) RelA and RSH proteins are thought to contribute to negative regulation

of the synthetase activity. A 10.8-Å cryo-EM reconstruction of a 70S.RelA.deacyl-tRNA complex

revealed a bi-lobed density overlapping with the elongation-factor-binding site near the A site

(Agirrezabala et al., 2013). The position of RelA and conformation of deacyl-tRNA resembled those

of elongation factor EF-Tu and aminoacyl tRNA in the 70S.EF-Tu.aa-tRNA pre-accommodation-like

complexes (Stark et al., 2002; Valle, 2002; Schmeing et al., 2009). However, the resolution of the

map did not allow model building, leaving the molecular details of RelA activation unclear

(Agirrezabala et al., 2013). A lack of high-resolution structures of full-length RelA or its homologs

bound to the ribosome precludes our ability to understand the regulation of RelA synthetase

activity.

To understand how RelA activates stringent response on ribosomes bound with cognate deacyl-

tRNA, we sought a high-resolution structure of the entire 70S.RelA.deacyl-tRNA complex. Single-

particle electron cryo-microscopy (cryo-EM) and maximum-likelihood classification of a single dataset

yielded four different cryo-EM structures of E. coli RelA bound to the E. coli ribosome at 3.9-Å to

4.1-Å resolution. As in cryo-EM structures of other ribosome complexes (e.g. [Greber et al., 2014;

Fischer et al., 2015]), the local resolution of our maps in the ribosome core is higher than the aver-

age resolution of the maps, allowing for structural interpretation in central regions at near-atomic

resolution. The structures reveal large-scale conformational rearrangements in RelA when it binds

deacyl-tRNA entering the 30S A site, suggesting a mechanism of activation of the (p)ppGpp synthe-

tase. Furthermore, distinct conformations of the deacyl-tRNA, 30S subunit, and the ribosomal

decoding center reveal structural dynamics of tRNA binding in the presence of RelA and suggest

why stringent response activation requires cognate tRNA.

Results and discussion
We used single-particle cryo-EM to obtain the structures of full-length E. coli RelA bound to E. coli

70S.tRNA ribosome complex programmed with an mRNA coding for tRNAfMet in the P site and

tRNAPhe in the A site. Maximum-likelihood classification using FREALIGN (Lyumkis et al., 2013)

revealed four unique classes of ribosome particles containing RelA (Figure 1A–D, Figure 1—figure

supplements 1 and 2, Figure 1—source data 1). In all RelA-bound structures, the ribosome con-

tains P-site and E-site tRNAs and adopts the classical, non-rotated conformation (Cate et al., 1999;

Frank and Agrawal, 2000; Yusupov et al., 2001), similar to that of the post-translocation-ribosome

with peptidyl-tRNA in the P site (Voorhees et al., 2009; Jenner et al., 2010). In Structure I, the ribo-

some A site is vacant, and RelA is bound via its C-terminal portion while its N-terminal domains are

disordered (Figure 1A). In Structures II, III, and IV, the central and C-terminal parts of RelA are well

resolved and the anticodon-stem loop (ASL) of a cognate deacyl-tRNAPhe is bound to the A site of
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Figure 1. Cryo-EM structures of the 70S.RelA complexes. (A) Structure of the 70S.RelA complex lacking deacyl-tRNA in the A site (Structure I) reveals

the C-terminal superdomain comprising the RIS and ACT domains (red). This superdomain binds near the A site at bridge B1a between the 30S and

50S subunits. (B) Structure of the 70S.RelA.deacyl-tRNA complex (Structure II) shows that the C-terminal superdomain is similar to that in Structure I (A).

The central and N-terminal portions of the protein become visible upon interaction with A/R tRNA. (C, D) Structures III (C) and IV (D) are

compositionally the same as Structure II, but differ in the conformations of A/R tRNA, the 30S subunit, and RelA. (E) Domain architecture of E. coli RelA.

The numbers indicate amino acid positions in RelA. (F) RelA wraps around A/R tRNA. The model from Structure IV is shown in space-filling and

secondary-structure rendering. Abbreviations used: ACT (Aspartate kinase-Chorismate mutase-TyrA domain), RIS (Ribosome-InterSubunit domain), AH

(a-helical domain), TGS (ThrRS, GTPase, SpoT/RelA domain), Synth (synthetase domain), PH (pseudo-hydrolase domain), SRL (sarcin-ricin loop), B1a

(bridge B1a between S19 and A-site finger), CCA (three 3’-terminal nucleotides of tRNA). (G) The position of RelA is shown relative to the A/R tRNA,

P-site tRNA and mRNA in Structure IV. 16S rRNA and ribosomal proteins are omitted for clarity. In all panels, the 50S subunit is colored pale blue; the

30S subunit, yellow; RelA, red; A/R tRNA, green; P-site tRNA, orange; E-site tRNA, pink; and mRNA, dark blue.

DOI: 10.7554/eLife.17029.002

The following source data and figure supplements are available for figure 1:

Source data 1. Structure I-IV map resolution and refinement statistics.

DOI: 10.7554/eLife.17029.003

Figure supplement 1. Schematic of cryo-EM refinement and classification procedures.

DOI: 10.7554/eLife.17029.004

Figure supplement 2. Cryo-EM density in Structures I-IV.

DOI: 10.7554/eLife.17029.005

Figure supplement 3. Interactions of the L11 stalk with A/R tRNA.

DOI: 10.7554/eLife.17029.006

Figure supplement 4. Domain organization of RelA.

DOI: 10.7554/eLife.17029.007

Loveland et al. eLife 2016;5:e17029. DOI: 10.7554/eLife.17029 3 of 23

Research article Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.17029.002
http://dx.doi.org/10.7554/eLife.17029.003
http://dx.doi.org/10.7554/eLife.17029.004
http://dx.doi.org/10.7554/eLife.17029.005
http://dx.doi.org/10.7554/eLife.17029.006
http://dx.doi.org/10.7554/eLife.17029.007
http://dx.doi.org/10.7554/eLife.17029


the 30S subunit (Figure 1B–D). We refer to the deacyl-tRNA bound to the 30S A site and RelA as A/

R (A/RelA) tRNA. Structures II, III, and IV differ from each other in the conformations of RelA, A/R

tRNA, the 30S subunit, and the L11 stalk of the 50S subunit. The N-terminus of ribosomal protein

L11 is required for RelA activation in 70S.RelA.deacyl-tRNA complexes (Friesen et al., 1974;

Parker et al., 1976; Yang and Ishiguro, 2001b; Wendrich et al., 2002; Jenvert and Holmberg

Schiavone, 2007; Shyp et al., 2012). The L11 N-terminus interacts with A/R tRNA but not with RelA

in Structures II, III, and IV (Figure 1F–G, Figure 1—figure supplement 3). Thus, the lack of (p)

ppGpp synthetase activity of RelA on mutant ribosomes missing L11 or the L11 N-terminus

(Friesen et al., 1974; Wendrich et al., 2002; Jenvert and Holmberg Schiavone, 2007) is likely due

to the inability of these ribosomes to coordinate deacyl-tRNA for activation of RelA.

The C-terminal domain of RelA binds at intersubunit bridge B1a
Although activation of RelA catalysis requires cognate, deacylated A-site tRNA (Haseltine and

Block, 1973), RelA can bind to the ribosomes in the absence of A-site tRNA (Ramagopal and Davis,

1974; Richter et al., 1975; Richter, 1976; Wendrich et al., 2002). Our map lacking A-site tRNA

(Structure I) reveals density for the C-terminal region of RelA (aa ~530–744) near the A and P sites

(Figure 1—figure supplement 2A). Specifically, the C-terminal region binds the intersubunit bridge

B1a (Yusupov et al., 2001), which connects the A-site finger (helix 38) of the large subunit to the

head of the small subunit (Figures 1E–G and 2A). The lack of density for the central and N-terminal

domains of RelA suggests that these regions are not ordered in the absence of deacylated A-site

tRNA (Figure 1—figure supplement 2A).

The resolved C-terminal region comprises two domains. The ACT domain (aspartate kinase-cho-

rismate mutase-tyrA; residues 665–744; [Atkinson et al., 2011]) is composed of four b-strands cov-

ered by two a-helices (Grant, 2006), and lies in the 50S subunit within a cavity formed by the A-site

finger, helix 89, L16 and P-site tRNA (Figure 2A–B and Figure 2—figure supplement 1). The tips of

two b-hairpins, including Q705-Q706 and highly conserved D675, interact with R50 and R51 of L16

(Figure 2B). The b-strands of ACT form a platform that packs against the 3´-strand of the A-site fin-

ger. Here, the N-terminal and the C-terminal b-strands of ACT, including R670 and R739, interact

with the bulged A896 of the A-site finger helix (Figure 2B and Figure 2—figure supplement 1A).

The fold of the ACT domain was previously noted to resemble the RNP motif that binds single-

stranded RNA, but no RNA-binding ACT domains had been identified (Burd and Dreyfuss, 1994;

Grant, 2006). Our findings reveal that while the RelA ACT domain is not sequence-homologous to

RNP motifs, it interacts with double-stranded RNA via the same face that RNP domains use to bind

single-stranded RNA.

The second binding interface between the C-terminal region and the ribosome involves a previ-

ously unclassified RelA domain (aa 585–660). The domain bridges the large and the small ribosomal

subunits (Figures 1E–F, 2A–B and Figure 2—figure supplement 1B). We refer to this domain as RIS

(Ribosome-InterSubunit) domain. The domain core contains a four-stranded b-sheet and a short a-

helix and is structurally similar to a zinc-finger domain (Lee et al., 1989). On the 50S subunit, the a-

helix (residues 638–647) docks into the minor groove of the A-site finger and interacts with 23S

rRNA residues 883–885 and 892–894 (Figure 2A–B). On the 30S subunit, the b-sheet of RIS packs at

the hydrophobic patch of the b-sheet of S19, comprising V57, P58 and F60.

In summary, Structure I reveals that the ACT and RIS domains of RelA form a C-terminal superdo-

main that anchors RelA to the 70S ribosome, consistent with reduced binding of RelA to ribosomes

upon mutation or deletion of the C-terminal domain (Yang and Ishiguro, 2001a). The density for

the RIS domain core is well resolved in Structure I (Figure 1—figure supplement 2A), supporting

the model that amino acids encompassing the RIS domain form the major ribosomal-binding domain

of RelA (Yang and Ishiguro, 2001a).

Deacyl-tRNA pins the TGS domain against the 30S subunit, exposing
the dynamic N-terminal domains near the spur
Structures II, III, and IV contain RelA bound to the ribosome with cognate deacyl-tRNA in the A site

of the 30S subunit (Figure 1B–D). The ribosome structures share an overall conformation, including

the relative positions of ribosomal subunits, tRNAs and RelA. As described in the earlier cryo-EM

study of RelA ribosome complexes (Agirrezabala et al., 2013), the positions of A/R tRNA in the
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RelA-bound structures globally resemble that of the A/T pre-accommodated aminoacyl-tRNA cap-

tured in the ribosome in the presence of EF-Tu (Stark et al., 2002; Valle, 2002; Schmeing et al.,

2009). However, we observe important differences between the A/R and A/T tRNAs, and among

ribosome conformations, as discussed in a following section.

Structures II, III, and IV reveal density for the entire RelA protein when cognate deacyl-tRNA is

bound in the 30S A site. In these structures, RelA wraps around the tRNA and adopts a boomerang-
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Figure 2. The C-terminal superdomain of RelA binds at the intersubunit bridge B1a. (A) In the absence of A-site tRNA (Structure I), the C-terminal

superdomain of RelA interacts with the intersubunit bridge B1a. The ACT domain interacts with the A-site finger (helix 38 of 23S rRNA) and L16. The RIS

domain interacts with the A-site finger, 16S rRNA and S19. (B) In the presence of A/R tRNA, as in Structures II, III or IV (shown), the RIS and ACT

domains maintain their interaction with the ribosome at bridge B1a, and additional elements of the C-terminal region become ordered. Linker Helix 2,

which connects the a-helical (AH) and RIS domains, packs against the ACT domain (also shown in (C)), similarly to an a-helix in the isolated ACT dimer

shown in (D). (C) In Structures II, III, and IV (shown), the AH domain of RelA interacts with the D stem and acceptor arm of A/R tRNA. The AH domain is

connected to the TGS domain by Linker Helix 1 that passes under the acceptor arm of A/R tRNA. (D) Comparison of the ACT domain in the 70S-bound

RelA and in the solution structure of the isolated ACT dimer of C. tepidum RSH (PDB: 2KO1, [Eletsky et al., 2009]). In the 70S.RelA structures

(Structure III is shown), Linker Helix 2 is positioned similarly to a helix from the partner ACT molecule (light blue) in the dimerized ACT domain. The

interaction between the linker helix and the ACT domain in Structures II, III and IV suggests that the possible dimerization surface of the ACT domain in

free RelA is disrupted upon ordering of RelA by the deacyl-tRNA in the A/R conformation. The colors in all panels are as in Figure 1.

DOI: 10.7554/eLife.17029.008

The following figure supplements are available for figure 2:

Figure supplement 1. Cryo-EM density for the RIS, ACT and AH domains.

DOI: 10.7554/eLife.17029.009

Figure supplement 2. Re-evaluation of the previously reported 10.8 Å cryo-EM map.

DOI: 10.7554/eLife.17029.010
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like conformation (Figure 1F). This RelA conformation contrasts with the compact RelA conformation

occupying the elongation-factor binding site that was proposed based on the 10.8-Å map of a

70S.RelA.deacyl-tRNA complex (Agirrezabala et al., 2013). However, our re-evaluation of the

lower-resolution map revealed previously unassigned density near the intersubunit bridge B1a, which

makes that map consistent with the extended RelA conformation shown here (Figure 2—figure sup-

plement 2).

In Structures II, III and IV, the C-terminal RIS and ACT domains form one wing of the boomerang-

like structure at bridge B1a and are positioned similarly to those in Structure I (Figure 2A–B). The

N-terminal part of the RIS domain (at aa 590–595) is also stabilized by interactions with the phos-

phate backbone of G987 and the 954–960 loop of the 16S ribosomal RNA (rRNA), which forms a

wall of the A-site tRNA-binding cavity. The C-terminal domains are connected with the central a-heli-

cal domain (AH; aa 485–580; Figure 2B–C). The core of the AH domain (aa ~520–560) is formed by

short helices, which pack near the D stem of the A/R tRNA. The ~15-amino-acid C-terminal helix of

the AH domain connects the AH core with the RIS domain (Linker helix 2; Figure 2B–C). Linker helix

2 packs against the ACT domain similarly to an a-helix of the dimerization partner of the isolated

ACT domain of Chlorobium tepidum RSH (PDB: 2KO1; [Eletsky et al., 2009]) (Figure 2D). This sug-

gests that if the ACT domains were also dimerized in the full-length free RelA, the packing of this a-

helical linker next to the ACT domain would be possible on the ribosome only upon dimer disassem-

bly. The long N-terminal helix (Linker Helix 1), which lies under the acceptor arm of the A/R tRNA,

connects the AH core with the ubiquitin-like TGS domain (amino acids 405–470; ThrRS, GTPase, and

SpoT/RelA (Sankaranarayanan et al., 1999) (Figure 2C). Together the central AH and TGS domains

form the elbow of the RelA boomerang. The TGS domain is pinned against 16S rRNA by the accep-

tor end of A/R tRNA (Figure 3A–B), as described below. The overall conformations of the TGS

domain are similar between Structures II, III, and IV (Figure 3—figure supplement 1A). Finally, the

N-terminal pseudo-hydrolase domain (aa 1–200) and synthetase domain (aa 200–380), forming the

second wing of the boomerang, face the periphery of the ribosome in the vicinity of the 30S subunit

spur (helix 6) (Figure 4A) and adopt a range of conformations in Structures II, III and IV, as discussed

below.
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Figure 3. Interactions of the TGS domain of RelA with the A/R tRNA and 16S rRNA. (A) The 3´ CCA end of A/R tRNA pins the TGS domain against helix

5 of 16S rRNA. (B). Interactions of the terminal nucleotides of the A/R tRNA with the TGS domain. (C) Comparison of the TGS domain bound with the

CCA end of the A/R tRNA (this work) with the dimeric TGS domain from C. leptum RSH (Forouhar et al., 2009), showing that the A/R tRNA disrupts

the dimerization surface of the isolated homologous TGS domain. Superposition was performed by the structural alignment of the all-atom models of

the TGS domain (Structure IV) and the TGS dimer (PDB: 3HVZ). The TGS dimer is shown in blue; other molecules are labeled and colored as in

Figure 1. Structure IV is shown in all panels.

DOI: 10.7554/eLife.17029.011

The following figure supplement is available for figure 3:

Figure supplement 1. Interactions of the TGS domain with the A/R tRNA.

DOI: 10.7554/eLife.17029.012
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The TGS domain interacts with the 3´ CCA end of deacylated A/R tRNA and with 16S rRNA helix

5 (Figure 3A). The 74CCA76 end adopts a conformation similar to that in the EF-Tu-bound A/T-

tRNA, in which C75 is bulged out (Schmeing et al., 2009; Fischer et al., 2015), whereas C74 and

A76 interact with several conserved residues of the protein. H432 stabilizes the CCA conformation

by intercalating between C74 and C75 (Figure 3B). P411 and K412 on a b-hairpin loop interact with

the nucleobase of A76 (Figure 3B). The ribose of A76 faces a b-sheet at residues 461–465

(Figure 3B). (p)ppGpp synthesis by RelA requires deacyl-tRNA binding to the ribosome

(Haseltine and Block, 1973). An amino acid bound at A76 would sterically clash with the b-sheet of

TGS and prevent binding of A/R tRNA to the TGS domain, in keeping with the inability of charged
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synthetase (Synth; red) domains are in the intersubunit space between the sarcin-ricin loop (SRL) of the 23S rRNA

and the spur of the 16S rRNA. The N-terminal domains are shown in a conformation, in which the synthetase

domain is near the spur (Structure IV is shown). (B) Comparison of the two conformations of the N-terminal

domains inferred from the heterogeneous cryo-EM density by additional sub-classification (Structure IV is shown;

see also Figure 4—figure supplement 1). The red model is shown as in (A). The gray model exhibits a

conformation shifted away from the spur. (C) Relative positions of the synthetase domain and the spur in Structure

IVa. (D) Structure of the innate immune sensor OAS1 (blue, PDB: 4RWP) bound with an RNA helix (magenta)

(Lohöfener et al., 2015). OAS1 is a second-messenger-(20-50-oligoadenylate)-synthesizing enzyme, whose

architecture resembles that of the synthetase domain of RelA, shown in a similar orientation in (C). The nucleotide-

binding loop (NB loop) and other structural elements are labeled.

DOI: 10.7554/eLife.17029.013

The following figure supplements are available for figure 4:

Figure supplement 1. Cryo-EM densities for the N-terminal domains, obtained by sub-classification of Structures

II, III and IV.

DOI: 10.7554/eLife.17029.014

Figure supplement 2. Comparison of the synthetase domain of RelA with metazoan innate immune sensors OAS1

and cGAS.

DOI: 10.7554/eLife.17029.015
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tRNA to activate RelA. To gain insights into the role of interaction between the CCA end and the

TGS domain, we compared our structures with the X-ray structure of the isolated TGS domain from

C. leptum RSH (PDB: 3HVZ) (Forouhar et al., 2009). The isolated TGS domain forms a dimer. The

comparison reveals that the A/R tRNA disrupts the dimerization interface (Figure 3C). Since oligo-

merization of RSH proteins inhibits (p)ppGpp production (Gropp et al., 2001; Yang and Ishiguro,

2001a; Avarbock et al., 2005; Jain et al., 2006b), interaction with deacyl-tRNA may contribute to

RelA activation via stabilization of the monomeric RelA.

The N-terminal pseudo-hydrolase and synthetase domains in the intersubunit space of the ribo-

some were poorly resolved in the maps for Structures II, III and IV, suggesting structural heterogene-

ity. To resolve this heterogeneity, we performed data sub-classification, using a focused spherical

mask (Grigorieff, 2016) covering the N-terminal region of RelA, separately for Structures II, III and

IV. Sub-classification of each structure into three or more classes revealed two predominant classes

that resolved the shapes of the N-terminal region, which differ in position by at least 10 Å (Fig-

ure 4—figure supplement 1A–F). Classification into seven classes reveals the appearance of less

resolved density between these two extreme conformations, suggesting that the N-terminal domain

samples a continuum of positions (Figure 4—figure supplement 1G). The maps of the two predomi-

nant conformations allowed rigid-body fitting of the homology model of the E. coli RelA pseudo-

hydrolase and synthetase domains, obtained from the crystal structure of the isolated N-terminal

domain from S. equisimilis RelSeq (Hogg et al., 2004). In the first conformation, the synthetase

domain is positioned near the spur. The synthetase domain contains a long helix (the spine helix, at

aa 208–243), which buttresses the catalytic region at the b-platform (aa 248–340; Figure 4A and C)

(Hogg et al., 2004). The loop, which connects the spine helix with the b-platform (at residues 244–

246) approaches the tip of the 16S spur within ~5 Å, suggesting that the protein interacts with

rRNA, but the details of the possible interaction cannot be visualized in the low-resolution maps

(Figure 4—figure supplement 1A–C). In the sec-

ond conformation, the synthetase domain is sep-

arated from the spur by shifting away from its

first predominant conformation by ~10 Å

(Figure 4B). The pseudo-hydrolase domain is

bound near the sarcin-ricin loop of the large sub-

unit (nt 2653–2667 of 23S rRNA). The homolo-

gous RelSeq contains a functional hydrolase

domain, and allosteric regulation was proposed

to govern the switch between (p)ppGpp hydro-

lase and synthetase activities (Hogg et al., 2004).

It is possible that activation of the synthetase

domain of RelA involves conformational rear-

rangements between the pseudo-hydrolase and

synthetase domains, triggered by movement rel-

ative to the TGS domain and/or interactions with

ribosomal RNA. Alternatively, specific interac-

tions of the synthetase domain with the spur may

trigger the catalytic activity. The RelA synthetase

domain structure resembles that of other second-

messenger synthetases (Figures 4D and Fig-

ure 4—figure supplement 2), including: meta-

zoan innate immune sensor OAS1, a 20–50–

oligoadenylate synthase triggered by double-

stranded RNA (Donovan et al., 2013;

Lohöfener et al., 2015); metazoan cGAS, a

cyclic-GMP–20–50–AMP synthase triggered by

double-stranded DNA (Civril et al., 2013;

Gao et al., 2013; Kranzusch et al., 2013;

Sun et al., 2013); and Vibrio cholerae pathoge-

nicity factor DncV, a cyclic-GMP–30–50–AMP syn-

thase (Kranzusch et al., 2014). Innate immune

Video 1. An animation showing transitions between

Structures I, II, III and IV. Three views (scenes) are

shown: (1) A view of the complete 70S complex, as in

Figure 1; two conformations of the N-terminal domain

of RelA are shown for Structures II, III and IV. In

Structure I, the central and N-terminal domains of RelA

are not resolved – here, a model from Structure IV is

shown in gray for reference. (2) A close-up view,

showing A/R tRNA accommodation (’settling’) into the

decoding center and 30S domain rearrangements. The

head of the 30S subunit is shown on the left, the body

of the 30S is on the right, the shoulder is oriented

toward the viewer. (3) A close-up view of the decoding

center, similar to that shown in Figure 6D–G. Colors

are as in Figure 1.

DOI: 10.7554/eLife.17029.016
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sensors OAS1 and cGAS are activated by binding of an RNA or DNA duplex, respectively, at the

spine helix (Civril et al., 2013; Donovan et al., 2013; Gao et al., 2013; Lohöfener et al., 2015).

The proximity of the spine helix of RelA to the spur highlights the possibility of activation of RelA via

a mechanism reminiscent of those for OAS1 and cGAS innate immune sensors (Figure 4—figure

supplement 2).

Distinct intermediates of tRNA in the 30S A site of Structures II, III, and
IV
Our structures reveal three conformations of the deacyl-tRNA and the 30S decoding center, provid-

ing insights into the mechanism of specific RelA activation by cognate tRNA (shown as an animation

in Video 1 and http://labs.umassmed.edu/korostelevlab/msc/relamovie.gif). Activation of (p)ppGpp

synthesis by RelA on the ribosome depends on the selection of tRNA cognate to the mRNA codon

in the A site (Haseltine and Block, 1973). In their in vitro experiments, Haseltine and Block demon-

strated that the substitution of cognate tRNAAla, which reads the GCA, GCC, GCG or GCU codons,

with near-cognate tRNAVal (GUA, GUC, GUG, or GUU) or tRNAGlu (GAA or GAG) results in a more

than 32-fold decrease in (p)ppGpp synthesis by RelA on ribosomes programmed with an Ala codon

in the A site (Haseltine and Block, 1973). Our structures suggest stepwise accommodation of the

codon-anticodon helix in the decoding center, which helps explain this exquisite sensitivity.

Classification of our cryo-EM data revealed three unique classes (Structures II, III, and IV) that dif-

fer in the conformation of A/R tRNA (Figures 1B–D and Figure 1—figure supplement 1). In all three

structures, the A/R tRNA anticodon base-pairs with the mRNA codon in the 30S A site, the elbow

contacts the L11 stalk, whereas the acceptor arm is located in the vicinity of the sarcin-ricin loop of

23S rRNA (Figure 1F–G). The A/R tRNAs are highly distorted relative to accommodated A-site

tRNA, such that the anticodon-stem loop is kinked toward the CCA end of the tRNA (Figure 5—fig-

ure supplement 1A), somewhat similar to the A/T aminoacyl-tRNA in EF-Tu-bound pre-accommoda-

tion-like ribosome structures (Stark et al., 2002; Valle, 2002; Schmeing et al., 2009; Fischer et al.,

2015). The A/R tRNAs, however, differ from the A/T tRNA in the degrees of twisting around resi-

dues 26 and 44, which link the anticodon-stem loop with the rest of tRNA (Figure 5—figure supple-

ment 1B). The CCA end of A/R tRNA (Structure II) is positioned ~10 Å away from that in the A/T

tRNA (Figure 5—figure supplement 1B). Relative to the P-site tRNA, the A/R elbows of all three

RelA-bound structures are tilted by up to 10 Å farther than the A/T tRNA (Figure 5—figure supple-

ment 1A). As such, the A/R tRNA appears even more slanted away from the ribosome core than the

A/T tRNA.

Comparison of Structures II, III, and IV reveals a concerted movement of A/R tRNA and the RelA

central domains toward the head of the 30S subunit, as if the tRNA gradually ’settles’ into the A site

of the 30S subunit from Structure II through III to IV (Figure 5A–B). The tRNA accommodation coin-

cides with a conformational change in the 30S subunit termed ’domain closure’ (Ogle et al., 2001;

Ogle et al., 2002; Jenner et al., 2010; Demeshkina et al., 2012). The acceptor arm of A/R tRNA

and the TGS domain of RelA shift toward the head of the 30S subunit by ~2 Å between Structures II

and III, and by ~2 Å between Structures III and IV (Figure 5C–D and Figure 6—figure supplement

1). The shoulder of the 30S subunit also moves by nearly 5 Å toward the head and body from Struc-

ture II to IV (Figure 6—figure supplement 1 and Figure 6—source data 1). In Structure II, the 30S

subunit is in the open conformation observed previously in the absence of A-site tRNA (Ogle et al.,

2001; Jenner et al., 2010), whereas in Structure IV, the 30S subunit is in the fully closed conforma-

tion (Figure 6A–B and Figure 6—figure supplement 1) (Selmer et al., 2006; Jenner et al., 2010;

Demeshkina et al., 2012). The 30S subunit in Structure III adopts an intermediate state between the

open and closed states (Figures 6B and Figure 6—figure supplement 1). Thus, Structure II repre-

sents a previously unseen open 30S subunit in the presence of the codon-anticodon interaction.

Structure III, in turn, represents an intermediate in the 30S ’domain-closure’ pathway.

The observation of open, intermediate, and closed conformations of the 30S subunit with A-site

tRNA interacting with the mRNA codon prompted us to study the conformation of the decoding

center in each structure in more detail. The local resolution of our maps in the decoding center is

sufficient to determine nucleotide conformations (Figure 6—figure supplements 2 and 3). Studies

of ribosome-tRNA complexes demonstrated that the decoding center plays a central role in cognate

tRNA stabilization. Specifically, universally conserved nucleotides of the decoding center A1492,

A1493, G530 of 16S rRNA and A1913 of 23S rRNA interact with the minor groove of the codon-
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anticodon interaction (Ogle et al., 2001; Selmer et al., 2006; Jenner et al., 2010). A1492 and

A1493 are important in stabilizing Watson-Crick geometry of the first two base pairs (Ogle et al.,

2001; Demeshkina et al., 2012), and are thus thought to contribute to tRNA recognition, providing

high fidelity of protein synthesis (Ogle et al., 2003).

Despite the presence of an A-site tRNA in Structure II, the conformation of the decoding center

resembles that found in the absence of an A-site tRNA with the 30S in an open conformation (com-

pare Figure 6E–D) (Ogle et al., 2001; Jenner et al., 2010). Strong density shows that A1492 resides

inside helix 44, as observed in the absence of an A-site tRNA (A1492 OFF) (Ogle et al., 2001;

Jenner et al., 2010) (Figures 6E and Figure 6—figure supplement 3B,F and I). G530 is separated

from A1492 by more than 10 Å (Figure 6E and Figure 6—figure supplement 3B), similar to that in

the absence of an A-site tRNA (G530 in the OFF position). A1493 bulges out from helix 44 of 16S

rRNA, so that the nucleotide is oriented toward the codon-anticodon helix. Weak density suggests

that the base does not form a stable interaction with the codon-anticodon helix (Figure 6—figure

supplement 3I), although A1493 appears pre-arranged for such an interaction by being bulged out

4.6 Å

3.3 Å

A

A/R tRNA 

mRNA

16S

23S

IV

III

II
RelA

B

IV

II

A/R tRNA 

C DA/R tRNA 

IV
II

RelA 

IV

II

~180°

ACT

Synth

ACT

RIS RIS

TGS

AH

Synth

PH PH

AHTGS

A1492

Figure 5. A/R tRNA and RelA rearrange toward the 30S subunit in Structures II to IV. (A) A/R tRNA settles into the decoding center of the 30S subunit

between Structures II (grey) and IV (colored as in Figure 1). Structures II and IV were aligned on the 16S rRNA. RelA is not shown. The positions of

A1492 in Structures II and IV are labeled for reference. (B) A/R tRNA and RelA positions in Structures II (grey), III (gold) and IV (colored as in Figure 1).

(C) and (D) Two views showing that RelA shifts with the A/R tRNA between Structure II (grey) and Structure IV (colored as in Figure 1). The TGS domain,

which interacts with the acceptor arm of A/R tRNA, moves more than the RIS and ACT domains. The superposition of Structures II and IV was

performed by structural alignment of the 16S rRNA.

DOI: 10.7554/eLife.17029.017

The following figure supplement is available for figure 5:

Figure supplement 1. Comparison of A/R tRNA to A/T and A/A tRNA.

DOI: 10.7554/eLife.17029.018
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(A1493 in the ON position). In summary, the key decoding center nucleotides in Structure II adopt

the following conformations: A1493 ON, A1492 OFF, and G530 OFF.
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Figure 6. Closure of the 30S subunit and decoding-center rearrangements in Structures II, III and IV. (A) A view down on the 30S subunit from the inter-

subunit interface shows the position of the decoding center (boxed). The 50S subunit (except for helix 69), small ribosomal proteins and RelA are

omitted for clarity. (B) The conformational differences in the 30S subunits of Structures II, III and IV suggest a domain-closure pathway. From Structure II

to IV, the 30S shoulder is shifted by more than 4 Å toward the 30S head. The superposition of Structures II, III, and IV was performed by structural

alignment of nt 980–1200 of 16S rRNA, corresponding to the 30S head. (C) Conformational differences in the decoding-center’s universally conserved

nucleotides A1492, A1493, and G530 of Structure II, III, and IV are shown after alignment as in (B). (D) The decoding center of Structure I, which lacks A/

R tRNA, is similar to that of the 30S domain-open structures with a vacant A site (Ogle et al., 2001; Jenner et al., 2010). (E) The decoding center of

Structure II reveals a previously unseen state, in which the domain-open 30S subunit contains a tRNA in the A site. A1493 is near the first base pair of

the codon-anticodon helix; A1492 is in helix 44, whereas G530 adopts the conformation previously observed in the absence of the A-site tRNA

(Ogle et al., 2001; Jenner et al., 2010). (F) The decoding center of Structure III reveals a previously unseen state, in which the 30S subunit adopts an

intermediate domain-closure conformation. A1493 and A1492 interact with the first and second base pairs of the codon-anticodon helix, respectively,

whereas G530 is oriented toward A1492. (G) The decoding center of Structure IV, with a closed 30S conformation, comprises A1493 and A1492 forming

A-minor interactions with the first two base pairs of the codon-anticodon helix, whereas G530 is shifted toward helix 44 and interacts with A1492. This

conformation resembles that of other 30S domain-closed structures in pre-accommodation-like 70S.EF-Tu.aa-tRNA complexes (Stark et al., 2001;

Valle, 2002; Schmeing et al., 2009) and 70S complexes with fully accommodated A/A tRNA (Voorhees et al., 2009; Jenner et al., 2010;

Demeshkina et al., 2012). Proteins are omitted for clarity in (C–G).

DOI: 10.7554/eLife.17029.019

The following source data and figure supplements are available for figure 6:

Source data 1. Distances between Structures II, III and IV, reflecting the movement of the 30S shoulder domain from Structures II to III to IV, relative to

the head and the body of the 30S subunit.

DOI: 10.7554/eLife.17029.020

Figure supplement 1. Comparison of the 30S subunits of Structures II, III and IV reveals domain closure of the 30S subunit from Structure II to IV.

DOI: 10.7554/eLife.17029.021

Figure supplement 2. The nucleotides at the decoding center and vicinity are resolved in the cryo-EM density.

DOI: 10.7554/eLife.17029.022

Figure supplement 3. Conformational differences between the decoding centers of Structures I through IV.

DOI: 10.7554/eLife.17029.023
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In the decoding center of Structure III — corresponding to the intermediate state of domain clo-

sure — A1493 and A1492 contact the codon-anticodon helix, forming A-minor interactions with the

first and second codon-anticodon base pairs (i.e., A1493 ON and A1492 ON; Figure 6F). G530 is in

the anti conformation and shifted, along with the shoulder of the 30S subunit, toward A1492

(Figures 6C,F and Figure 6—figure supplement 3C,G,J). Here, G530 adopts a position between

that in ribosomes with ’vacant’ and ’filled’ A sites (G530 SEMI-ON). The decoding center nucleotides

in Structure III therefore adopt the conformations A1493 ON, A1492 ON, and G530 SEMI-ON.

Finally, the decoding-center nucleotides in Structure IV adopt conformations nearly identical

(Figures 6G and Figure 6—figure supplement 3D, H, K) to those in the A-tRNA-bound ribosome

(A1493/A1492/G530 ON) (Selmer et al., 2006; Jenner et al., 2010; Demeshkina et al., 2012). The

530 loop is shifted closer to A1493 and A1492, so that G530 interacts with A1492. This shift is cou-

pled with the 30S subunit closure, also observed in 70S complexes with A-site tRNA (Selmer et al.,

2006; Jenner et al., 2010; Demeshkina et al., 2012) and pre-accommodation-like 70S.EF-Tu.aa-

tRNA complexes (Stark et al., 2002; Valle, 2002; Schmeing et al., 2009; Fischer et al., 2015).

Structural mechanism of tRNA decoding in the A site
Our observation of the open and intermediate states at the decoding center in Structures II and III

suggests how cognate tRNA is specifically selected during RelA activation. We propose the follow-

ing structural mechanism of deacyl-tRNA decoding (Video 1 and Figure 7). At early steps, interac-

tion of the anticodon stem loop of a cognate or non-cognate tRNA occurs with the domain-open

conformation of the 30S subunit, in which the decoding nucleotides are not positioned to stabilize

the codon-anticodon helix. At this stage, the non-cognate tRNA dissociates prior to the closure of

the 30S subunit, as the latter would require formation of the A-minor interactions by A1492 and
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Figure 7. Schematic of the mechanism of RelA activation by the ribosome and cognate deacyl-tRNA. The C-terminal domains of RelA, the RIS and the

ACT, bind the ribosome at the intersubunit bridge B1a near the vacant A site, but the synthetase remains unbound and inactive. When deacyl-tRNA

binds to the ribosomal A site, the decoding center controls the selection of cognate tRNA, coupled with domain closure of the 30S subunit. The codon

recognition checkpoints are mediated by distinct positions of the universally conserved nucleotides of the decoding center A1492, A1493 and G530.

Upon binding of cognate deacyl-tRNA to the ribosome, the RelA synthetase domain is exposed in the vicinity of the 30S spur and is activated for (p)

ppGpp synthesis by alleviation of RelA autoinhibition and interactions with the ribosome.

DOI: 10.7554/eLife.17029.024

The following figure supplement is available for figure 7:

Figure supplement 1. Superpositions with structures of 70S-ribosome complexes suggest that RelA is displaced from ribosomes during tRNA

accommodation and translocation.

DOI: 10.7554/eLife.17029.025
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A1493 with the Watson-Crick-paired codon-anticodon helix (Ogle et al., 2001; Jenner et al., 2010).

In the case of cognate tRNA, acceptance of tRNA and 30S domain closure would be coupled with

the formation of the A1492-G530 bridge (i.e., G530 ON) to stabilize the tRNA on the ribosome. The

A1493-ON and/or A1493/A1492-ON states in Structures II and III may therefore serve as checkpoints

on the path of acceptance of Watson-Crick base-paired tRNA and mRNA.

Our observation of previously elusive states of tRNA binding also suggests insights into the accu-

racy of aminoacyl-tRNA selection during elongation, a universally conserved mechanism responsible

for the accurate transfer of genetic information. Despite a wealth of structural, biochemical and bio-

physical studies, the high-resolution structural understanding of this mechanism is limited and dis-

tinct mechanistic models have been proposed (e.g. [Ogle et al., 2001; Demeshkina et al., 2012]).

Current structural understanding is limited to observation of the open and the closed conformations

of the 30S subunit in the absence and presence of A-site tRNA, respectively (Ogle et al., 2001;

Jenner et al., 2010). Biochemical (Rodnina et al., 1994; Rodnina et al., 1995; Rodnina et al.,

1996; Pape et al., 1998) and biophysical (Blanchard et al., 2004; Gonzalez et al., 2007) studies

demonstrated that tRNA accommodation includes an early short-lived intermediate – prior to form-

ing the A/T state – during which non-cognate tRNAs can be rejected. However, early or intermediate

states prior to the formation of the A/T state have not been structurally visualized at high resolution.

Our observation of incompletely engaged tRNA in the domain-open or intermediate state of the

30S subunit suggests that similar states exist for the aminoacyl-tRNA.EF-Tu.GTP ternary complex.

The tRNA acceptor arm positions are separated by ~5 Å in the early pre-accommodation step (Struc-

ture II) and the domain-closed step tRNA (Structure IV). This could be sufficient to keep EF-Tu farther

from the GTPase-activating sarcin-ricin loop of 23S rRNA (Voorhees et al., 2010) at an early step,

allowing non-cognate ternary complex dissociation prior to GTP hydrolysis, EF-Tu release and tRNA

acceptance via domain closure. Further structural and biochemical studies of the pre-accommodat-

ing aminoacyl-tRNA.EF-Tu.GTP ternary complexes are required to test whether tRNA binding dur-

ing the stringent response and during protein elongation are structurally similar.

Model of RelA activation by the ribosome and cognate deacyl-tRNA
The stringent response must be rapidly initiated upon cellular stress (Cashel and Gallant, 1969), but

under normal conditions the basal activity of RelA must remain low to avoid cell growth inhibition by

(p)ppGpp (Schreiber et al., 1991). The cellular concentration of RelA under normal conditions is sev-

eral orders of magnitude lower than that of ribosomes (Pedersen and Kjeldgaard, 1977;

Justesen et al., 1986). Thus, a small number of cellular RelA molecules must use an efficient strategy

to locate stress-activating ribosomes.

Could RelA remain bound to actively translating ribosomes or would it be displaced from these

ribosomes until an activating stalled ribosome is found? During elongation, the ribosomal A site pri-

marily interacts with the aminoacyl-tRNA, delivered by the EF-Tu.GTP.aa-tRNA ternary complex,

and with elongation factor EF-G, which translocates peptidyl-tRNA from the A to the P site. Bio-

chemical studies show that ribosomes bound with EF-Tu.GDPCP.Phe-tRNAPhe ternary complex can

also bind RelA but do not result in (p)ppGpp synthesis (Richter et al., 1975; Wendrich et al., 2002).

Superimposing E. coli 70S EF-Tu.GDP.Phe-tRNAPhe
.kirromycin complex (Fischer et al., 2015) onto

our 70S.RelA Structure I reveals no clashes between EF-Tu ternary complex and the RelA RIS and

ACT domains (Figure 7—figure supplement 1A). The N-terminal domains are connected to the

C-terminal domains with a-helical linkers, which might allow for the simultaneous binding of RelA

and EF-Tu ternary complex. Steric hindrance with EF-Tu and the absence of interaction with deacyl-

tRNA, however, would prevent activation of RelA, consistent with the biochemical data. Thus, the

early steps of elongation are compatible with a ribosome-bound but inactive RelA.

Full accommodation and translocation of tRNA, however, would require displacement or reloca-

tion of RelA from bridge B1a, where the C-terminal superdomain is bound. When we superimpose

Structure I and the structure of the 70S ribosome bound with three tRNAs (Jenner et al., 2010)

(PDB: 3I8H), we observe a prominent steric clash between the ACT domain and the fully accommo-

dated A-site tRNA (Figure 7—figure supplement 1B). Moreover, RelA does not bind pre-transloca-

tion and post-translocation 70S.EF-G complexes (Wagner and Kurland, 1980). Binding of EF-G to

the pre-translocation ribosome stabilizes a rotated intersubunit state (Frank and Agrawal, 2000;

Cornish et al., 2008; Brilot et al., 2013), in which bridge B1a is restructured and S19 is relocated by

~20 Å because of 30S subunit rotation (Figure 7—figure supplement 1C). This conformation would
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disrupt the contact between the RIS domain and S19 and prevent binding of RelA to the rotated EF-

G-bound ribosomes. In the non-rotated post-translocation ribosome, wherein EF-G occupies the A

site of the 30S subunit (Frank and Agrawal, 2000; Gao et al., 2009), steric hindrance between

EF-G domain IV and Linker Helix 2 (Figure 7—figure supplement 1D) may prevent RelA from bind-

ing. Thus, in translating ribosomes, RelA cannot be activated and must be displaced from its binding

site near bridge B1a.

Our structures suggest the following mechanism of RelA activation (Figure 7). The C-terminal

domains of RelA associate with the ribosome near bridge B1a, as in Structure I. During amino-acid

starvation, a cognate deacyl-tRNA binds the 30S A site as the codon-anticodon interaction is stabi-

lized following step-wise rearrangements of the decoding center, as in Structures II, III and IV. At the

other end of the tRNA, the deacylated CCA end pins the TGS domain against the body of the 30S

subunit, exposing the dynamic synthetase domain near the spur. We propose that the activation of

RelA synthetase is bifactorial. First, stabilization of RelA in the 70S.deacyl-tRNA complex alleviates

the autoinhibition of the synthetase activity observed in ribosome-free RelA (Schreiber et al., 1991;

Gropp et al., 2001; Yang and Ishiguro, 2001a). If the autoinhibition is due to inter-molecular inter-

actions in oligomeric RelA (Gropp et al., 2001; Yang and Ishiguro, 2001a), as suggested by struc-

tures of free dimeric ACT (Eletsky et al., 2009) and TGS domains (Forouhar et al., 2009), the

dimerization surfaces of the ACT and TGS domains become disrupted by the ordering of the AH

domain (Figure 2D) and interaction with the CCA end of the A/R tRNA (Figure 3C), respectively.

Second, consistent with the observation of several conformations of the catalytic N-terminal domain,

changes in the relative positions of the pseudo-hydrolase and synthetase domain, and/or in the

interaction of the synthetase domains with the spur may contribute to the catalytic activation of the

(p)ppGpp synthetase.

During translation under unstressed conditions, however, aminoacyl-tRNA accommodation in the

A site and ribosome translocation displaces the C-terminus of RelA from the ribosome or at least

from bridge B1a. We do not observe density for RelA when an A-site tRNA is fully accommodated,

consistent with the model that RelA is displaced from the ribosome. Our structure-based mechanism

is consistent with models in which RelA produces (p)ppGpp when bound to ribosomes with cognate

deacylated tRNA, but is actively displaced from ribosomes during translation to limit (p)ppGpp pro-

duction (Elf and Ehrenberg, 2005; Li et al., 2015). It is more difficult to reconcile our structures

with the ’hopping’ or ’extended hopping’ models of RelA activation (Wendrich et al., 2002;

English et al., 2011). The first model suggests that RelA is recruited to ribosomes with deacyl-tRNA

already bound in the A site, activated to produce (p)ppGpp, and then passively dissociates to find

another 70S.deacyl-tRNA complex (Wendrich et al., 2002). Although RelA binding to the 70S ribo-

some following deacyl-tRNA is possible, our Structure I suggests that the presence of tRNA is not

necessary for RelA binding, in agreement with biochemical observations (Haseltine and Block,

1973; Ramagopal and Davis, 1974; Wagner and Kurland, 1980; Wendrich et al., 2002). The

’extended hopping’ model posits that activated RelA retains its activated state for some time after

being released from 70S.deacyl-tRNA (English et al., 2011). Our structures, by contrast, indicate

that RelA can bind a stalled (non-translating) ribosome before deacyl-tRNA arrives and that deacyl-

tRNA binding is required to stabilize the extended RelA conformation.

Our observation of several conformations of stringent response complexes raises the question

whether one or more A/R-tRNA–bound states activate RelA. RelA might be prepared for catalysis in

all three states. Alternatively, continuous transitions between Structures II, III, and IV could be

required for synthesis of (p)ppGpp, for example, by distributing the alignment of catalytic residues,

substrate binding and positioning, and product release between these distinct states. A third model

is that RelA is activated by only one state. We favor mechanisms, in which Structure IV is required to

activate RelA, either as part of an ’activating’ ensemble or as a sole activating complex (Figure 7).

Near-cognate tRNAs do not trigger (p)ppGpp synthesis (Haseltine and Block, 1973). Our tRNA

accommodation model predicts that near-cognate tRNAs would sample conformations similar to

those in Structures II or III, but do not proceed to the domain-closed ’acceptance’ state (Structure

IV). Thus, we propose that Structure IV, with an accommodated cognate tRNA anticodon stem loop

and closed decoding center, is necessary to activate RelA. Notably, the space in which the N-termi-

nal domains are located between the sarcin-ricin loop and the spur is more constricted in the

domain-closed state, highlighting the possible role of interactions between these domains and ribo-

somal RNA in (p)ppGpp-synthetase activation. After submission of this manuscript, two studies
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reported RelA-bound structures of the 70S ribosome in the presence of a non-hydrolyzable ATP ana-

log and GTP (Arenz et al., 2016; Brown et al., 2016). As such, the published complexes describe

substrate-bound states of RelA, whereas our complex lacks ATP and GTP and, therefore, describes

RelA states prior to substrate binding. In both published studies, a single predominant global struc-

ture is reported, however the conformational variability in the 30S domains (Brown et al., 2016) and

N-terminal domains of RelA (Arenz et al., 2016; Brown et al., 2016) is noted, consistent with our

observations. The predominance of the single ribosome conformation is likely due to the use of the

antibiotic paromomycin in one study (Brown et al., 2016), which stabilizes a domain-closed 30S con-

formation (Ogle et al., 2001) similar to our Structure IV, or to the use of RelA substrate analogs, or

to differences in cryo-EM dataset sizes or in classification procedures. Further work will address the

roles of 30S inter-domain rearrangements, RelA inter-domain rearrangements and interactions

between the synthetase domain and the 30S spur in the activation of RelA.

Materials and methods

Ribosome.RelA complex preparation
E.coli RelA coding sequence was obtained from ASKA Clone(-) library (National BioResource Project,

NIG, Japan) and was subcloned into the expression vector pET24b to carry an N-terminal 6xHis-tag.

RelA was overexpressed and purified essentially as described (Knutsson Jenvert and Holmberg

Schiavone, 2005; Agirrezabala et al., 2013). The crude E. coli RelA-containing lysate was passed

through nickel resin (HisPur Ni-NTA Resin, Thermo Fisher Scientific) and washed out with elution

buffer (20 mM K-Hepes (pH 7.5), 1000 mM KCl, 1 mM MgCl2, 250 mM imidazole, 15% glycerol and

6 mM b-mercaptoethanol, freshly added in this and subsequent steps). The elution product was dia-

lyzed against a low-salt buffer (10 mM Tris-HCl (pH 8), 60 mM KOAc, 14 mM Mg(OAc)2, 0.5 mM

EDTA, 15% glycerol and 5 mM b-mercaptoethanol) to precipitate out RelA. RelA was re-dissolved in

the storage buffer (20 mM K-Hepes (pH 7.5), 1000 mM KCl, 1 mM MgCl2, 15% glycerol and 5 mM

bME). The purity of the recovered protein (>95%) was confirmed by SDS-PAGE analysis. 70S ribo-

somes were prepared from MRE600 E. coli essentially as described (Moazed and Noller, 1986,

1989) and stored in the ribosome-storage buffer (100 mM Tris-HCl (pH 7.0), 100 mM NH4Cl,

10.5 mM MgCl2, 0.5 mM EDTA, 5 mM b-mercaptoethanol) at �80˚C. tRNAfMet and tRNAPhe were

purchased from ChemBlock. RNA, containing the Shine-Dalgarno sequence and a linker to place the

AUG codon in P site and UUC codon in the A site (GGC AAG GAG GUA AAA AUG UUC AAA

AAA), was synthesized by IDT DNA.

The 70S.RelA.mRNA.P-tRNAfMet
.A/R-tRNAPhe complex was prepared as follows. 4 mM 70S ribo-

somes were incubated with 20 mM mRNA, 8 mM tRNAfMet and 8 mM tRNAPhe (all final concentrations)

for 30 min at 37˚C, in Buffer A (20 mM Hepes-KOH pH 7.4, 120 mM KCl, 6 mM MgCl2, 2 mM sper-

midine, 0.05 mM Spermine, 6 mM b-mercaptoethanol). RelA was then added at 5 mM (final concen-

tration) and the solution was incubated for 30 min at 37˚C. The complex was diluted in Buffer A and

supplemented with tRNAPhe and RelA to the following final concentrations: 40 nM 70S, 200 nM

mRNA, 80 nM tRNAfMet, and 1 mM tRNAPhe and 2 mM RelA. This diluted reaction was allowed to

equilibrate at least 5 min at 37˚C prior to application on cryo grids.

Grid preparation
Holey-carbon grids (C-flat 1.2–1.3, Protochips) were coated with a thin layer of carbon and glow dis-

charged at 20 mA with a negative polarity setting for 45 s in an EMITECH K100X glow discharge

unit. 2 mL of the diluted sample was applied to the grids. After a 10-second incubation, the grids

were blotted for 4 s and plunged into liquid ethane using a CP3 cryo plunger (Gatan Inc.) at room

temperature and ~75% humidity.

Electron microscopy
A dataset of 564,385 particles was collected as follows. 2992 and 5211 movies were automatically

collected using SerialEM (Mastronarde, 2005) in two sessions on a Titan Krios electron microscope

(FEI) operating at 300 kV and equipped with K2 Summit direct electron detector (Gatan Inc.) using

0.5 to 2.2 mm underfocus. 25 frames per movie were collected over 10 s at 4 e-/Å2/s for a total dose

of 40 e-/Å2 on the sample. The super-resolution pixel size was 0.82 Å on the sample.
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Image processing
Particles were extracted from aligned movie sums as follows. Movies were processed using IMOD

(Kremer et al., 1996) to decompress frames and apply the gain reference. Movies were drift-cor-

rected and exposure-filtered using unblur (Grant and Grigorieff, 2015b). Magnification anisotropy

of the movie sums was corrected with mag_distortion_estimate and mag_distortion_correct

(Grant and Grigorieff, 2015a). CTFFIND3 (Mindell and Grigorieff, 2003) was used to determine

defocus values. 2233 movies from the first dataset and 207 movies from the second dataset with

high drift, low signal, heavy ice contamination, or very thin ice were excluded from further analysis

after inspection of image sums and power spectra from CTFFIND3. Particles were automatically

picked from 10x binned images using Signature (Chen and Grigorieff, 2007) with a ribosome refer-

ence (18 representative reprojections of EM databank map 1003 (Gabashvili et al., 2000), which

was low-pass filtered to 50 Å). 480x480 pixel boxes with particles were extracted from super-resolu-

tion images, and the stack and FREALIGN parameter file were assembled in IMAGIC (van Heel

et al., 1996). To speed up processing, 2x, 4x, and 6x binned image stacks were prepared using

resample.exe, which is part of the FREALIGN distribution.

FREALIGN v9 (versions 9.07–9.11) was used for all steps of refinement and reconstruction

(Lyumkis et al., 2013) (Figure 1—figure supplement 1). The 6x binned image stack was initially

aligned to a ribosome reference (EM databank map 1003, [Gabashvili et al., 2000]) using five

rounds of mode 3 (global search) alignment including data in the resolution range from 300 Å to

30 Å. Next, the 2x binned, and later the unbinned image stacks were successively aligned against

the common reference using mode 1 (local refinement) including data up to a high-resolution limit

of 6 Å whereupon the resolution of the common reference stopped improving (FSC (0.143) = 3.5 Å).

Subsequently, the refined parameters were used for classification of the 6x binned stack into 5–25

classes in 30–80 rounds using resolutions from 12 to 300 Å. This yielded multiple RelA-containing

classes, one of which we used to build an initial atomic model. We found that using a three-dimen-

sional (3D) mask (described below) improved the separation of the RelA bound classes during classi-

fication. In the final classification with the 3D mask, the 4x binned stack was separated into 15

classes in 50 rounds that included data between 8 to 300 Å resolution. The 3D mask was created

using Spider (Frank et al., 1996) by generating a density map, low-pass filtered to 30 Å, from our

initial atomic model and including the following components: RelA, A/R-, P- and E-site tRNAs, and

most of the 30S subunit (a 10-Å sphere around protein S2 was excluded because S2 appeared sub-

stoichmetric or disordered in the complex). The mask was applied to reference volumes in Frealign

such that parts of the ribosome outside of the mask were low-pass filtered to 30 Å (Grigor-

ieff, 2016). A five-pixel cosine edge was used on the mask and the masking filter function. This final

classification revealed seven high-resolution classes and eight junk classes (noisy or low-resolution).

The high-resolution classes differed in tRNA and RelA occupancies and 30S conformations (Fig-

ure 1—figure supplement 1). For the classes bound with RelA (Structures I - IV), particles with >

50% occupancy were extracted from the 1x binned stack, and the four final maps were prepared fol-

lowing three rounds of mode 1 refinement to 8 Å resolution. To aid model building of RelA domains,

we performed local refinements within 3D spherical masks. The particles belonging to Structures II,

III and IV were combined and masks encompassing either the C-terminal domains (RIS and ACT) or

the AH domain were applied to reference volumes in FREALIGN, so that parts of the ribosome out-

side of the mask were downweighted to 10% density during 10 rounds of mode 1 refinement to 8 Å

resolution (Figure 2—figure supplement 1C–D). Finally, to resolve the N-terminal regions of RelA,

we subclassified Structures II, III and IV individually, using a focus mask (a sphere, 80 Å in diameter)

that encompassed the pseudo-hydrolase and synthetase density (Figure 4—figure supplement 1).

100 rounds of classification were run, separating particles into 3, 4, 5 or 7 classes and using data

between either 12 to 300 or 20 to 300 Å resolution.

The maps used for structure refinements were B-factor sharpened using B-factors of -50 to -200

using bfactor.exe (included with the FREALIGN distribution [Lyumkis et al., 2013]). FSC curves were

calculated by FREALIGN for even and odd particle half-sets (Figure 1—figure supplement 2).

Model building and refinement
Recently reported high-resolution cryo-EM structure of the 70S.EF-Tu.aa-tRNA complex (PDB: 5AFI)

(Fischer et al., 2015), excluding EF-Tu and P- and E-site tRNAs, was used as a starting model for
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structure refinement. The starting structural models for tRNAfMet in the P and E sites were adopted

from the 70S.RF2.tRNA crystal structure (Korostelev et al., 2008). The starting model for RelA was

created by homology modeling and de novo modeling. The TGS domain of CLOLEP_03100 from

Clostridium leptum (PDB: 3HVZ; [Forouhar et al., 2009]) and the nuclear magnetic resonance struc-

ture of the ACT domain of GTP pyrophosphokinase from Chlorobium tepidum (PDB: 2KO1

[Eletsky et al., 2009]) were used for homology modeling employing SWISS-PROT (Bairoch et al.,

2004). De novo structure prediction by ROSETTA (Kim et al., 2004) and Quark (Xu and Zhang,

2012) was used to build the RIS domain, for which no homologous structures were found by

sequence homology. Our initial modeling of the RIS domain revealed the zing-finger fold, according

to DALI server (Holm and Rosenström, 2010), however unambiguous assignment of some amino-

acid side chains was challenging. In our final refinements, we adopted the RIS domain from the

recently published structure of E. coli RelA (Brown et al., 2016), in which most side-chain positions

agree with our densities. The initial model for the AH domain was obtained using I-TASSER

(Yang et al., 2015). Cryo-EM densities, obtained using a spherical mask around the N-terminal RelA

domains, suggest a helical region between the synthetase and TGS domains (aa 360–380), consistent

with the similarly-positioned long helix in the recently determined structures of the homologous

small alarmone synthetase 1 (SAS1; [Steinchen et al., 2015]). The homology model for the N-termi-

nal region (residues 16–351), obtained using the crystal structure of RelSeq (PDB: 1VJ7)

(Hogg et al., 2004), was fitted using Chimera (Pettersen et al., 2004) as a single rigid group into

the low-resolution maps obtained by sub-classification of Structures II, III and IV, as shown in Fig-

ure 4—figure supplement 1. The linkers between the domains and parts of the domains, whose

amino acid side chain positions could not be unambiguously determined from homology modeling

and density maps, were modeled as poly-alanine.

Structures I-IV were refined by real-space simulated-annealing refinement (Chapman, 1995;

Korostelev et al., 2002) against corresponding maps, excluding the central domains (Structure I)

and the N-terminal domains (Structures I-IV). Atomic electron scattering factors, obtained from Dr.

Tamir Gonen (Gonen et al., 2005), were used during refinement. Refinement parameters, such as

the relative weighting of stereochemical restraints and the experimental energy term, were opti-

mized to produce the optimal structure stereochemistry, real-space correlation coefficient and R-fac-

tor, which report on the fit of the model to the map (Zhou et al., 1998). Secondary-structure

restraints, comprising hydrogen-bonding restraints for ribosomal proteins and base-pairing restraints

for RNA molecules were employed as described (Laurberg et al., 2008). The resulting structural

models have good stereochemical parameters, characterized by low deviation from ideal bond

lengths and angles (Figure 1—source data 1).

Figures were prepared in Chimera and Pymol (DeLano, 2002).
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Pizarro-Cerdá J, Tedin K. 2004. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene
expression. Molecular Microbiology 52:1827–1844. doi: 10.1111/j.1365-2958.2004.04122.x

Polakis SE, Guchhait RB, Lane MD. 1973. Stringent control of fatty acid synthesis in Escherichia coli. Possible
regulation of acetyl coenzyme A carboxylase by ppGpp. Journal of Biological Chemistry 248:7957–7966.

Potrykus K, Cashel M. 2008. (p)ppGpp: still magical? Annual Review of Microbiology 62:35–51. doi: 10.1146/
annurev.micro.62.081307.162903

Ramagopal S, Davis BD. 1974. Localization of the stringent protein of Escherichia coli on the 50S ribosomal
subunit. PNAS 71:820–824. doi: 10.1073/pnas.71.3.820

Richter D, Nowak P, Kleinert U. 1975. Escherichia coli stringent factor binds to ribosomes at a site different from
that of elongation factor Tu or G. Biochemistry 14:4414–4420. doi: 10.1021/bi00691a012

Richter D. 1976. Stringent factor from Escherichia coli directs ribosomal binding and release of uncharged tRNA.
PNAS 73:707–711. doi: 10.1073/pnas.73.3.707

Rodnina MV, Fricke R, Kuhn L, Wintermeyer W. 1995. Codon-dependent conformational change of elongation
factor Tu preceding GTP hydrolysis on the ribosome. The EMBO Journal 14:2613–2619.

Rodnina MV, Fricke R, Wintermeyer W. 1994. Transient conformational states of aminoacyl-tRNA during
ribosome binding catalyzed by elongation factor Tu. Biochemistry 33:12267–12275. doi: 10.1021/bi00206a033

Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W. 1996. Initial binding of the elongation factor Tu.GTP.
aminoacyl-tRNA complex preceding codon recognition on the ribosome. Journal of Biological Chemistry 271:
646–652. doi: 10.1074/jbc.271.2.646

Sankaranarayanan R, Dock-Bregeon AC, Romby P, Caillet J, Springer M, Rees B, Ehresmann C, Ehresmann B,
Moras D. 1999. The structure of threonyl-tRNA synthetase-tRNA(Thr) complex enlightens its repressor activity
and reveals an essential zinc ion in the active site. Cell 97:371–381. doi: 10.1016/S0092-8674(00)80746-1

Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV, Weir JR, Ramakrishnan V. 2009. The crystal
structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326:688–694. doi: 10.1126/science.
1179700

Schreiber G, Metzger S, Aizenman E, Roza S, Cashel M, Glaser G. 1991. Overexpression of the relA gene in
Escherichia coli. Journal of Biological Chemistry 266:3760–3767.

Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V. 2006.
Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942. doi: 10.1126/
science.1131127

Shyp V, Tankov S, Ermakov A, Kudrin P, English BP, Ehrenberg M, Tenson T, Elf J, Hauryliuk V. 2012. Positive
allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Reports 13:835–
839. doi: 10.1038/embor.2012.106

Stark H, Dube P, Lührmann R, Kastner B. 2001. Arrangement of RNA and proteins in the spliceosomal U1 small
nuclear ribonucleoprotein particle. Nature 409:539–542. doi: 10.1038/35054102

Stark H, Rodnina MV, Wieden H-J, Zemlin F, Wintermeyer W, van Heel M. 2002. Ribosome interactions of
aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nature Structural Biology 9:849–
854. doi: 10.1038/nsb859

Steinchen W, Schuhmacher JS, Altegoer F, Fage CD, Srinivasan V, Linne U, Marahiel MA, Bange G. 2015.
Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. PNAS
112:13348–13353. doi: 10.1073/pnas.1505271112

Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates
the type I interferon pathway. Science 339:786–791. doi: 10.1126/science.1232458

Sun W, Roland KL, Branger CG, Kuang X, Curtiss R. 2009. The role of relA and spoT in Yersinia pestis KIM5
pathogenicity. PloS One 4:e6720. doi: 10.1371/journal.pone.0006720

Sy J, Lipmann F. 1973. Identification of the synthesis of guanosine tetraphosphate (MS I) as insertion of a
pyrophosphoryl group into the 3’-position in guanosine 5’-diphosphate. PNAS 70:306–309. doi: 10.1073/pnas.
70.2.306

Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T. 2008. The global,
ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Molecular Microbiology 68:
1128–1148. doi: 10.1111/j.1365-2958.2008.06229.x

Loveland et al. eLife 2016;5:e17029. DOI: 10.7554/eLife.17029 22 of 23

Research article Biophysics and Structural Biology

http://dx.doi.org/10.1016/S0968-0004(03)00066-5
http://dx.doi.org/10.1016/S0092-8674(02)01086-3
http://dx.doi.org/10.1093/emboj/17.24.7490
http://dx.doi.org/10.1093/emboj/17.24.7490
http://dx.doi.org/10.1007/BF00277313
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11573.x
http://dx.doi.org/10.1002/jcc.20084
http://dx.doi.org/10.1111/j.1365-2958.2004.04122.x
http://dx.doi.org/10.1146/annurev.micro.62.081307.162903
http://dx.doi.org/10.1146/annurev.micro.62.081307.162903
http://dx.doi.org/10.1073/pnas.71.3.820
http://dx.doi.org/10.1021/bi00691a012
http://dx.doi.org/10.1073/pnas.73.3.707
http://dx.doi.org/10.1021/bi00206a033
http://dx.doi.org/10.1074/jbc.271.2.646
http://dx.doi.org/10.1016/S0092-8674(00)80746-1
http://dx.doi.org/10.1126/science.1179700
http://dx.doi.org/10.1126/science.1179700
http://dx.doi.org/10.1126/science.1131127
http://dx.doi.org/10.1126/science.1131127
http://dx.doi.org/10.1038/embor.2012.106
http://dx.doi.org/10.1038/35054102
http://dx.doi.org/10.1038/nsb859
http://dx.doi.org/10.1073/pnas.1505271112
http://dx.doi.org/10.1126/science.1232458
http://dx.doi.org/10.1371/journal.pone.0006720
http://dx.doi.org/10.1073/pnas.70.2.306
http://dx.doi.org/10.1073/pnas.70.2.306
http://dx.doi.org/10.1111/j.1365-2958.2008.06229.x
http://dx.doi.org/10.7554/eLife.17029


Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal RK, Frank J. 2002. Cryo-EM
reveals an active role for aminoacyl-tRNA in the accommodation process. The EMBO Journal 21:3557–3567.
doi: 10.1093/emboj/cdf326

van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M. 1996. A new generation of the IMAGIC image
processing system. Journal of Structural Biology 116:17–24. doi: 10.1006/jsbi.1996.0004

Vogt SL, Green C, Stevens KM, Day B, Erickson DL, Woods DE, Storey DG. 2011. The stringent response is
essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster
feeding models of infection. Infection and Immunity 79:4094–4104. doi: 10.1128/IAI.00193-11

Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. 2010. The mechanism for activation of GTP hydrolysis
on the ribosome. Science 330:835–838. doi: 10.1126/science.1194460

Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V. 2009. Insights into substrate stabilization
from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nature Structural & Molecular
Biology 16:528–533. doi: 10.1038/nsmb.1577

Wagner EG, Kurland CG. 1980. Escherichia coli elongation factor G blocks stringent factor. Biochemistry 19:
1234–1240. doi: 10.1021/bi00547a030

Wang JD, Sanders GM, Grossman AD. 2007. Nutritional control of elongation of DNA replication by (p)ppGpp.
Cell 128:865–875. doi: 10.1016/j.cell.2006.12.043

Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH. 2002. Dissection of the mechanism for the
stringent factor RelA. Molecular Cell 10:779–788. doi: 10.1016/S1097-2765(02)00656-1

Xu D, Zhang Y. 2012. Ab initio protein structure assembly using continuous structure fragments and optimized
knowledge-based force field. Proteins 80:1715–1735. doi: 10.1002/prot.24065

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure and function
prediction. Nature Methods 12:7–8. doi: 10.1038/nmeth.3213

Yang X, Ishiguro EE. 2001a. Dimerization of the RelA protein of Escherichia coli. Biochemistry and Cell Biology
79:729–736. doi: 10.1139/o01-144

Yang X, Ishiguro EE. 2001b. Involvement of the N Terminus of Ribosomal Protein L11 in Regulation of the RelA
Protein of Escherichia coli. Journal of Bacteriology 183:6532–6537. doi: 10.1128/JB.183.22.6532-6537.2001

Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF. 2001. Crystal structure of
the ribosome at 5.5 A resolution. Science 292:883–896. doi: 10.1126/science.1060089

Zhou G, Wang J, Blanc E, Chapman MS. 1998. Determination of the relative precision of atoms in a
macromolecular structure. Acta Crystallographica Section D Biological Crystallography 54:391–399. doi: 10.
1107/S0907444997011530

Loveland et al. eLife 2016;5:e17029. DOI: 10.7554/eLife.17029 23 of 23

Research article Biophysics and Structural Biology

http://dx.doi.org/10.1093/emboj/cdf326
http://dx.doi.org/10.1006/jsbi.1996.0004
http://dx.doi.org/10.1128/IAI.00193-11
http://dx.doi.org/10.1126/science.1194460
http://dx.doi.org/10.1038/nsmb.1577
http://dx.doi.org/10.1021/bi00547a030
http://dx.doi.org/10.1016/j.cell.2006.12.043
http://dx.doi.org/10.1016/S1097-2765(02)00656-1
http://dx.doi.org/10.1002/prot.24065
http://dx.doi.org/10.1038/nmeth.3213
http://dx.doi.org/10.1139/o01-144
http://dx.doi.org/10.1128/JB.183.22.6532-6537.2001
http://dx.doi.org/10.1126/science.1060089
http://dx.doi.org/10.1107/S0907444997011530
http://dx.doi.org/10.1107/S0907444997011530
http://dx.doi.org/10.7554/eLife.17029

