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Abstract The transporter associated with antigen processing (TAP) is an ATP-binding cassette

(ABC) transporter essential to cellular immunity against viral infection. Some persistent viruses have

evolved strategies to inhibit TAP so that they may go undetected by the immune system. The

herpes simplex virus for example evades immune surveillance by blocking peptide transport with a

small viral protein ICP47. In this study, we determined the structure of human TAP bound to ICP47

by electron cryo-microscopy (cryo-EM) to 4.0 Å. The structure shows that ICP47 traps TAP in an

inactive conformation distinct from the normal transport cycle. The specificity and potency of ICP47

inhibition result from contacts between the tip of the helical hairpin and the apex of the

transmembrane cavity. This work provides a clear molecular description of immune evasion by a

persistent virus. It also establishes the molecular structure of TAP to facilitate mechanistic studies

of the antigen presentation process.

DOI: 10.7554/eLife.21829.001

Introduction
Cytotoxic T cells detect and eliminate infected cells by recognizing viral peptides displayed on the

cell surface by major histocompatibility complex (MHC-I) molecules (Blum et al., 2013). The viral

peptides are generated in the cytosol and loaded onto MHC-I molecules in the endoplasmic reticu-

lum (ER). The transporter associated with antigen processing (TAP) transports these cytosolic pepti-

des into the ER lumen, where a multi-component peptide-loading complex facilitates peptide-

binding to nascent MHC-I molecules (Neefjes et al., 1993; Shepherd et al., 1993). Upon formation

of a stable complex with peptides, MHC-I molecules are released from the ER and exported to the

cell surface. Receptors on circulating T cells react to pathogen-derived and malignant peptides,

leading to a cytotoxic event that kills the diseased cells. T cells that recognize peptides derived from

normal cellular proteins are eliminated or inactivated during development to prevent an autoimmune

response, a process called immune tolerance. TAP-deficient cells have a reduced surface expression

of MHC-I molecules and are less sensitive to cytotoxic T cells (Deverson et al., 1990; Monaco et al.,

1990; Spies et al., 1990; Trowsdale et al., 1990)

TAP is an ER-resident transporter formed by two homologous subunits, TAP1 and TAP2. Similar

to other ABC transporters, it contains two nucleotide-binding domains (NBDs) that hydrolyze ATP

and two transmembrane domains (TMDs) that bind the substrate. In addition, both TAP1 and TAP2

contain an N-terminal transmembrane region (TMD0) that interacts with tapasin to form the larger

peptide-loading complex (Hulpke et al., 2012; Procko et al., 2005). TAP’s broad substrate specific-

ity is one of the most important properties for its function (Androlewicz and Cresswell, 1994;

Momburg et al., 1994a; Neefjes et al., 1995; van Endert et al., 1995). Humans typically express

six different MHC-I molecules, each binding to a large variety of peptides and conferring a different
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specificity (Falk et al., 1991; Hunt et al., 1992; Jardetzky et al., 1991). The same TAP transporter

provides peptides for all six MHC-I molecules; therefore, it must be more promiscuous than any sin-

gle MHC-I molecule. The substrate specificity of TAP has been studied extensively. The only

sequence constraint found for human TAP is a preference for a hydrophobic or basic residue at the

C-terminus (Momburg et al., 1994b). Interestingly, this peptide preference complements MHC-I

specificity in that an acidic C-terminus is rarely seen in MHC-I presented peptides

(Rammensee et al., 1999).

Despite its ability to transport a diverse range of peptides up to 40 residues long

(Momburg et al., 1994a), TAP is still subject to inhibition by some viral peptides. For example,

human herpes simplex virus (HSV) encodes the potent TAP inhibitor ICP47 (Früh et al., 1995;

Hill et al., 1995). Peptides containing the N-terminal 34 residues of ICP47 are sufficient to bind TAP

and prevent peptide translocation (Galocha et al., 1997; Neumann et al., 1997). Suppressing the

presentation of viral peptides renders HSV-infected cells undetectable to cytotoxic T cells

(York et al., 1994). This mechanism contributes to the lifelong infection of HSV. It also raises an

intriguing question: How does a viral peptide inhibit a promiscuous peptide transporter?

Previously, we determined the structure of a TAP/ICP47 complex using cryo-electron microscopy

(cryo-EM) (Oldham et al., 2016). This structure, at 6.5 Å resolution, showed that the N-terminal

region of ICP47 forms a helical hairpin, inserting itself into TAP’s substrate translocation pathway.

We have continued to study this system to establish the molecular structure of TAP and to under-

stand the chemical nature of the inhibition. Here we present a 4.0 Å cryo-EM reconstruction of the

human TAP/ICP47 complex and describe the specific atomic interactions that allow the viral peptide

to bind tightly to TAP and lock it in an inactive state.

Results and discussion

Cryo-EM attempts to improve the resolution
One major modification we incorporated for our new data collection was using a higher magnifica-

tion. As the ordered region of the TAP/ICP47 complex has a molecular mass of only 130 kDa and

exhibits a pseudo-twofold symmetry, two factors likely limiting resolution are the accuracy with

which the noisy cryo-EM images of single particles can be aligned and the ability to distinguish

pseudo-symmetrically related views. Since the predominant secondary structure observed in TAP/

ICP47 complex is helical, we expect that the signal in the 7–8 Å resolution range is important for

alignment. The higher magnification reduced the effective pixel size of the images from 1.35 Å used

in our previous study to 1.04 Å (Table 1), boosting the detective quantum efficiency (DQE) of the K2

Summit detector (Gatan, Inc.) at 7 Å resolution by about 6% (Li et al., 2013; McMullan et al., 2009;

Ruskin et al., 2013). We also lowered the dose rate from 10 electrons per pixel to eight in order to

minimize coincidence loss (Li et al., 2013) and limited data collection to areas of the grids that

showed good contrast of the particles, presumably correlating with regions of the grids that had the

thinnest ice.

To optimize data processing, we compared three methods to correct electron beam-induced

specimen movement: whole frame alignment using Unblur (Grant and Grigorieff, 2015), individual

particle alignment using alignparts_lmbfgs (Rubinstein and Brubaker, 2015), and a combination of

both. The best result was obtained by whole frame alignment followed by individual particle track-

ing. This combination of methods also works best for other small particles such as the g-secretase

(Bai et al., 2015).

Reconstruction and refinement were performed in Frealign (Grigorieff, 2016) using the previous

6.5 Å reconstruction as an initial reference. As Frealign automatically weights each particle according

to its correlation to the model, we obtained the best reconstruction without prior 2D or 3D classifica-

tion using only Frealign’s score-based particle weighting (Grigorieff, 1998). This resulted in weight-

ing coefficients at 4 Å that varied by about ±10% (about 5% of the particles received such low scores

that they were effectively excluded at 4 Å resolution). Hence, we used all 502,000 particles that were

automatically extracted from the micrographs for the 3D reconstruction. To exclude variable density

corresponding to the detergent micelles and the flexible TMD0 domains, alignment was performed

with a mask surrounding only the structured region of the protein. This mask was generated from

the 6.5 Å reconstruction and low-pass filtered to 8 Å to remove high-resolution information. The
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mask was then applied using Frealign’s 3D masking option (Grigorieff, 2016), specifying a smooth

edge of about 5 Å and leaving the density outside the mask in place and low-pass-filtered to 30 Å

resolution. This enabled parts of the disordered regions of the complex to contribute to the align-

ment at low resolution while only the signal from the well-ordered parts of the complex contribute

at high resolution.

The final reconstruction has an average resolution of 4.0 Å (Figure 1A and B). Analyzing regional

variations in resolution using the program Blocres (Cardone et al., 2013) indicates that the TM

region is better resolved than the two NBDs (Figure 1D). The density map for ICP47 and the TMDs

of TAP shows prominent side chain density sufficient to register the amino acid identity (Figure 1A

and C). The density corresponding to the two NBDs is adequate to assign secondary structure but

lacks side chain definition (Figure 1). With this map, we built and refined a model containing the 12

core TM-helices of TAP and the N-terminal 55 residues of ICP47 (Table 2). Poly-alanine models of

the NBDs were generated from a rat TAP1 NBD crystal structure (PDB 1JJ7) (Gaudet and Wiley,

2001) using the program Modeller (Webb and Sali, 2016) and were placed into the cryo-EM density

as rigid bodies. The molecular model was refined using only half of the data while keeping the other

half as a free set for validation (Figure 1E).

The structure of TAP trapped by a viral inhibitor
The TAP structure has the canonical fold of ABC exporters (Figure 2A and B). The 12 transmem-

brane (TM) helices at the core are arranged into two bundles, each consisting of TM 1–3 and 6 of

one subunit and TM 4–5 of the other subunit (Figure 2B). The NBDs are attached to each TM bundle

at their cytoplasmic ends and are separated from each other. The N-terminal 55 residues of ICP47

form a helical hairpin structure, which inserts into the opening between the two TM bundles. No

density was observed for either the C-terminal 33 residues of ICP47 or the two TMD0s, indicating

these regions are flexible in this conformation.

Although the overall conformation of TAP can be described as inward facing, such that the TM

pathway is accessible from the cytosol, there is a unique feature that has not been observed in any

other ABC transporters. In the inward-facing structures of other ABC exporters such as P-gp (pdb:

4F4C), access to the TM pathway is blocked from the extracellular side of the membrane by TM 1

and TM 6 of both subunits (Figure 2C) (Jin et al., 2012). In TAP, however, this gating region is

cracked open by ICP47 to a width approximately 4 Å in diameter (Figure 2C). In addition, a lateral

opening to the membrane leaflet is observed near the ER lumen side (Figure 2D). The presence of

Table 1. Summary of Cryo-EM data.

Imaging

Microscope Titan Krios I, 300keV (FEI)

Detector K2 Summit direct electron detector (Gatan)

Energy filter 10 eV (Gatan)

Data collection

Pixel size 1.04 Å

Movies 3875

Frames 50

Total exposure time 10 s

Exposure time per frame 0.2 s

Total exposure 74 electrons/Å2

Exposure per frame 1.48 electrons/Å2/frame

Defocus range �1.5 to �3.5 mm

Final reconstruction

Number of particles 501,973

B-factor correction �150 Å2

DOI: 10.7554/eLife.21829.002
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Figure 1. Cryo-EM reconstruction of the TAP/ICP47 complex. (A) Stereo views of the overall density map (blue mesh), filtered to 4 Å resolution and

sharpened with a B-factor of �150 Å2, for two 180˚ related views. The TAP/ICP47 model is shown in stick model (orange). (B) Resolution of the final

cryo-EM density map indicated by a plot of the Fourier Shell Correlation (FSC) between unfiltered reconstructions of two semi-independently refined

half datasets. (C) Stereo view of the density map (blue mesh) highlighting the TAP/ICP47 interface. Models of TAP (yellow) and ICP47 (magenta) are

also shown. (D) Overall density map colored by local resolution estimation calculated from two semi-independently refined and reconstructed Frealign

half maps using the Bsoft program Blocres and a 20 voxel kernel size. (E) Validation of the structure model. FSC calculated between the structure

model and the half map used for refinement (working, cyan), the other half map (free, red), and 3) the full map (green).

DOI: 10.7554/eLife.21829.003

The following source data is available for figure 1:

Source data 1. Resolution of the final cryo-EM reconstruction.

Figure 1 continued on next page
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ICP47 blocks both openings; otherwise there would be a continuous pathway across the membrane,

a state violating the alternating access model (Jardetzky, 1966). Therefore, it is most likely that the

ER openings observed in the structure of TAP/ICP47 complex are induced by ICP47. A functional

TAP without inhibitor would presumably open the TM pathway to only one side of the membrane at

a time to avoid potential ion leakage across the ER membrane.

The peptide-binding pocket
Although we do not yet have direct structural data regarding where or how natural substrates bind,

there is strong evidence suggesting that ICP47 competes with substrates for the same binding

pocket (Ahn et al., 1996; Früh et al., 1995; Hill et al., 1995; Tomazin et al., 1996). Studies using

radiolabeled peptides and mass spectrometry identified four regions, residues 375–420 and 453–

487 in TAP1 and 301–389 and 414–433 in TAP2, as part of the binding site (Nijenhuis and Hämmerl-

ing, 1996). Mapping these residues onto the structure shows that they are part of the TM helices

enclosing the large internal cavity (Figure 3A). The electrostatic environment of the TM cavity con-

taining strong positively and negatively charged patches provides an appropriate interface for bind-

ing peptides with free N- and C-termini (Figure 3B) (Momburg et al., 1994b; Schumacher et al.,

1994). Many residues identified by mutagenesis or substrate crosslinking experiments are located

on the surface of this cavity (Figure 3A and C) (Armandola et al., 1996; Deverson et al., 1998;

Geng et al., 2015; Momburg et al., 1996). In the TAP/ICP47 complex these residues are buried by

ICP47, consistent with data showing that ICP47 precludes peptide binding (Ahn et al., 1996;

Früh et al., 1995). Interestingly, the two residues proposed to serve as anchors for the C-termini of

bound peptides, Y408 of TAP1 and M218 of TAP2 (Geng et al., 2015; Momburg et al., 1996), both

interact with the N-terminal region of ICP47 through van der Waals contacts (Figure 3D). This obser-

vation is consistent with our previous suggestion that substrates interact with TAP through a very dif-

ferent mode from that of ICP47 (Oldham et al., 2016).

Figure 1 continued

DOI: 10.7554/eLife.21829.004

Source data 2. Validation of the structure model.

DOI: 10.7554/eLife.21829.005

Table 2. Reciprocal space refinement statistics

Space group P1

Cell dimensions

a, b, c (Å) 92.5, 116.0, 116.0

a,b,g (˚) 90.0, 90.0, 90.0

Resolution (Å) 100.0 - 3.97

Number of residues

TAP1 561

TAP2 551

ICP47 55

R.m.s deviations

Bond lengths (Å) 0.0070

Bond angles (˚) 0.881

Ramachandran

Favored (%) 94.3

Allowed (%) 5.5

Outliers (%) 0.2

DOI: 10.7554/eLife.21829.006
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The TAP/ICP47 interface
The interaction surface between ICP47 and TAP is extensive: 32 residues from ICP47 and 36 residues

from TAP come into direct contact at the interface. The solvent-accessible surface area of TAP bur-

ied by ICP47 is 2360 Å2 (Figure 4A), which is twice the average binding surface between proteins in

Figure 2. The structure of TAP trapped by ICP47. (A) Ribbon representation of the TAP/ICP47 complex. Color

code: TAP1 (blue), TAP2 (yellow), ICP47 (magenta) (B) The domain-swapped architecture: TAP1 is shown in ribbon

representation, TAP2 and ICP47 are shown as surfaces. TAP1 TM helices are labelled. (C) The open ER luminal

gate viewed along the membrane normal from the ER side (left). The closed extracellular gate of P-gp is also

shown for comparison (right). (D) The lateral opening to the membrane bilayer at the ER luminal side (left). The

equivalent region in P-gp is also shown for comparison (right).

DOI: 10.7554/eLife.21829.007
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general (London et al., 2010) and four times the surface area of an MHC-I molecule buried by a

peptide antigen (Rudolph et al., 2002).

The N-terminal 34 residues of ICP47 are largely buried inside the translocation pathway, forming

a helical bundle with TAP2 TM helices 3 and 6 (Figure 3C and 4C). Previous studies suggest that this

contact alone is sufficient to prevent substrate binding and subsequent conformational changes

associated with transport (Galocha et al., 1997; Neumann et al., 1997). Residues 35–55 of ICP47

continue to pack closely along TAP2 TM3 and make contact with IH1 (intracellular helix 1), a cou-

pling helix at the TMD/NBD interface. The last ordered residue of ICP47, P55, interacts with Y477,

which normally makes an aromatic stacking interaction with the adenine ring of ATP (Figure 4B).

The interactions between ICP47 and TAP1 are less extensive and are largely confined to the loop

region at the tip of the helical hairpin.

A better understanding of which residues contribute most to the overall energy of binding comes

from functional data, where each of the first 35 residues on ICP47 were mutated to alanine one at a

time and assayed for TAP inhibition (Galocha et al., 1997). Mutations that reduced the activity by

more than 50% are located in one region, from positions 18 to 25, where the two helices are con-

nected by a sharp turn (Figure 4C). Previously, we generated a ‘turn-to-helix’ mutant by replacing

Figure 3. The substrate-binding site. (A) Biochemically identified substrate-binding regions: TAP1 375–420 and

453–487 (blue), TAP2 301–389 and 414–433 (gold). The five residues previously suggested to interact with the

substrate (TAP1 Y408, E459 and TAP2 M218, A374, R380) are shown in stick model. (B) The electrostatic potential

surface of the substrate-binding cavity. The electrostatic potential was calculated assuming pH 7 and a 0.15 M

concentration of both (+1) and (�1) ions. Isocontour levels ranging from �10 to 10kT/e are colored from red to

blue. (C) The helical hairpin of ICP47 (purple) plugs into the substrate-binding site. (D) The N-terminal region of

ICP47 packs against Y408 of TAP1 and M218 of TAP2. For clarity, only side chains of TAP1 408, TAP2 M218, and

ICP47 L5 are shown. The blue mesh shows the B-factor sharpened cryo-EM reconstruction.

DOI: 10.7554/eLife.21829.008
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residues in the same region (16–22) with alanine (Oldham et al., 2016). This mutant, predicted to

have a higher propensity to form a long alpha-helix rather than the hairpin structure, indeed reduced

the activity of ICP47 by a factor of five (Oldham et al., 2016).

To understand which residues on TAP are critical for binding to ICP47, we compared sequences

of TAP that are sensitive to ICP47 inhibition with those resistant to it (Figure 5). Previous studies

showed that ICP47 from HSV inhibits TAP in human, monkey, pig, cow and dog cells, but not in rab-

bit, mouse and rat cells (Ahn et al., 1996; Jugovic et al., 1998; Verweij et al., 2011). Among the

36 residues that make contacts with ICP47, a small set of residues are highly conserved in ICP47-sen-

sitive species but not in rabbit, mouse and rat (Figure 5, boxed residues). When we map these resi-

dues onto the human TAP/ICP47 structure we observe that all but one of them are located near the

apex of the TM cavity, interacting with the ‘hot spot’ residues in ICP47 that were identified in the

alanine scan (Figure 4C) (Galocha et al., 1997). Thus, it appears that in the setting of a very large

interface between TAP and ICP47, amino acid changes in this region are particularly important and

account for TAP susceptibility to ICP47 among the species analyzed here. For example, both mouse

and rat contain a T425N substitution, which is incompatible with the close contacts between T425

Figure 4. The interface between TAP and ICP47. (A) The first 34 residues of ICP47, highlighted in darker magenta,

insert into the transmembrane pathway. R34, and the first and last residues of ICP47 resolved in the structure (M1,

P55) are labeled. (B) ICP47 reaches into the TMD2/NBD2 interface near Y477. (C) Interactions between the ‘hot-

spots’ in TAP shown in stick models and those of ICP47 (residues 18–25, highlighted in darker magenta). (D)

Interactions between TAP2 T425 and ICP47 F11 and Y22. For clarity, only side chains of TAP2 T425 and Y428 and

ICP47 F11 and Y22 are shown. The blue mesh shows the B-factor sharpened cryo-EM reconstruction.

DOI: 10.7554/eLife.21829.009
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and F11 and Y22 of ICP47 (Figure 4D). Substituting F11 or Y22 with alanine reduced lCP47 inhibi-

tion by 40% and 60% respectively (Galocha et al., 1997). The lack of ICP47 inhibition in rabbit cells

can be explained by the substitution of S421 with the large, charged arginine residue, which proba-

bly prevents insertion of the helical hairpin into the top of TM cavity (Figure 4C). Therefore, two

independent approaches—mutagenesis to identify functional hotspots on ICP47 (Galocha et al.,

1997) and analysis of specificity determinants on TAP—both point to the same molecular interface

at the tip of the helical hairpin as being crucial to the action of ICP47 to inhibit TAP (Figure 4C).

A mechanism of immune evasion by HSV
The structure of the TAP/ICP47 complex provides us with a clear picture of how HSV evades immune

surveillance. TAP transports peptide antigens into the ER through conformational changes powered

by ATP binding and hydrolysis. Based on what we have learned from homologous ABC transporters,

we can envision that in the absence of substrate and ATP, TAP rests in an inward-facing conforma-

tion in which the two NBDs are separated and the translocation pathway faces the cytoplasm. Upon

binding to the substrate and ATP, the two NBDs form a closed dimer and the translocation pathway

orients towards the ER lumen to release the peptide. ATP hydrolysis at the closed NBD dimer inter-

face resets TAP to its resting state, ready for the next transport cycle. ICP47 precludes substrate

Figure 5. Sequence alignment of the TAP residues that contact ICP47. ICP47 inhibits TAP from human, owl monkey, pig, cow and dog (the top five

sequences), but not that of rabbit, mouse and rat (the bottom three sequences). Residues contacting ICP47 are colored based on amino acid character

(positively charged in blue, negatively charged in red, hydrophobic in green, glycine in magenta, and polar in gold). Residues discussed in the text are

highlighted in boxes.

DOI: 10.7554/eLife.21829.010
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binding by inserting a long helical hairpin into the translocation pathway. The strong interaction

between ICP47 and TAP traps TAP in an inward-facing conformation with the two NBDs separated,

unable to progress to the NBD-closed conformation necessary for ATP hydrolysis. By blocking trans-

location of viral peptides into the ER, HSV suppresses the MHC-I antigen presentation pathway and

thereby escapes cytotoxic T cell detection.

Structural comparison of peptide transporters in the ABC family
Previously, crystal structures were determined for two prokaryotic peptide transporters: the E. coli

McjD in the AMPPNP-bound conformation (pdb: 4PL0) (Choudhury et al., 2014; Mehmood et al.,

2016) and the peptidase-containing ABC transporter from Clostridium thermocellum (PCAT1) in two

different conformations (inward-facing pdb: 4RY2; occluded, ATPgS-bound pdb: 4S0F) (Lin et al.,

2015). Unlike TAP, which is a promiscuous transporter found only in jawed vertebrates (Hinz et al.,

2014), McjD and PCAT1 are dedicated to specific substrates. McjD exports microcin J25, a 21-resi-

due antibacterial peptide with a lasso fold. PCAT1 functions both as a maturation protease and

exporter for a 90-residue peptide with an amino-terminal leader sequence. Correspondingly, PCAT1

contains two peptidase domains in addition to the canonical TMDs and NBDs. Despite these differ-

ences, the three transporters share a similar fold in the core region: the NBDs have very similar

Figure 6. Structures of three peptide transporters in the ABC family. (A) Ribbon representations. The two subunits are shown in blue and gold,

respectively. ICP47 is colored in magenta. The peptidase domains of PCAT1 observed in the inward-facing conformation are colored in cyan and light

yellow. The nucleotides, ATPgS in PCAT1 and AMPPNP in McjD, are shown in stick model. (B) Structural comparison of the TMDs. Only one TMD is

shown for each transporter. The TM helices for TAP1 are shown.

DOI: 10.7554/eLife.21829.011
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structures and the TM helices in each subunit are of similar length with a similar trajectory (Figure 6).

One notable difference between TAP and the other two transporters occurs in TM 4-5, which in TAP

appears to be pushed outward and bent (Figure 6). This difference, however, could possibly reflect

a distortion due to the presence of ICP47. The overall structures of TAP, PCAT1, and McjD differ in

the separation of the two halves, reflecting the different conformational states each structure repre-

sents. TAP shows the largest separation, again possibly induced by the viral inhibitor ICP47. The two

NBDs of PCAT1 form a semi-open dimer in the absence of a nucleotide, separated at the TMD/NBD

interfaces and making contacts at the distal end of the structure (Figure 6). In the presence of ATP

analogs and the absence of a substrate, both McjD and PCAT1 reveal an occluded conformation in

which the NBDs are closed and the translocation pathway is shielded from both sides of the mem-

brane (Figure 6). The similarity in their structures suggests that these transporters may share a com-

mon evolutionary origin and a common mechanism for coupling ATP hydrolysis to peptide

translocation.

Materials and methods

Expression of TAP and ICP47 and co-purification of the TAP/ICP47
complex
Human TAP and HSV-1 ICP47 were expressed and purified as described in the earlier study

(Oldham et al., 2016). Briefly, ICP47 was expressed in E. coli and purified via a N-terminal glutathi-

one S-transferase (GST) affinity tag. Pichia pastoris cells (strain SMD 1163 His+; Invitrogen) co-

expressing TAP1 and TAP2 were lysed with a mixer miller (Retsch Mixer Mill 400) and incubated with

purified ICP47 before solubilizing with n-Dodecyl b-D-maltoside (DDM; Anatrace). The TAP/ICP47

complex was purified on IgG Sepharose resin (GE Healthcare) via the Protein A tag at the C-terminus

of TAP1. The Protein A tag was removed by PreScission protease and the complex was further puri-

fied using a Superose 6 column (GE Healthcare) in a buffer containing 20 mM Hepes, pH 7.4, 150

mM NaCl, 2 mM TCEP, 1 mM DDM, and 1 mM octaethylene glycol monododecyl ether (C12E8;

Anatrace).

Electron microscopy sample preparation and microscope imaging
Cryo-EM grids were prepared as described (Oldham et al., 2016). Briefly, 3 ml of purified TAP/

ICP47 complex (2 mg/ml) was pipetted onto glow-discharged C-flat holey carbon CF-1.2/1.3–4C

grids (Protochips). At 90% humidity, the grids were blotted for 4 s using a Vitrobot Mark IV (FEI) and

frozen in liquid ethane. Imaging data were collected on a FEI Titan Krios electron microscope (accel-

eration voltage of 300 keV) with a K2 Summit direct electron detector (Gatan Inc.) running in super-

resolution counting mode and using SerialEM (Mastronarde, 2005). A Gatan Imaging filter with a

slit width of 10 eV was used to remove inelastically scattered electrons. Movie frames were recorded

on a single grid with a total exposure time of 10 s (200 ms per frame) using a dose rate of 8 elec-

trons/pixel/s or 7.4 electrons/Å2/s.

Image processing
Movie frames were corrected using a gain reference and binned by a factor of 2, resulting in a pixel

size of 1.04 Å. The effective contrast transfer function (CTF) was determined from the frame-summed

micrographs using CTFFIND4 (Rohou and Grigorieff, 2015). Manual picking and 2D classification

was performed in Relion to produce template classes for autopicking (Scheres, 2012). Particles auto-

matically selected by Relion were inspected manually to remove false positives, resulting in a dataset

of about 502,000 particles.

For specimen movement correction, we compared the results from three different methods:

whole frame alignment using Unblur (Grant and Grigorieff, 2015), individual particle alignment

using alignparts_lmbfgs (Rubinstein and Brubaker, 2015), and by first aligning frames with

Unblur then aligning individual particles in the Unblur-aligned movies using alignparts_Imbfgs. Using

these three different procedures, the best resolution values obtained at the stage of AutoRefine3D

in Relion were 7.5 Å, 7.4 Å, and 6.6 Å, respectively. Thus, the best results were obtained by combin-

ing whole frame alignment with subsequent individual particle tracking.
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Final reconstruction and refinements were carried out in Frealign (Grigorieff, 2016) using par-

ticles aligned with Unblur and alignparts_Imbfgs. Global parameter search (mode 3) was performed

at 8.0 Å resolution, followed by several iterations of local refinement with the alignment resolution

limit gradually increasing from 8.0 to 6.0 Å (mode 1). The resolution of the final reconstruction was

estimated at 4.0 Å using the Fourier shell correlation (FSC) of two reconstructions each containing

half of the data and using 0.143 as the cut-off criterion (Figure 1B).

Model building
A model, consisting of residues 173–742 of TAP1, residues 130–681 of TAP2, and residues 1–55 of

ICP47, was manually built in Coot (Emsley et al., 2010). Several regions, including TAP1 residues

173–183, 215–222, 272–282, 322–325, 336–347, 431–443 and TAP2 residues 181–186 have poor

density and were registered based on the homologous structure ABCB10 (PDBcode 4AYT)

(Shintre et al., 2013).

Refinement and validation
Model refinement was performed in both real and reciprocal space. Using the program Pdbset

(Winn et al., 2011), the TAP/ICP47 model was translated into a P1 crystallographic symmetry unit

cell which was padded by 5 Å in each axis. The full map and the two half maps from Frealign were

also translated into the unit cell using the program Maprot (Stein et al., 1994). To generate a work-

ing half map for refinement, structure factors and phases were calculated from one of the translated

half maps using the program Sfall (Ten Eyck, 1977). The model was then refined against the working

half map using PHENIX real space refine with secondary structure restraints imposed (Adams et al.,

2010). Subsequently, the structure was refined against the working half map in reciprocal space

using Refmac (Brown et al., 2015; Murshudov et al., 1997) with secondary structure restraints cal-

culated from ProSMART (Nicholls et al., 2014). We used the EMAN2 program suite (Tang et al.,

2007) to produce map from the atomic coordinates of the complex model. To access the degree of

overfitting, we calculated FSC curves between the model and the half map used for refinement

(work), the other half-map (free), and the full map (Figure 1). The FSC curves were calculated using

Spider (Frank et al., 1996) by resampling the model map onto the same grid as the data maps using

UCSF Chimera (Pettersen et al., 2004) and calculating FSC curves between this converted map and

the cryo-EM maps. The cryo-EM maps were masked using a generous mask with a smooth edge and

a volume exceeding the estimated volume of the model by about 3.5 times. The FSC curves were

then adjusted for the volume exceeding the volume of the model using the formula

FSCcorrected ¼ f *FSC=ð1þðf� 1Þ*FSCÞ

where f is the factor by which the mask exceeds the volume of the model (Sindelar and Grigorieff,

2012). The FSC curve (green) between the model and the full map has a value of 0.5 at a resolution

of 4.3 (Figure 1E).

Figure preparation
Figures were prepared using the programs PyMOL (Schrödinger LLC, 2015) and UCSF Chimera

(Pettersen et al., 2004).
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