
Journal of Structural Biology 172 (2010) 407–412
Contents lists available at ScienceDirect

Journal of Structural Biology

journal homepage: www.elsevier .com/locate /y jsbi
Technical Note

GPU-enabled FREALIGN: Accelerating single particle 3D reconstruction
and refinement in Fourier space on graphics processors

Xueming Li a, Nikolaus Grigorieff b, Yifan Cheng a,*

a The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street,
San Francisco, CA 94158, United States
b Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 April 2010
Received in revised form 2 June 2010
Accepted 8 June 2010
Available online 15 June 2010

Keywords:
Single particle electron microscopy
GPU computing
FREALIGN
Image processing
1047-8477/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jsb.2010.06.010

* Corresponding author. Fax: +1 415 514 4145.
E-mail address: ycheng@ucsf.edu (Y. Cheng).
Among all the factors that determine the resolution of a 3D reconstruction by single particle electron
cryo-microscopy (cryoEM), the number of particle images used in the dataset plays a major role. More
images generally yield better resolution, assuming the imaged protein complex is conformationally
and compositionally homogeneous. To facilitate processing of very large datasets, we modified the com-
puter program, FREALIGN, to execute the computationally most intensive procedures on Graphics Pro-
cessing Units (GPUs). Using the modified program, the execution speed increased between 10 and
240-fold depending on the task performed by FREALIGN. Here we report the steps necessary to parallelize
critical FREALIGN subroutines and evaluate its performance on computers with multiple GPUs.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Single particle electron cryo-microscopy (cryoEM) is a versatile
tool for studying the three-dimensional (3D) structures of biologi-
cal macromolecules at high resolution. Recently, this technique has
been used to determine near-atomic resolution structures of icosa-
hedral viruses (Zhang et al., 2008, 2010; Yu et al., 2008; Chen et al.,
2009; Wolf et al., 2010) and large asymmetric protein complexes
(Cong et al., 2010). In single particle cryoEM, a 3D reconstruction
is calculated from a large number of individual images represent-
ing different views of the same molecule. The resolution of a 3D
reconstruction is improved iteratively by refining the geometric
parameters of each particle, including three Euler angles and two
in-plane shifts, and microscope parameters, including defocus
and magnification. To reach high resolution, especially when a par-
ticle exhibits little or no symmetry, a large number of images are
needed to improve the signal-to-noise ratio (SNR) of the 3D recon-
struction and to provide finer sampling in Fourier space. With the
development of advanced electron microscope systems and large
format digital image recording devices, it is now feasible to acquire
very large single particle datasets. The time required to process
these datasets depends almost linearly on the number of particles
in the datasets. Therefore, shortening the time needed for data pro-
cessing becomes one of the key issues in high-resolution single
particle cryoEM.
ll rights reserved.
A commonly used method in single particle cryoEM data pro-
cessing is to split a dataset into many smaller subsets and distrib-
ute them over a cluster of many computer nodes with single
Central Processing Units (CPUs), or to parallelize the algorithm to
take advantage of a multi-CPU architecture (Bilbao-Castro et al.,
2009; Fernandez, 2008; Yang et al., 2007). The data processing
speed on this kind of multi-CPU architecture depends on the num-
ber of CPUs. An alternative approach is to use Graphics Processing
Units (GPUs), which, unlike CPUs, have hundreds of vector process-
ing cores, integrated into one unit. With a large number of cores in
one processor, a GPU is capable of performing massively parallel-
ized scientific computing by concurrently applying a single
instruction to multiple data (the so-called SIMD architecture that
is commonly used in vector supercomputing). For cryoEM, the idea
of using GPUs for data processing has been extensively evaluated
and tested in the past few years (Castano-Diez et al., 2008; Sch-
meisser et al., 2009). Many recent efforts of using GPUs to acceler-
ate cryoEM data processing have shown some significant speed
increases (Castano Diez et al., 2007; Schmeisser et al., 2009; Tan
et al., 2009).

FREALIGN is a stand-alone program for very efficient refinement
and 3D reconstruction (Grigorieff, 2007). A number of subnanom-
eter resolution (Cheng et al., 2004; Fotin et al., 2006; Rabl et al.,
2008) or near-atomic resolution (Chen et al., 2009; Wolf et al.,
2010; Zhang et al., 2008, 2010) structures were reconstructed
and refined using this program. In FREALIGN, refinement can easily
be implemented on a multi-CPU cluster for distributed computing.
The time needed to complete a cycle of refinement depends on the

http://dx.doi.org/10.1016/j.jsb.2010.06.010
mailto:ycheng@ucsf.edu
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://www.sciencedirect.com/science/journal/10478477
http://www.elsevier.com/locate/yjsbi

Table 1
List of primary FREALIGN subroutines that can be parallelized.

Subroutine Description

Refinement cc3m() Calculate overall phase residue in Fourier
space

ccp() Calculate cross-correlation in Fourier space
Reconstruction pinsert_s() Interpolate a particle image into 3D Fourier

transform of the volume being reconstructed
Other sigma2() Calculate correlation coefficient in real space

presb() Calculate amplitude correlation coefficient in
Fourier space

ccoef() Calculate correlation coefficient in real space

408 X. Li et al. / Journal of Structural Biology 172 (2010) 407–412
number of particles in the dataset and the number of CPUs used for
the refinement. The 3D reconstruction step is often carried out on a
single CPU. The latest version of FREALIGN (version 8.08) offers
some parallelization of the reconstruction step using OpenMPI to
accelerate 3D reconstruction (about 3-fold on an 8 core CPU
system).

We have modified FREALIGN to utilize the parallel computing
power of GPUs. Using a test dataset of images of 20S proteasome,
we have achieved a �10-fold speed increase in the search and
refinement steps and a �240-fold speed increase in calculating a
3D reconstruction. While the detailed computational procedures
are modified to enable GPU enhancement, the algorithms for single
particle refinement and 3D reconstruction used by the original
FREALIGN code were unaltered. Thus, the results obtained with
our GPU-enabled FREALIGN code are essentially the same com-
pared to those obtained from the original code. Here we report
the computational procedures of our modification to FREALIGN,
hardware configurations and test results.
2. Parallelization of FREALIGN procedures

The general concept and technical details of utilizing the CUDA
language to program GPUs for cryoEM image processing have been
described in detail, for examples (Castano-Diez et al., 2008; NVI-
DIA, 2009; Schmeisser et al., 2009). Our current study aims to spe-
cifically accelerate FREALIGN on NVIDIA GPUs using CUDA.

The mode of operation in FREALIGN is controlled by an integer
called IFLAG. In each mode, the computational procedures can be
divided into various subroutines (Grigorieff, 2007). A primary func-
tion evaluated multiple times during a search or refinement
(IFLAG – 0) is the weighted correlation coefficient, or its inverse
cosine (FREALIGN’s phase residual). It is calculated between the
Fourier transform (FT) of a two-dimensional (2D) particle image
and a central section through the FT of the 3D reference. During
an iterative search (IFLAG = 4) and refinement (IFLAG = 1) a Powell
optimization function is used for maximizing the correlation coef-
ficient of each individual image by optimizing all geometric and
microscopy parameters. In a 3D reconstruction (IFLAG = 0), the
FTs of all particle images, weighted by using their phase residuals,
are inserted into the 3D FT of the new 3D reconstruction using an
interpolation function. Thus, two major procedures in FREALIGN
are used to calculate correlation coefficients and to interpolate be-
tween grid points.

During a search or refinement, the correlation coefficient is cal-
culated by accumulating the co-variances between two images or
their FTs. One image is the particle image shifted to the image ori-
gin and multiplied by the CTF. The other is a central section of the
3D FT of the reference volume masked by a cosine-edged mask and
multiplied by the square of the CTF. To calculate a central section of
the 3D volume the value of each pixel in the resulting 2D image is
calculated as the sum of the contributions from the nearest
n � n � n neighbors (n = 1, 3, or 5). To calculate a 3D reconstruction
the contribution of each 2D image pixel is added to its eight near-
est neighbors according to the view presented by the particle in the
image.

Table 1 lists the major FORTRAN subroutines in FREALIGN that
make use of the correlation coefficient or interpolation functions.
Supplementary Table 1 lists the execution times in microseconds
needed to complete each subroutine for a particular image size,
and Supplementary Table 2 lists the percentage of total runtime ta-
ken by each subroutine. Subroutines cc3m() and ccp() are used in
search and refinement. Both include three parts: extracting a cen-
tral section from the 3D FT, applying the cosine mask and CTF to
the section, and computing the correlation coefficient. The total
time used by these two subroutines in a search or refinement cycle
depends on the parameter setting, because they are executed more
than once, but together they account for more than 95% of the exe-
cution time. The main function of subroutine pinsert_s() is the
interpolation used in the 3D reconstruction procedure. It accounts
for most of the execution time used for 3D reconstruction and is in-
voked N times for each contributing image, where N is the symme-
try of the particle. The other three subroutines are used less often
in a search/refinement/reconstruction cycle.

In the original version of FREALIGN, the subroutines listed in Ta-
ble 1 consist of calculating FTs and loops over each pixel in a 2D
image for interpolation, masking and summation. These loops exe-
cute the same computation for each pixel and can, therefore, be
parallelized following the SIMD architecture. The computations
within a loop are first cast into a function to be executed on a
GPU, named kernel in CUDA (NVIDIA, 2009). Furthermore, a thread
array is created according to the dimension of the pixel array of the
2D image. All threads in the array execute the kernel concurrently,
one for each pixel in the image. For the computation in real space,
the dimension of both thread array and image array is m �m,
where m is the dimension of the particle image. In Fourier space,
FREALIGN uses reduced image arrays to save memory. Thus, the
dimension of both the image and thread arrays is m � (m/2 + 1).
The entire thread array needs to be divided into many blocks in or-
der to run on multiple processors (MPs) of the GPU. In the current
version, the dimension of blocks for computing the correlation and
interpolation is 32 � 16 and 16 � 16 threads, respectively, follow-
ing recommendations by the manufacturer (NVIDIA, 2009).

Most loops in FREALIGN’s procedures can be parallelized fol-
lowing the method mentioned above except those involving sum-
mation. In CUDA, the addition operation includes three individual
steps: an argument is read from memory, a number is added to
it, and the result is written back to the same memory location. If
executed by multiple threads concurrently, there are two potential
problems that are commonly known as data hazard. First, when an
argument is read by one thread for addition, the same argument
could be read by another thread for the same operation before it
is updated from the result of the first thread. Second, if more than
one thread writes their results to the same address at the same
time, CUDA only guarantees one of the writes to succeed (NVIDIA,
2009). In both cases, CUDA will return an undefined result. In the
parallelized FREALIGN subroutines, a potential data hazard occurs
in two places: one is the interpolation for the 3D reconstruction,
when the contributions from different image pixels are added
simultaneously to the same pixels of the FT of the new reconstruc-
tion; the other is the summation of co-variances for calculating the
correlation coefficient.

The first situation occurs infrequently, but the memory address
accessed by multiple threads is usually unpredictable. We avoid
data hazard by setting a barrier to prevent the addition operation
to be interrupted. Although this approach effectively converts the
addition to the same address into a sequential operation, it does
not have a serious impact on the performance due to its rare occur-
rence. The second situation is more complicated because all

X. Li et al. / Journal of Structural Biology 172 (2010) 407–412 409
threads calculate additions to the same address. With the barrier
directive, the resulting sequential addition would slow execution
substantially. To overcome this problem, we adopted a parallel
tree-structured summation algorithm as shown in Fig. 1A. The
summation between every two pixels is carried out in a synchro-
nized manner to get a new set of data with half the size. This pro-
cedure is repeated until the final result is obtained. According to
CUDA, the synchronization is only available for the threads in the
same blocks and blocks in the same grid. Therefore, the tree-struc-
tured summation is at first calculated within blocks. The result
from each block is written to global memory. After all blocks have
finished, the results are summed up using the same method again
until the final result is obtained.

In order to minimize data transfer between host and GPU all
data are stored in the global memory of the GPU whenever possi-
ble. When a FREALIGN job is launched, either for a search/refine-
ment or a 3D reconstruction, the 3D reference volume and/or the
new 3D reconstruction are loaded into the global memory of the
graphics card at the beginning. A 2D particle image is loaded when
it is used for the first time. In addition, all temporary arrays are
allocated in the global memory at the beginning of FREALIGN to
avoid the time needed by dynamic memory allocation during the
execution.

Because of the relatively high latency of the global memory, we
adopted the following strategies to improve execution perfor-
mance. First, the temporary arrays used in the summation, which
will be accessed many times, are loaded from the global memory
into the in-chip shared memory of the GPU at the beginning of
the kernel launch. Only the final results are written back to the glo-
bal memory. Second, the pixel arrays for the 2D images and CTF are
accessed following a sequential pattern, thus enabling the GPU to
coalesce many accesses to a single access. Third, the FT of the 3D
reference is bound to the read-only texture memory space. When
Fig. 1. Implementing parallelization of FREALIGN. (A) Tree-structured parallel
summation algorithm. The sums between every two pixels within the same block
are computed in synchronization, and repeated until the final result is obtained. (B)
Dividing and distributing subsets of the data on multiple GPUs for search and
refinement. (C) Dividing and distributing subsets of the data on multiple GPUs for
3D reconstruction.
sectioning the FT of the 3D reference map, only pixels of the 3D
FT along a defined orientation are accessed by the threads. The ran-
dom orientation of all 2D images leads to a random memory access
pattern. By using the texture hardware, which is designed for such
random access, the high latency of the global memory is avoided.
However, the size of this texture memory limits the size of the vol-
ume it can handle. Currently, we limit the image size that can be
handled by the GPU-enabled FREALIGN to 500 � 500.

In this study, we used two computer systems with four or eight
GPU devices (Table 2) for our testing. The parallelization of FRE-
ALIGN discussed above was expanded to a multi-GPU architecture
by partitioning and distributing the dataset evenly between multi-
ple devices, i.e. each GPU device processes only a few particles of
the whole dataset. Fig. 1B and C shows schematic diagrams of par-
allelization on a multi-GPU setup, in which the POSIX thread li-
brary is used to create host threads on each CPU that controls
GPU devices. Each CPU thread then launches corresponding GPU
kernel/threads to process a subset of the data.

In a multi-CPU/GPU architecture, the entire dataset is split
sequentially into a number of subsets for the search/refinement.
The number of subsets is equal to the total number of GPU devices
available. Each subset is then processed independently on each
CPU/GPU device and the output parameter files are merged when
completed (Fig. 1B). For calculating a 3D reconstruction, assuming
there are N GPU devices (N must be an even number), the dataset is
split into N subsets in such a way that the particles assigned to the
nth subset (n = 1, 2, . . ., N) have the particle numbers of mN + n,
where m is an integer variable (Fig. 1C). In FREALIGN, a 3D recon-
struction is calculated from a 3D FT of a 3D volume in Fourier space
where each sample point is calculated as following (Grigorieff,
2007):

Ri ¼
P

jw
2
j b2cjPij

f þ
P

jðwjbcjÞ2
:

Here, Ri represents sample i in the 3D FT of the reconstruction,
Pij is a sample from the FT of particle image j (before CTF correc-
tion) contributing to sample Ri, cj is the CTF for image j correspond-
ing to that point in the image, b is the interpolation function (for
example, box transformation), and wj is a weighting factor describ-
ing the quality of the image. f is a constant, similar to a Wiener fil-
ter constant, that prevents over-amplification of terms when the
rest of the denominator is small. Thus, a total of N numerator
and denominator arrays are calculated in Fourier space from parti-
cles of N subsets by N GPUs concurrently. Next, two numerator and
denominator arrays are calculated by merging N/2 corresponding
arrays from the even and odd numbered GPUs, respectively. Two
3D reconstructions are calculated from these two sets of numera-
tor and denominator arrays, respectively, corresponding to all
odd and even numbered particles. These two 3D reconstructions
Table 2
Configurations of the computer systems used for the test.

System I II

Operating system Fedora 11 Centos 5
Motherboard Asus P6TD Deluxe SuperServer 7046GT-TRF
CPU 1 � Intel i7 920 quad

core, 2.66 GHz
2 � Intel Xeon X5550
quad core, 2.66 GHz

RAM 12 GB DDR3-1333 24 GB DDR3-1333
Graphic Card 2 � NVIDIA GeForce

GTX 295
4 � NVIDIA GeForce
GTX 295

Total number of GPUsa 4 8

a Each GTX 295 graphic card was connected through a PCI-E 2.0 16X expansion
slot. In both systems, all GPUs were used for computation only (no display). In
System I, a third NVIDIA graphic card, GeForce 8400 GS was used to drive a display.
In System II, an onboard VGA controller is used for the display.

Fig. 2. Speed enhancement factors of individual FREALIGN subroutines. Accelera-
tion of individual subroutines with different image sizes: 56 � 56–500 � 500 pixels.
For the measurement of the speed enhancement factors, only one GPU on System I
was used.

Fig. 3. Acceleration of search and refinement by GPU-enabled FREALIGN with various im
a single GPU on System I vs. a single i7 CPU core on the same system. The corresponding
acceleration factors were measured on 4 and 8 GPUs on System I and II, respectively, vs

410 X. Li et al. / Journal of Structural Biology 172 (2010) 407–412
are used to calculate a Fourier Shell Correlation (FSC) curve. The fi-
nal 3D reconstruction is then calculated by merging the two 3D
reconstructions from odd and even numbered particles. Fig. 1C
shows an example of calculating a 3D reconstruction using 4
GPU devices.

3. Test and results

We have parallelized the code of FREALIGN (version 8.06) as de-
scribed above and tested its performance with two single particle
cryoEM datasets. One test dataset contained a total of 44,794
images of archaeal 20S proteasome with 224 � 224 pixels size. Pre-
viously, we published a 3D reconstruction calculated from this
dataset at a resolution of �6.8 Å using the unmodified version of
FREALIGN. Acquisition and processing of this dataset is described
in Rabl et al. (2008). We also generated a series of new test datasets
of yeast 20S proteasome with image sizes between 100 and 500.
We tested the GPU-enabled FREALIGN on two different multi-
GPU systems (System I and II in Table 2). To compare the perfor-
age sizes. (A) Search and (B) refinement. The accelerations factors were measured on
execution times are listed in Supplementary Tables 3 and 4. (C) Reconstruction. The
. a single CPU core on the same system.

X. Li et al. / Journal of Structural Biology 172 (2010) 407–412 411
mance of the unmodified (non-GPU) version of FREALIGN running
on a single CPU core with the performance of the GPU-enabled
code running on a single GPU, we used System I with only one
GPU enabled. This ensured that the hardware configuration re-
mained the same in these tests. The performance of the GPU-en-
abled FREALIGN was characterized by measuring the speed
enhancement factors with respect to the single core CPU reference
(Figs. 2 and 3, Supplementary Tables 3 and 4). Furthermore, we
determined the additional acceleration gained by using multiple
GPUs (four on System I and eight on System II).

The GPU-enabled version of FREALIGN is a mixture of CUDA, C/
C++ and FORTRAN77 code. The parts that control data flow and
computations were coded in C/C++ and CUDA as described above.
All code was compiled and linked using G77, GCC 3.4 and CUDA
2.3. The CPU version of FREALIGN version 8.06 was compiled using
default flag of the original package, and the same flags were also
used to compile the GPU-enabled version.

We first evaluated the speed increase of six major FREALIGN
subroutines listed in Table 1 when processed on a single GPU on
System I. For the tests we used a number of different image sizes
of the archaeal 20S proteasome dataset, 56 � 56, 112 � 112,
Fig. 4. Acceleration of GPU-enabled FREALIGN on multiple GPUs. (A) Search, (B) refineme
for System I while dashed lines apply to System II. All corresponding data are listed in S
224 � 224 and 500 � 500 pixels (Fig. 2 and Supplementary Table 1).
The speed enhancement factor increases steeply with the increase
of the image size. A �25-fold speed increase was achieved in sub-
routine ‘‘ccoef()”, and a �20-fold speed increase was observed for
subroutine pinsert_s(). The highest speed gain is obtained for
500 � 500 pixel images, the largest image size we have tested.
However, the acceleration factor is less than 1 for images of
56 � 56 pixels and, therefore, the GPU-enabled FREALIGN is slower
than the original version for such small images. The overall depen-
dency of the GPU-enabled FREALIGN on image size is consistent
with other reports on similar algorithms (Castano-Diez et al.,
2008; Tan et al., 2009).

The overall performances of three different FREALIGN modes,
i.e. search (IFLAG = 4), refinement (IFLAG = 1) and reconstruction
(IFLAG = 0) were evaluated for various image sizes of yeast 20S
proteasome dataset (Fig. 3, Supplementary Tables 3 and 4). The
acceleration factors for search and refinement were evaluated as
the ratios of execution times of the original and CPU-enabled ver-
sion of FREALIGN to complete processing of the same number of
particles (Fig. 3A and B, Supplementary Table 3). Because the
GPU-enabled FREALIGN requires an even number of GPUs for 3D
nt and (C) 3D reconstruction. Solid lines are the speed enhancement factors obtained
upplementary Table 5.

412 X. Li et al. / Journal of Structural Biology 172 (2010) 407–412
reconstruction (see above), the speed enhancement factors of 3D
reconstruction were evaluated by comparing execution times on
a single CPU core on System I and System II with execution times
using 4 and 8 GPUs on System I or II, respectively. This resulted
in speed enhancements of �130 or �240-fold for the 4 and 8
GPU systems, respectively (Fig. 3C, Supplementary Table 4).

We also evaluated the acceleration of search and refinement
when using multiple GPUs vs. a single GPU (Fig. 4, Supplementary
Table 5), and 3D reconstruction when using 8 GPUs vs. 4 GPUs. For
all tasks, the acceleration with multiple GPUs is approximately pro-
portional to the total number of GPUs used. The linear behavior par-
allels the acceleration observed when distributing the parameter
search and refinement for particles in a stack as smaller stacks across
multiple CPUs in a cluster (see above). One minor difference is that
the GPU-enabled FREALIGN handles parallelization over multiple
GPUs automatically while job distribution on a cluster is usually
handled by a shell script running multiple instances of FREALIGN.

Except for parallelization, we did not alter the original algo-
rithms of FREALIGN. Thus, the results of the GPU-enabled FRE-
ALIGN and the original CPU version of FREALIGN are essentially
the same (Supplementary Fig. 1).

4. Conclusion

In our current study, the time-critical subroutines of the single
particle reconstruction and refinement program FREALIGN were
parallelized using CUDA. The goal of this work is to accelerate
the iterative refinement-reconstruction cycles performed by FRE-
ALIGN using GPUs without changing the accuracy of the result.
We focused on parallelizing subroutines that involve mostly com-
putations in Fourier space, and kept the data structure and all the
data processing algorithms unchanged. We achieved between 10
and 25-fold speed enhancements in individual procedures, and a
�10-fold acceleration in the overall performance of the search
and refinement operations. Similar to the original (non-GPU) ver-
sion of FREALIGN, the search and refinement tasks can be distrib-
uted over multiple GPUs. We also parallelized the 3D
reconstruction on multiple GPUs and achieved an acceleration of
�240-fold on an 8-GPU system compared with calculations on a
single CPU core. This factor is likely to increase further with more
GPUs. Speed enhancement will be smaller when compared to mul-
tithreaded 3D reconstruction on a multi-core CPU system using the
latest version of FREALIGN (version 8.08), which is OpenMPI-en-
abled. As expected, comparison of the final reconstructions from
all tests show that the results from the GPU-enabled FREALIGN
are essentially the same as those obtained from the original FRE-
ALIGN running on CPUs. Our current work represents an important
step towards a high-performance data processing system for large
single particle cryoEM dataset using FREALIGN.

Acknowledgments

We thank David Agard and Shawn Zheng for critical discussions.
This study has been supported in part by grants from NIH
(R01GM082893, 1S10RR026814-01 and P50GM082250 (to A. Fran-
kel)) and grants from UCSF Program for Breakthrough Biomedical
Research (Opportunity Award in Basic Science and New Technol-
ogy Award) to Y.C., and grants P01 GM62580 to N.G. N.G. is an
Investigator in the Howard Hughes Medical Institute. The GPU-en-
abled FREALIGN can be downloaded from the websites of laborato-
ries of Grigorieff and Cheng.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jsb.2010.06.010.

References

Bilbao-Castro, J.R., Marabini, R., Sorzano, C.O., Garcia, I., Carazo, J.M., Fernandez,
J.J., 2009. Exploiting desktop supercomputing for three-dimensional electron
microscopy reconstructions using ART with blobs. J. Struct. Biol. 165, 19–
26.

Castano Diez, D., Mueller, H., Frangakis, A.S., 2007. Implementation and
performance evaluation of reconstruction algorithms on graphics processors.
J. Struct. Biol. 157, 288–295.

Castano-Diez, D., Moser, D., Schoenegger, A., Pruggnaller, S., Frangakis, A.S., 2008.
Performance evaluation of image processing algorithms on the GPU. J. Struct.
Biol. 164, 153–160.

Chen, J.Z., Settembre, E.C., Aoki, S.T., Zhang, X., Bellamy, A.R., Dormitzer, P.R.,
Harrison, S.C., Grigorieff, N., 2009. Molecular interactions in rotavirus assembly
and uncoating seen by high-resolution cryo-EM. Proc. Natl. Acad. Sci. USA 106,
10644–10648.

Cheng, Y., Zak, O., Aisen, P., Harrison, S.C., Walz, T., 2004. Structure of the human
transferrin receptor–transferrin complex. Cell 116, 565–576.

Cong, Y., Baker, M.L., Jakana, J., Woolford, D., Miller, E.J., Reissmann, S., Kumar, R.N.,
Redding-Johanson, A.M., Batth, T.S., Mukhopadhyay, A., Ludtke, S.J., Frydman, J.,
Chiu, W., 2010. 4.0-A resolution cryo-EM structure of the mammalian
chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl.
Acad. Sci. USA 107, 4967–4972.

Fernandez, J.J., 2008. High performance computing in structural determination by
electron cryomicroscopy. J. Struct. Biol. 164, 1–6.

Fotin, A., Kirchhausen, T., Grigorieff, N., Harrison, S.C., Walz, T., Cheng, Y., 2006.
Structure determination of clathrin coats to subnanometer resolution by single
particle cryo-electron microscopy. J. Struct. Biol. 156, 453–460.

Grigorieff, N., 2007. FREALIGN: high-resolution refinement of single particle
structures. J. Struct. Biol. 157, 117–125.

NVIDIA, 2009. NVIDIA CUDA Programming Guide v2.3. http://www.nvidia.com/
cuda.

Rabl, J., Smith, D.M., Yu, Y., Chang, S.C., Goldberg, A.L., Cheng, Y., 2008. Mechanism of
gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30,
360–368.

Schmeisser, M., Heisen, B.C., Luettich, M., Busche, B., Hauer, F., Koske, T., Knauber,
K.H., Stark, H., 2009. Parallel, distributed and GPU computing technologies in
single-particle electron microscopy. Acta Crystallogr. D: Biol. Crystallogr. 65,
659–671.

Tan, G., Guo, Z., Chen, M., Meng, D., 2009. Single-particle 3D reconstruction from
cryo-electron microscopy images on GPU. In: International Conference on
Supercomputing, Yorktown Heights, New York, USA. pp. 380–389.

Wolf, M., Garcea, R.L., Grigorieff, N., Harrison, S.C., 2010. Subunit interactions in
bovine papillomavirus. Proc. Natl. Acad. Sci. USA 107, 6298–6303.

Yang, C., Penczek, P.A., Leith, A., Asturias, F.J., Ng, E.G., Glaeser, R.M., Frank, J., 2007.
The parallelization of SPIDER on distributed-memory computers using MPI. J.
Struct. Biol. 157, 240–249.

Yu, X., Jin, L., Zhou, Z.H., 2008. 3.88 Å structure of cytoplasmic polyhedrosis virus by
cryo-electron microscopy. Nature 453, 415–419.

Zhang, X., Jin, L., Fang, Q., Hui, W.H., Zhou, Z.H., 2010. 3.3 A cryo-EM structure of a
nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472–
482.

Zhang, X., Settembre, E., Xu, C., Dormitzer, P.R., Bellamy, R., Harrison, S.C., Grigorieff,
N., 2008. Near-atomic resolution using electron cryomicroscopy and single-
particle reconstruction. Proc. Natl. Acad. Sci. USA 105, 1867–1872.

http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

	 1

GPU-enabled FREALIGN: accelerating single particle 3D reconstruction and refinement in

Fourier space on graphic processors

Xueming Li1, Nikolaus Grigorieff2 and Yifan Cheng1†

1The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics,

University of California San Francisco, 600 16th Street, San Francisco, CA 94158

2Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454

† Corresponding author. Fax: +1 415 514 4145.

 E-mail address: ycheng@ucsf.edu

	 2

Supplementary Figure 1. Comparison of the results obtained from GPU-enabled FREALIGN and

original FREALIGN.

Except for parallelization, the original search and refinement algorithms of FREALIGN were not altered.

Thus the results of the GPU-enabled FREALIGN and the original CPU version of FREALIGN were

essentially the same when comparing the final 3D reconstructions and FSC curves. (A) The FSC curves of

two 3D reconstructions after one cycle of search/refinement and 3D reconstruction by the original version

of FREALIGN (blue) and the GPU-enabled version of FREALIGN (red). The overlap of the FSC curve

indicates that the GPU-enabled FREALIGN produced essentially the same 3D reconstruction as the

original FREALIGN calculated on a single CPU. The FSC curve between the two 3D reconstructions is

shown in green. It remains above 0.93 at a resolution of 6.5Å and remains above 0.8 to the Nyquist limit.

The increasing difference at higher resolution of the 3D reconstruction is due to small differences in the

alignment parameters, which are caused by rounding errors. The small differences in the alignment

parameters do not introduce noticeable differences in the 3D reconstructions in the resolution range

exhibiting significant signal (FSC > 0.143). The two 3D reconstructions are identical (FSC = 1.0 up to the

Nyquist limit) when calculated from the same alignment parameters. Two 3D reconstructions calculated

by the original version (B) and by the GPU-enabled version (C) of FREALIGN on System I overlap

perfectly.

	 3

Supplementary Table 1. Execution time needed to complete each FREALIGN subroutine

Execution time in microseconds on a single i7 CPU core of on System I (Table 1):

size cc3m() ccp() pinsert_s() sigma2() presb() ccoef()

56 266±8 7299±52 490±25 378±8 677±192 445±27

112 1,590±41 28,984±95 2,185±123 1,622±111 2,281±73 1578±54

224 19,323±774 140,208±832 9,754±786 38,897±1199 38,262±1,886 37,146±1,450

500 58,428±960 632,200±1621 31,161±1152 18,1172±3255 19,9695±2,6247 190,976±30,632

Execution time in microseconds on a single GTX 295 GPU processor on System I:

size cc3m() ccp() pinsert_s() sigma2() presb() ccoef()

56 637±142 19,283± 278 138±107 588±202 627±12 532±4

112 808±139 23249±262 406±189 660±55 831±181 641±182

224 2,322±279 33,237±314 1,657±338 3,175±434 3,414±322 3,112±450

500 5,527±85 72,553±314 1,639±150 8,280±338 10,344±297 7,931±354

Each subroutine is invoked at least once for each particle. The averages ± standard deviations were
calculated from more than ten different particles of the same size.

	 4

Supplementary Table 2. Percentage of the total runtime by FREALIGN subroutines

Procedures and/or Percentage of total runtime invoked percentage of total run time
subroutines in italic: on CPU subroutines italic: on CPU
each mode bold: on GPU bold: on GPU
IFLAG 0 1 4 0 1 4
Read image/FFT 2.3% 0.1% 0.002%
iread()/rlft3() 12.0% 0.7% 0.01%

ctfapply() 17.7% 9.0% 0.15%
 12.0% 5.5% 0.07%

sigma2() 2.2% 0.04%
 1.6% 0.02%
search 99.8% psearch() 21.3%
 99.9% 34.0%

 prefine() 78.4%
 65.9%

 presb() 0.04%
 0.02%
refinement 88.7% prefine() 84.4%
 92.2% 88.9%

 presb() 2.3%
 1.7%

 ccoef() 2.0%
 1.6%
reconstruction/ 80.0%
a3d3() 76.0%

The percentages of total execution taken up by each major FREALIGN procedure/subroutine were
estimated from the real execution times of subroutines divided by the total runtime. Here psearch()
invokes ccp(), prefine() invokes cc3m(), and 3D reconstruction procedure a3d3() invokes pinsert_s(). The
measurements of CPU execution time were performed with a single CPU core on System I, and the GPU
execution time measurements were made on System I with GPU-enabled code running on a single GPU
device. The percentages were estimated from more than ten FREALIGN executions in each case.

	 5

Supplementary Table 3. Total execution time for search and refinement on a single CPU and a
single GPU.

Search (24 particles) Refinement (100 particles)
1 CPU core 1 GPU processor 1 CPU core 1 GPU processor Image

size time (s) time (s) acceleration time (s) time (s) acceleration
100
150
200
250
300
350
400
450
500

209±4.04
747±21.76
1247±32.69
1914±65.26
2724±76.96
4101±48.50
4852±128.41
9843±178.02
7921±155.59

165±2.39
216±2.19
251±4.80
340±7.27
367±6.41
512±11.26
547±13.40
760±11.50
801±15.46

1.27±0.01
3.45±0.07
4.97±0.04
5.63±0.07
7.42±0.08
8.01±0.08
8.87±0.02
12.95±0.04
9.89±0.00

14.46±0.45
54.64±1.41
88.49±3.06
116.95±1.92
153.31±5.26
204.83±3.86
240.36±6.29
296.64±7.60
330.37±3.11

8.40±0.23
12.12±0.22
13.56±0.60
15.89±0.74
17.22±0.33
22.70±0.86
23.91±0.92
29.80±2.04
32.32±1.20

1.72±0.01
4.51±0.03
6.52±0.07
7.36±0.22
8.90±0.13
9.02±0.17
10.05±0.12
9.95±0.43
10.22±0.28

Search: The total CPU execution times for processing 24 particles were measured on a single i7 CPU
core on System I (no GPU-enabled code). The GPU execution times for processing the same 24 particles
were measured on a single GTX 295 GPU on System I, with three GPUs disabled during the tests.
Refinement: The total CPU execution times for processing 100 particles were measured on a single i7
CPU core on System I (no GPU-enabled code). The GPU execution times for processing the same 100
particles were measured on a single GTX 295 GPU on System I, with three GPUs disabled during the
tests. The accelerations factors listed in the table correspond to those shown in Figures 3A and B.

Supplementary Table 4. Total execution time for 3D reconstruction on a single CPU and multiple
GPUs.

Reconstruction (1000 particles)
System I System II

1 CPU core 4 GPU processors 1 CPU core 8 GPU processors
Image
size

time (s) time (s) acceleration time (s) time (s) acceleration
100
150
200
250
300
350
400
450
500

 8.97±0.02
 30.56±0.02
 54.88±1.45
85.43 ±0.15
115.99±0.63
163.03±0.31
207.06±0.41
269.00±0.49
331.15±0.66

0.29±0.01
0.41±0.03
0.54±0.02
0.76±0.00
0.98±0.02
1.34±0.01
1.57±0.03
2.12±0.02
2.46±0.04

 30.78±1.21
 74.10±4.86
101.62±0.91
112.77±0.50
118.49±1.33
121.25±0.47
132.15±2.02
126.79±0.88
134.64±1.84

 7.61±0.02
26.43±0.02
46.93±0.33

 73.38±0.11
109.39±7.18
150.44±1.72
191.95±1.25
257.10±18.27
307.31±5.35

0.17±0.01
0.22±0.01
0.30±0.02
0.41±0.02
0.56±0.04
0.77±0.04
0.86±0.03
1.16±0.04
1.40±0.10

53.80±3.97
136.15±7.00
181.01±9.66
206.58±11.52
207.92±12.83
212.99±12.02
241.56±7.96
232.83±7.96
237.20±15.96

System I: The CPU execution times for calculating 3D reconstructions from a total of 1,000 particles
were measured on a single i7 CPU core on System I (no GPU-enabled code). The GPU execution times
for processing the same 1,000 particles were measured using 4 GPUs of System I. System II: The CPU
execution times were measured on a single Xeon X5550 CPU core on the System II (no GPU-enabled
code), which is used as the CPU reference for this system. The GPU execution times were measured using
8 GPUs of System II. The accelerations factors of this table correspond to those shown in Figure 3C.

	 6

Supplementary Table 5. Acceleration of search, refinement and 3D reconstruction on multiple
GPUs.

(A) Search

System I System II Search 1 GPU 4 GPUs 1 GPU 8 GPUs 4GPUs/8GPUs

Image
size time (s) time (s) acceleration time (s) time (s) acceleration acceleration

100
150
200
250
300
350
400
450
500

662±4
868±5
999±2
1367±2
1473±2
2057±4
2180±2
3051±4
3205±4

190±10
236±10
270±14
371±15
402±13
570±11
640±14
860±16
894±13

3.48±0.16
3.68±0.14
3.70±0.19
3.68±0.15
3.67±0.11
3.61±0.06
3.41±0.07
3.55±0.06
3.59±0.05

682±8
938±49
1095±14
1495±20
1667±30
2318±44
2366±63
3346±126
3497±142

91±3
122±4
144±6
194±12
216±7

302 ±16
316 ±12
447 ±19
457 ±21

7.48±0.12
7.68±0.14
7.62±0.20
7.71±0.39
7.71±0.12
7.68±0.26
7.49±0.08
7.48±0.03
7.66±0.04

2.08±0.05
1.93±0.02
1.88±0.03
1.91±0.04
1.86±0.01
1.89±0.06
2.03±0.03
1.92±0.05
1.96±0.06

(B) Refinement

System I System II Refinement 1 GPU 4 GPUs 1 GPU 8 GPUs 4GPUs/8GPUs

Image size time (s) time (s) acceleration time (s) time (s) acceleration acceleration
100
150
200
250
300
350
400
450
500

33.6±0.1
48.7±0.3
54.3±0.3
63.6±0.4
69.2±0.3
90.7±0.4
95.8±0.7
119.9±0.7
130.0±1.0

 9.4±0.7
13.6±0.5
15.2±0.5
18.8±0.8
19.4±0.4
26.3±0.5
28.4±1.7
36.0±2.0
38.4±1.1

3.58±0.24
3.57±0.09
3.57±0.10
3.39±0.12
3.56±0.06
3.45±0.05
3.37±0.17
3.33±0.17
3.39±0.07

35.5±0.9
52.3±0.3
59.5±0.3
68.4±2.5
77.9±1.1
100.8±3.3
104.8±4.1
136.6±1.9
140.6±3.4

6.7±0.3
8.4±0.5
9.7±0.6
10.3±1.1
11.5±1.4
14.7±1.6
16.0±1.4
19.1±1.7
19.8±1.6

5.33±0.11
6.20±0.35
6.11±0.36
6.64±0.46
6.78±0.73
6.86±0.51
6.53±0.31
7.16±0.55
7.09±0.42

1.41±0.03
1.62±0.05
1.56±0.05
1.82±0.12
1.69±0.17
1.79±0.16
1.77±0.05
1.89±0.06
1.93±0.11

(C) Reconstruction

System I System II Reconstruction 4 GPUs 8 GPUs 4GPUs/8GPUs

Image size time (s) time (s) acceleration
100
150
200
250
300
350
400
450
500

0.29±0.01
0.41±0.03
0.54±0.02
0.76±0.00
0.98±0.02
1.34±0.01
1.57±0.03
2.12±0.02
2.46±0.04

0.17±0.01
0.22±0.01
0.30±0.02
0.41±0.02
0.56±0.04
0.77±0.04
0.86±0.03
1.16±0.04
1.40±0.10

1.75±0.06
1.84±0.03
1.78±0.08
1.83±0.09
1.75±0.09
1.76±0.09
1.83±0.03
1.84±0.05
1.76±0.09

(A) Search: The total GPU execution times in second for completing an orientational search for 96
particles on 1 and 4 GPUs on System I, and on 1 and 8 GPUs on System II. (B) Refinement: The GPU
execution times for completing parameter refinement for 400 particles on 1 and 4 GPUs on System I, and

	 7

on 1 and 8 GPUs on System II. (C) Reconstruction: The GPU execution time for 3D reconstruction with
1,000 particles on 4 GPUs (System I) and 8 GPUs (System II). The last column is the ratio between the
execution times of 4 and 8 GPUs.

Note: In all tables, the execution times are shown as the average ± standard deviation calculated from
multiple FREALIGN executions with the same data. The standard deviation of CPU and GPU execution
time, and , were calculated from these multiple time measurements. The standard deviation
of the speed enhancement,

€

σaccel , is calculated using:

,
and is

€

σaccel =
1

GPUTime
σCPUTime −

CPUTime
GPUTime2

σGPUTime

	GPU-enabled FREALIGN: Accelerating single particle 3D reconstruction and refinement in Fourier space on graphics processors
	Introduction
	Parallelization of FREALIGN procedures
	Test and results
	Conclusion
	Acknowledgments
	Supplementary data
	References

